// Derived from Inferno utils/6c/txt.c // http://code.google.com/p/inferno-os/source/browse/utils/6c/txt.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package gc import ( "cmd/internal/obj" "fmt" "runtime" "strings" ) var ddumped int var dfirst *obj.Prog var dpc *obj.Prog /* * Is this node a memory operand? */ func Ismem(n *Node) bool { switch n.Op { case OITAB, OSPTR, OLEN, OCAP, OINDREG, ONAME, OPARAM, OCLOSUREVAR: return true case OADDR: return Thearch.Thechar == '6' || Thearch.Thechar == '9' // because 6g uses PC-relative addressing; TODO(rsc): not sure why 9g too } return false } func Samereg(a *Node, b *Node) bool { if a == nil || b == nil { return false } if a.Op != OREGISTER { return false } if b.Op != OREGISTER { return false } if a.Reg != b.Reg { return false } return true } func Gbranch(as int, t *Type, likely int) *obj.Prog { p := Prog(as) p.To.Type = obj.TYPE_BRANCH p.To.Val = nil if as != obj.AJMP && likely != 0 && Thearch.Thechar != '9' && Thearch.Thechar != '7' { p.From.Type = obj.TYPE_CONST p.From.Offset = int64(obj.Bool2int(likely > 0)) } if Debug['g'] != 0 { fmt.Printf("%v\n", p) } return p } func Prog(as int) *obj.Prog { var p *obj.Prog if as == obj.ADATA || as == obj.AGLOBL { if ddumped != 0 { Fatal("already dumped data") } if dpc == nil { dpc = Ctxt.NewProg() dfirst = dpc } p = dpc dpc = Ctxt.NewProg() p.Link = dpc } else { p = Pc Pc = Ctxt.NewProg() Clearp(Pc) p.Link = Pc } if lineno == 0 { if Debug['K'] != 0 { Warn("prog: line 0") } } p.As = int16(as) p.Lineno = lineno return p } func Nodreg(n *Node, t *Type, r int) { if t == nil { Fatal("nodreg: t nil") } *n = Node{} n.Op = OREGISTER n.Addable = true ullmancalc(n) n.Reg = int16(r) n.Type = t } func Nodindreg(n *Node, t *Type, r int) { Nodreg(n, t, r) n.Op = OINDREG } func Afunclit(a *obj.Addr, n *Node) { if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN { a.Type = obj.TYPE_MEM a.Sym = Linksym(n.Sym) } } func Clearp(p *obj.Prog) { obj.Nopout(p) p.As = obj.AEND p.Pc = int64(pcloc) pcloc++ } func dumpdata() { ddumped = 1 if dfirst == nil { return } newplist() *Pc = *dfirst Pc = dpc Clearp(Pc) } // Fixup instructions after allocauto (formerly compactframe) has moved all autos around. func fixautoused(p *obj.Prog) { for lp := &p; ; { p = *lp if p == nil { break } if p.As == obj.ATYPE && p.From.Node != nil && p.From.Name == obj.NAME_AUTO && !((p.From.Node).(*Node)).Used { *lp = p.Link continue } if (p.As == obj.AVARDEF || p.As == obj.AVARKILL) && p.To.Node != nil && !((p.To.Node).(*Node)).Used { // Cannot remove VARDEF instruction, because - unlike TYPE handled above - // VARDEFs are interspersed with other code, and a jump might be using the // VARDEF as a target. Replace with a no-op instead. A later pass will remove // the no-ops. obj.Nopout(p) continue } if p.From.Name == obj.NAME_AUTO && p.From.Node != nil { p.From.Offset += stkdelta[p.From.Node.(*Node)] } if p.To.Name == obj.NAME_AUTO && p.To.Node != nil { p.To.Offset += stkdelta[p.To.Node.(*Node)] } lp = &p.Link } } func ggloblnod(nam *Node) { p := Thearch.Gins(obj.AGLOBL, nam, nil) p.Lineno = nam.Lineno p.From.Sym.Gotype = Linksym(ngotype(nam)) p.To.Sym = nil p.To.Type = obj.TYPE_CONST p.To.Offset = nam.Type.Width p.From3 = new(obj.Addr) if nam.Name.Readonly { p.From3.Offset = obj.RODATA } if nam.Type != nil && !haspointers(nam.Type) { p.From3.Offset |= obj.NOPTR } } func ggloblsym(s *Sym, width int32, flags int16) { p := Thearch.Gins(obj.AGLOBL, nil, nil) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = Linksym(s) if flags&obj.LOCAL != 0 { p.From.Sym.Local = true flags &= ^obj.LOCAL } p.To.Type = obj.TYPE_CONST p.To.Offset = int64(width) p.From3 = new(obj.Addr) p.From3.Offset = int64(flags) } func gjmp(to *obj.Prog) *obj.Prog { p := Gbranch(obj.AJMP, nil, 0) if to != nil { Patch(p, to) } return p } func gtrack(s *Sym) { p := Thearch.Gins(obj.AUSEFIELD, nil, nil) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = Linksym(s) } func gused(n *Node) { Thearch.Gins(obj.ANOP, n, nil) // used } func Isfat(t *Type) bool { if t != nil { switch t.Etype { case TSTRUCT, TARRAY, TSTRING, TINTER: // maybe remove later return true } } return false } // Sweep the prog list to mark any used nodes. func markautoused(p *obj.Prog) { for ; p != nil; p = p.Link { if p.As == obj.ATYPE || p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } if p.From.Node != nil { ((p.From.Node).(*Node)).Used = true } if p.To.Node != nil { ((p.To.Node).(*Node)).Used = true } } } // Naddr rewrites a to refer to n. // It assumes that a is zeroed on entry. func Naddr(a *obj.Addr, n *Node) { if n == nil { return } if n.Type != nil && n.Type.Etype != TIDEAL { // TODO(rsc): This is undone by the selective clearing of width below, // to match architectures that were not as aggressive in setting width // during naddr. Those widths must be cleared to avoid triggering // failures in gins when it detects real but heretofore latent (and one // hopes innocuous) type mismatches. // The type mismatches should be fixed and the clearing below removed. dowidth(n.Type) a.Width = n.Type.Width } switch n.Op { default: a := a // copy to let escape into Ctxt.Dconv Debug['h'] = 1 Dump("naddr", n) Fatal("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a)) case OREGISTER: a.Type = obj.TYPE_REG a.Reg = n.Reg a.Sym = nil if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } case OINDREG: a.Type = obj.TYPE_MEM a.Reg = n.Reg a.Sym = Linksym(n.Sym) a.Offset = n.Xoffset if a.Offset != int64(int32(a.Offset)) { Yyerror("offset %d too large for OINDREG", a.Offset) } if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } // n->left is PHEAP ONAME for stack parameter. // compute address of actual parameter on stack. case OPARAM: a.Etype = Simtype[n.Left.Type.Etype] a.Width = n.Left.Type.Width a.Offset = n.Xoffset a.Sym = Linksym(n.Left.Sym) a.Type = obj.TYPE_MEM a.Name = obj.NAME_PARAM a.Node = n.Left.Orig case OCLOSUREVAR: if !Curfn.Func.Needctxt { Fatal("closurevar without needctxt") } a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGCTXT) a.Sym = nil a.Offset = n.Xoffset case OCFUNC: Naddr(a, n.Left) a.Sym = Linksym(n.Left.Sym) case ONAME: a.Etype = 0 if n.Type != nil { a.Etype = Simtype[n.Type.Etype] } a.Offset = n.Xoffset s := n.Sym a.Node = n.Orig //if(a->node >= (Node*)&n) // fatal("stack node"); if s == nil { s = Lookup(".noname") } if n.Name.Method { if n.Type != nil { if n.Type.Sym != nil { if n.Type.Sym.Pkg != nil { s = Pkglookup(s.Name, n.Type.Sym.Pkg) } } } } a.Type = obj.TYPE_MEM switch n.Class { default: Fatal("naddr: ONAME class %v %d\n", n.Sym, n.Class) case PEXTERN: a.Name = obj.NAME_EXTERN case PAUTO: a.Name = obj.NAME_AUTO case PPARAM, PPARAMOUT: a.Name = obj.NAME_PARAM case PFUNC: a.Name = obj.NAME_EXTERN a.Type = obj.TYPE_ADDR a.Width = int64(Widthptr) s = funcsym(s) } a.Sym = Linksym(s) case OLITERAL: if Thearch.Thechar == '8' { a.Width = 0 } switch n.Val().Ctype() { default: Fatal("naddr: const %v", Tconv(n.Type, obj.FmtLong)) case CTFLT: a.Type = obj.TYPE_FCONST a.Val = mpgetflt(n.Val().U.(*Mpflt)) case CTINT, CTRUNE: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = Mpgetfix(n.Val().U.(*Mpint)) case CTSTR: datagostring(n.Val().U.(string), a) case CTBOOL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = int64(obj.Bool2int(n.Val().U.(bool))) case CTNIL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = 0 } case OADDR: Naddr(a, n.Left) a.Etype = uint8(Tptr) if Thearch.Thechar != '5' && Thearch.Thechar != '7' && Thearch.Thechar != '9' { // TODO(rsc): Do this even for arm, ppc64. a.Width = int64(Widthptr) } if a.Type != obj.TYPE_MEM { a := a // copy to let escape into Ctxt.Dconv Fatal("naddr: OADDR %v (from %v)", Ctxt.Dconv(a), Oconv(int(n.Left.Op), 0)) } a.Type = obj.TYPE_ADDR // itable of interface value case OITAB: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // itab(nil) } a.Etype = uint8(Tptr) a.Width = int64(Widthptr) // pointer in a string or slice case OSPTR: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // ptr(nil) } a.Etype = Simtype[Tptr] a.Offset += int64(Array_array) a.Width = int64(Widthptr) // len of string or slice case OLEN: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // len(nil) } a.Etype = Simtype[TUINT] a.Offset += int64(Array_nel) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } // cap of string or slice case OCAP: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // cap(nil) } a.Etype = Simtype[TUINT] a.Offset += int64(Array_cap) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } } return } func newplist() *obj.Plist { pl := obj.Linknewplist(Ctxt) Pc = Ctxt.NewProg() Clearp(Pc) pl.Firstpc = Pc return pl } func nodarg(t *Type, fp int) *Node { var n *Node // entire argument struct, not just one arg if t.Etype == TSTRUCT && t.Funarg != 0 { n = Nod(ONAME, nil, nil) n.Sym = Lookup(".args") n.Type = t var savet Iter first := Structfirst(&savet, &t) if first == nil { Fatal("nodarg: bad struct") } if first.Width == BADWIDTH { Fatal("nodarg: offset not computed for %v", t) } n.Xoffset = first.Width n.Addable = true goto fp } if t.Etype != TFIELD { Fatal("nodarg: not field %v", t) } if fp == 1 { var n *Node for l := Curfn.Func.Dcl; l != nil; l = l.Next { n = l.N if (n.Class == PPARAM || n.Class == PPARAMOUT) && !isblanksym(t.Sym) && n.Sym == t.Sym { return n } } } n = Nod(ONAME, nil, nil) n.Type = t.Type n.Sym = t.Sym if t.Width == BADWIDTH { Fatal("nodarg: offset not computed for %v", t) } n.Xoffset = t.Width n.Addable = true n.Orig = t.Nname // Rewrite argument named _ to __, // or else the assignment to _ will be // discarded during code generation. fp: if isblank(n) { n.Sym = Lookup("__") } switch fp { case 0: // output arg n.Op = OINDREG n.Reg = int16(Thearch.REGSP) if HasLinkRegister() { n.Xoffset += int64(Ctxt.Arch.Ptrsize) } case 1: // input arg n.Class = PPARAM case 2: // offset output arg Fatal("shouldn't be used") } n.Typecheck = 1 return n } func Patch(p *obj.Prog, to *obj.Prog) { if p.To.Type != obj.TYPE_BRANCH { Fatal("patch: not a branch") } p.To.Val = to p.To.Offset = to.Pc } func unpatch(p *obj.Prog) *obj.Prog { if p.To.Type != obj.TYPE_BRANCH { Fatal("unpatch: not a branch") } q, _ := p.To.Val.(*obj.Prog) p.To.Val = nil p.To.Offset = 0 return q } var reg [100]int // count of references to reg var regstk [100][]byte // allocation sites, when -v is given func GetReg(r int) int { return reg[r-Thearch.REGMIN] } func SetReg(r, v int) { reg[r-Thearch.REGMIN] = v } func ginit() { for r := range reg { reg[r] = 1 } for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ { reg[r-Thearch.REGMIN] = 0 } for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ { reg[r-Thearch.REGMIN] = 0 } for _, r := range Thearch.ReservedRegs { reg[r-Thearch.REGMIN] = 1 } } func gclean() { for _, r := range Thearch.ReservedRegs { reg[r-Thearch.REGMIN]-- } for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ { n := reg[r-Thearch.REGMIN] if n != 0 { if Debug['v'] != 0 { Regdump() } Yyerror("reg %v left allocated", obj.Rconv(r)) } } for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ { n := reg[r-Thearch.REGMIN] if n != 0 { if Debug['v'] != 0 { Regdump() } Yyerror("reg %v left allocated", obj.Rconv(r)) } } } func Anyregalloc() bool { n := 0 for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ { if reg[r-Thearch.REGMIN] == 0 { n++ } } return n > len(Thearch.ReservedRegs) } /* * allocate register of type t, leave in n. * if o != N, o may be reusable register. * caller must Regfree(n). */ func Regalloc(n *Node, t *Type, o *Node) { if t == nil { Fatal("regalloc: t nil") } et := int(Simtype[t.Etype]) if Ctxt.Arch.Regsize == 4 && (et == TINT64 || et == TUINT64) { Fatal("regalloc 64bit") } var i int Switch: switch et { default: Fatal("regalloc: unknown type %v", t) case TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64, TUINT64, TPTR32, TPTR64, TBOOL: if o != nil && o.Op == OREGISTER { i = int(o.Reg) if Thearch.REGMIN <= i && i <= Thearch.REGMAX { break Switch } } for i = Thearch.REGMIN; i <= Thearch.REGMAX; i++ { if reg[i-Thearch.REGMIN] == 0 { break Switch } } Flusherrors() Regdump() Fatal("out of fixed registers") case TFLOAT32, TFLOAT64: if Thearch.Use387 { i = Thearch.FREGMIN // x86.REG_F0 break Switch } if o != nil && o.Op == OREGISTER { i = int(o.Reg) if Thearch.FREGMIN <= i && i <= Thearch.FREGMAX { break Switch } } for i = Thearch.FREGMIN; i <= Thearch.FREGMAX; i++ { if reg[i-Thearch.REGMIN] == 0 { // note: REGMIN, not FREGMIN break Switch } } Flusherrors() Regdump() Fatal("out of floating registers") case TCOMPLEX64, TCOMPLEX128: Tempname(n, t) return } ix := i - Thearch.REGMIN if reg[ix] == 0 && Debug['v'] > 0 { if regstk[ix] == nil { regstk[ix] = make([]byte, 4096) } stk := regstk[ix] n := runtime.Stack(stk[:cap(stk)], false) regstk[ix] = stk[:n] } reg[ix]++ Nodreg(n, t, i) } func Regfree(n *Node) { if n.Op == ONAME { return } if n.Op != OREGISTER && n.Op != OINDREG { Fatal("regfree: not a register") } i := int(n.Reg) if i == Thearch.REGSP { return } switch { case Thearch.REGMIN <= i && i <= Thearch.REGMAX, Thearch.FREGMIN <= i && i <= Thearch.FREGMAX: // ok default: Fatal("regfree: reg out of range") } i -= Thearch.REGMIN if reg[i] <= 0 { Fatal("regfree: reg not allocated") } reg[i]-- if reg[i] == 0 { regstk[i] = regstk[i][:0] } } // Reginuse reports whether r is in use. func Reginuse(r int) bool { switch { case Thearch.REGMIN <= r && r <= Thearch.REGMAX, Thearch.FREGMIN <= r && r <= Thearch.FREGMAX: // ok default: Fatal("reginuse: reg out of range") } return reg[r-Thearch.REGMIN] > 0 } // Regrealloc(n) undoes the effect of Regfree(n), // so that a register can be given up but then reclaimed. func Regrealloc(n *Node) { if n.Op != OREGISTER && n.Op != OINDREG { Fatal("regrealloc: not a register") } i := int(n.Reg) if i == Thearch.REGSP { return } switch { case Thearch.REGMIN <= i && i <= Thearch.REGMAX, Thearch.FREGMIN <= i && i <= Thearch.FREGMAX: // ok default: Fatal("regrealloc: reg out of range") } i -= Thearch.REGMIN if reg[i] == 0 && Debug['v'] > 0 { if regstk[i] == nil { regstk[i] = make([]byte, 4096) } stk := regstk[i] n := runtime.Stack(stk[:cap(stk)], false) regstk[i] = stk[:n] } reg[i]++ } func Regdump() { if Debug['v'] == 0 { fmt.Printf("run compiler with -v for register allocation sites\n") return } dump := func(r int) { stk := regstk[r-Thearch.REGMIN] if len(stk) == 0 { return } fmt.Printf("reg %v allocated at:\n", obj.Rconv(r)) fmt.Printf("\t%s\n", strings.Replace(strings.TrimSpace(string(stk)), "\n", "\n\t", -1)) } for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ { if reg[r-Thearch.REGMIN] != 0 { dump(r) } } for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ { if reg[r-Thearch.REGMIN] == 0 { dump(r) } } }