// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/internal/obj" "fmt" ) /* * generate: * res = n; * simplifies and calls Thearch.Gmove. * if wb is true, need to emit write barriers. */ func Cgen(n, res *Node) { cgen_wb(n, res, false) } func cgen_wb(n, res *Node, wb bool) { if Debug['g'] != 0 { op := "cgen" if wb { op = "cgen_wb" } Dump("\n"+op+"-n", n) Dump(op+"-res", res) } if n == nil || n.Type == nil { return } if res == nil || res.Type == nil { Fatal("cgen: res nil") } for n.Op == OCONVNOP { n = n.Left } switch n.Op { case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR: cgen_slice(n, res, wb) return case OEFACE: if res.Op != ONAME || !res.Addable || wb { var n1 Node Tempname(&n1, n.Type) Cgen_eface(n, &n1) cgen_wb(&n1, res, wb) } else { Cgen_eface(n, res) } return case ODOTTYPE: cgen_dottype(n, res, nil, wb) return case OAPPEND: cgen_append(n, res) return } if n.Ullman >= UINF { if n.Op == OINDREG { Fatal("cgen: this is going to miscompile") } if res.Ullman >= UINF { var n1 Node Tempname(&n1, n.Type) Cgen(n, &n1) cgen_wb(&n1, res, wb) return } } if Isfat(n.Type) { if n.Type.Width < 0 { Fatal("forgot to compute width for %v", n.Type) } sgen_wb(n, res, n.Type.Width, wb) return } if !res.Addable { if n.Ullman > res.Ullman { if Ctxt.Arch.Regsize == 4 && Is64(n.Type) { var n1 Node Tempname(&n1, n.Type) Cgen(n, &n1) cgen_wb(&n1, res, wb) return } var n1 Node Regalloc(&n1, n.Type, res) Cgen(n, &n1) if n1.Ullman > res.Ullman { Dump("n1", &n1) Dump("res", res) Fatal("loop in cgen") } cgen_wb(&n1, res, wb) Regfree(&n1) return } var f int if res.Ullman < UINF { if Complexop(n, res) { Complexgen(n, res) return } f = 1 // gen thru register switch n.Op { case OLITERAL: if Smallintconst(n) { f = 0 } case OREGISTER: f = 0 } if !Iscomplex[n.Type.Etype] && Ctxt.Arch.Regsize == 8 && !wb { a := Thearch.Optoas(OAS, res.Type) var addr obj.Addr if Thearch.Sudoaddable(a, res, &addr) { var p1 *obj.Prog if f != 0 { var n2 Node Regalloc(&n2, res.Type, nil) Cgen(n, &n2) p1 = Thearch.Gins(a, &n2, nil) Regfree(&n2) } else { p1 = Thearch.Gins(a, n, nil) } p1.To = addr if Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } Thearch.Sudoclean() return } } } if Ctxt.Arch.Thechar == '8' { // no registers to speak of var n1, n2 Node Tempname(&n1, n.Type) Cgen(n, &n1) Igen(res, &n2, nil) cgen_wb(&n1, &n2, wb) Regfree(&n2) return } var n1 Node Igen(res, &n1, nil) cgen_wb(n, &n1, wb) Regfree(&n1) return } // update addressability for string, slice // can't do in walk because n->left->addable // changes if n->left is an escaping local variable. switch n.Op { case OSPTR, OLEN: if Isslice(n.Left.Type) || Istype(n.Left.Type, TSTRING) { n.Addable = n.Left.Addable } case OCAP: if Isslice(n.Left.Type) { n.Addable = n.Left.Addable } case OITAB: n.Addable = n.Left.Addable } if wb { if int(Simtype[res.Type.Etype]) != Tptr { Fatal("cgen_wb of type %v", res.Type) } if n.Ullman >= UINF { var n1 Node Tempname(&n1, n.Type) Cgen(n, &n1) n = &n1 } cgen_wbptr(n, res) return } // Write barrier now handled. Code below this line can ignore wb. if Ctxt.Arch.Thechar == '5' { // TODO(rsc): Maybe more often? // if both are addressable, move if n.Addable && res.Addable { if Is64(n.Type) || Is64(res.Type) || n.Op == OREGISTER || res.Op == OREGISTER || Iscomplex[n.Type.Etype] || Iscomplex[res.Type.Etype] { Thearch.Gmove(n, res) } else { var n1 Node Regalloc(&n1, n.Type, nil) Thearch.Gmove(n, &n1) Cgen(&n1, res) Regfree(&n1) } return } // if both are not addressable, use a temporary. if !n.Addable && !res.Addable { // could use regalloc here sometimes, // but have to check for ullman >= UINF. var n1 Node Tempname(&n1, n.Type) Cgen(n, &n1) Cgen(&n1, res) return } // if result is not addressable directly but n is, // compute its address and then store via the address. if !res.Addable { var n1 Node Igen(res, &n1, nil) Cgen(n, &n1) Regfree(&n1) return } } if Complexop(n, res) { Complexgen(n, res) return } if (Ctxt.Arch.Thechar == '6' || Ctxt.Arch.Thechar == '8') && n.Addable { Thearch.Gmove(n, res) return } if Ctxt.Arch.Thechar == '7' || Ctxt.Arch.Thechar == '9' { // if both are addressable, move if n.Addable { if n.Op == OREGISTER || res.Op == OREGISTER { Thearch.Gmove(n, res) } else { var n1 Node Regalloc(&n1, n.Type, nil) Thearch.Gmove(n, &n1) Cgen(&n1, res) Regfree(&n1) } return } } // if n is sudoaddable generate addr and move if Ctxt.Arch.Thechar == '5' && !Is64(n.Type) && !Is64(res.Type) && !Iscomplex[n.Type.Etype] && !Iscomplex[res.Type.Etype] { a := Thearch.Optoas(OAS, n.Type) var addr obj.Addr if Thearch.Sudoaddable(a, n, &addr) { if res.Op != OREGISTER { var n2 Node Regalloc(&n2, res.Type, nil) p1 := Thearch.Gins(a, nil, &n2) p1.From = addr if Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } Thearch.Gmove(&n2, res) Regfree(&n2) } else { p1 := Thearch.Gins(a, nil, res) p1.From = addr if Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } } Thearch.Sudoclean() return } } nl := n.Left nr := n.Right if nl != nil && nl.Ullman >= UINF { if nr != nil && nr.Ullman >= UINF { var n1 Node Tempname(&n1, nl.Type) Cgen(nl, &n1) n2 := *n n2.Left = &n1 Cgen(&n2, res) return } } // 64-bit ops are hard on 32-bit machine. if Ctxt.Arch.Regsize == 4 && (Is64(n.Type) || Is64(res.Type) || n.Left != nil && Is64(n.Left.Type)) { switch n.Op { // math goes to cgen64. case OMINUS, OCOM, OADD, OSUB, OMUL, OLROT, OLSH, ORSH, OAND, OOR, OXOR: Thearch.Cgen64(n, res) return } } if Thearch.Cgen_float != nil && nl != nil && Isfloat[n.Type.Etype] && Isfloat[nl.Type.Etype] { Thearch.Cgen_float(n, res) return } if !Iscomplex[n.Type.Etype] && Ctxt.Arch.Regsize == 8 { a := Thearch.Optoas(OAS, n.Type) var addr obj.Addr if Thearch.Sudoaddable(a, n, &addr) { if res.Op == OREGISTER { p1 := Thearch.Gins(a, nil, res) p1.From = addr } else { var n2 Node Regalloc(&n2, n.Type, nil) p1 := Thearch.Gins(a, nil, &n2) p1.From = addr Thearch.Gins(a, &n2, res) Regfree(&n2) } Thearch.Sudoclean() return } } var a int switch n.Op { default: Dump("cgen", n) Dump("cgen-res", res) Fatal("cgen: unknown op %v", Nconv(n, obj.FmtShort|obj.FmtSign)) case OOROR, OANDAND, OEQ, ONE, OLT, OLE, OGE, OGT, ONOT: Bvgen(n, res, true) return case OPLUS: Cgen(nl, res) return // unary case OCOM: a := Thearch.Optoas(OXOR, nl.Type) var n1 Node Regalloc(&n1, nl.Type, nil) Cgen(nl, &n1) var n2 Node Nodconst(&n2, nl.Type, -1) Thearch.Gins(a, &n2, &n1) cgen_norm(n, &n1, res) return case OMINUS: if Isfloat[nl.Type.Etype] { nr = Nodintconst(-1) Convlit(&nr, n.Type) a = Thearch.Optoas(OMUL, nl.Type) goto sbop } a := Thearch.Optoas(int(n.Op), nl.Type) // unary var n1 Node Regalloc(&n1, nl.Type, res) Cgen(nl, &n1) if Ctxt.Arch.Thechar == '5' { var n2 Node Nodconst(&n2, nl.Type, 0) Thearch.Gins(a, &n2, &n1) } else if Ctxt.Arch.Thechar == '7' { Thearch.Gins(a, &n1, &n1) } else { Thearch.Gins(a, nil, &n1) } cgen_norm(n, &n1, res) return case OSQRT: var n1 Node Regalloc(&n1, nl.Type, res) Cgen(n.Left, &n1) Thearch.Gins(Thearch.Optoas(OSQRT, nl.Type), &n1, &n1) Thearch.Gmove(&n1, res) Regfree(&n1) return case OGETG: Thearch.Getg(res) return // symmetric binary case OAND, OOR, OXOR, OADD, OMUL: if n.Op == OMUL && Thearch.Cgen_bmul != nil && Thearch.Cgen_bmul(int(n.Op), nl, nr, res) { break } a = Thearch.Optoas(int(n.Op), nl.Type) goto sbop // asymmetric binary case OSUB: a = Thearch.Optoas(int(n.Op), nl.Type) goto abop case OHMUL: Thearch.Cgen_hmul(nl, nr, res) case OCONV: if Eqtype(n.Type, nl.Type) || Noconv(n.Type, nl.Type) { Cgen(nl, res) return } if Ctxt.Arch.Thechar == '8' { var n1 Node var n2 Node Tempname(&n2, n.Type) Mgen(nl, &n1, res) Thearch.Gmove(&n1, &n2) Thearch.Gmove(&n2, res) Mfree(&n1) break } var n1 Node var n2 Node if Ctxt.Arch.Thechar == '5' { if nl.Addable && !Is64(nl.Type) { Regalloc(&n1, nl.Type, res) Thearch.Gmove(nl, &n1) } else { if n.Type.Width > int64(Widthptr) || Is64(nl.Type) || Isfloat[nl.Type.Etype] { Tempname(&n1, nl.Type) } else { Regalloc(&n1, nl.Type, res) } Cgen(nl, &n1) } if n.Type.Width > int64(Widthptr) || Is64(n.Type) || Isfloat[n.Type.Etype] { Tempname(&n2, n.Type) } else { Regalloc(&n2, n.Type, nil) } } else { if n.Type.Width > nl.Type.Width { // If loading from memory, do conversion during load, // so as to avoid use of 8-bit register in, say, int(*byteptr). switch nl.Op { case ODOT, ODOTPTR, OINDEX, OIND, ONAME: Igen(nl, &n1, res) Regalloc(&n2, n.Type, res) Thearch.Gmove(&n1, &n2) Thearch.Gmove(&n2, res) Regfree(&n2) Regfree(&n1) return } } Regalloc(&n1, nl.Type, res) Regalloc(&n2, n.Type, &n1) Cgen(nl, &n1) } // if we do the conversion n1 -> n2 here // reusing the register, then gmove won't // have to allocate its own register. Thearch.Gmove(&n1, &n2) Thearch.Gmove(&n2, res) if n2.Op == OREGISTER { Regfree(&n2) } if n1.Op == OREGISTER { Regfree(&n1) } case ODOT, ODOTPTR, OINDEX, OIND, ONAME: // PHEAP or PPARAMREF var var n1 Node Igen(n, &n1, res) Thearch.Gmove(&n1, res) Regfree(&n1) // interface table is first word of interface value case OITAB: var n1 Node Igen(nl, &n1, res) n1.Type = n.Type Thearch.Gmove(&n1, res) Regfree(&n1) case OSPTR: // pointer is the first word of string or slice. if Isconst(nl, CTSTR) { var n1 Node Regalloc(&n1, Types[Tptr], res) p1 := Thearch.Gins(Thearch.Optoas(OAS, n1.Type), nil, &n1) Datastring(nl.Val().U.(string), &p1.From) p1.From.Type = obj.TYPE_ADDR Thearch.Gmove(&n1, res) Regfree(&n1) break } var n1 Node Igen(nl, &n1, res) n1.Type = n.Type Thearch.Gmove(&n1, res) Regfree(&n1) case OLEN: if Istype(nl.Type, TMAP) || Istype(nl.Type, TCHAN) { // map and chan have len in the first int-sized word. // a zero pointer means zero length var n1 Node Regalloc(&n1, Types[Tptr], res) Cgen(nl, &n1) var n2 Node Nodconst(&n2, Types[Tptr], 0) p1 := Thearch.Ginscmp(OEQ, Types[Tptr], &n1, &n2, 0) n2 = n1 n2.Op = OINDREG n2.Type = Types[Simtype[TINT]] Thearch.Gmove(&n2, &n1) Patch(p1, Pc) Thearch.Gmove(&n1, res) Regfree(&n1) break } if Istype(nl.Type, TSTRING) || Isslice(nl.Type) { // both slice and string have len one pointer into the struct. // a zero pointer means zero length var n1 Node Igen(nl, &n1, res) n1.Type = Types[Simtype[TUINT]] n1.Xoffset += int64(Array_nel) Thearch.Gmove(&n1, res) Regfree(&n1) break } Fatal("cgen: OLEN: unknown type %v", Tconv(nl.Type, obj.FmtLong)) case OCAP: if Istype(nl.Type, TCHAN) { // chan has cap in the second int-sized word. // a zero pointer means zero length var n1 Node Regalloc(&n1, Types[Tptr], res) Cgen(nl, &n1) var n2 Node Nodconst(&n2, Types[Tptr], 0) p1 := Thearch.Ginscmp(OEQ, Types[Tptr], &n1, &n2, 0) n2 = n1 n2.Op = OINDREG n2.Xoffset = int64(Widthint) n2.Type = Types[Simtype[TINT]] Thearch.Gmove(&n2, &n1) Patch(p1, Pc) Thearch.Gmove(&n1, res) Regfree(&n1) break } if Isslice(nl.Type) { var n1 Node Igen(nl, &n1, res) n1.Type = Types[Simtype[TUINT]] n1.Xoffset += int64(Array_cap) Thearch.Gmove(&n1, res) Regfree(&n1) break } Fatal("cgen: OCAP: unknown type %v", Tconv(nl.Type, obj.FmtLong)) case OADDR: if n.Bounded { // let race detector avoid nil checks Disable_checknil++ } Agen(nl, res) if n.Bounded { Disable_checknil-- } case OCALLMETH: cgen_callmeth(n, 0) cgen_callret(n, res) case OCALLINTER: cgen_callinter(n, res, 0) cgen_callret(n, res) case OCALLFUNC: cgen_call(n, 0) cgen_callret(n, res) case OMOD, ODIV: if Isfloat[n.Type.Etype] || Thearch.Dodiv == nil { a = Thearch.Optoas(int(n.Op), nl.Type) goto abop } if nl.Ullman >= nr.Ullman { var n1 Node Regalloc(&n1, nl.Type, res) Cgen(nl, &n1) cgen_div(int(n.Op), &n1, nr, res) Regfree(&n1) } else { var n2 Node if !Smallintconst(nr) { Regalloc(&n2, nr.Type, res) Cgen(nr, &n2) } else { n2 = *nr } cgen_div(int(n.Op), nl, &n2, res) if n2.Op != OLITERAL { Regfree(&n2) } } case OLSH, ORSH, OLROT: Thearch.Cgen_shift(int(n.Op), n.Bounded, nl, nr, res) } return /* * put simplest on right - we'll generate into left * and then adjust it using the computation of right. * constants and variables have the same ullman * count, so look for constants specially. * * an integer constant we can use as an immediate * is simpler than a variable - we can use the immediate * in the adjustment instruction directly - so it goes * on the right. * * other constants, like big integers or floating point * constants, require a mov into a register, so those * might as well go on the left, so we can reuse that * register for the computation. */ sbop: // symmetric binary if nl.Ullman < nr.Ullman || (nl.Ullman == nr.Ullman && (Smallintconst(nl) || (nr.Op == OLITERAL && !Smallintconst(nr)))) { r := nl nl = nr nr = r } abop: // asymmetric binary var n1 Node var n2 Node if Ctxt.Arch.Thechar == '8' { // no registers, sigh if Smallintconst(nr) { var n1 Node Mgen(nl, &n1, res) var n2 Node Regalloc(&n2, nl.Type, &n1) Thearch.Gmove(&n1, &n2) Thearch.Gins(a, nr, &n2) Thearch.Gmove(&n2, res) Regfree(&n2) Mfree(&n1) } else if nl.Ullman >= nr.Ullman { var nt Node Tempname(&nt, nl.Type) Cgen(nl, &nt) var n2 Node Mgen(nr, &n2, nil) var n1 Node Regalloc(&n1, nl.Type, res) Thearch.Gmove(&nt, &n1) Thearch.Gins(a, &n2, &n1) Thearch.Gmove(&n1, res) Regfree(&n1) Mfree(&n2) } else { var n2 Node Regalloc(&n2, nr.Type, res) Cgen(nr, &n2) var n1 Node Regalloc(&n1, nl.Type, nil) Cgen(nl, &n1) Thearch.Gins(a, &n2, &n1) Regfree(&n2) Thearch.Gmove(&n1, res) Regfree(&n1) } return } if nl.Ullman >= nr.Ullman { Regalloc(&n1, nl.Type, res) Cgen(nl, &n1) if Smallintconst(nr) && Ctxt.Arch.Thechar != '5' && Ctxt.Arch.Thechar != '7' && Ctxt.Arch.Thechar != '9' { // TODO(rsc): Check opcode for arm n2 = *nr } else { Regalloc(&n2, nr.Type, nil) Cgen(nr, &n2) } } else { if Smallintconst(nr) && Ctxt.Arch.Thechar != '5' && Ctxt.Arch.Thechar != '7' && Ctxt.Arch.Thechar != '9' { // TODO(rsc): Check opcode for arm n2 = *nr } else { Regalloc(&n2, nr.Type, res) Cgen(nr, &n2) } Regalloc(&n1, nl.Type, nil) Cgen(nl, &n1) } Thearch.Gins(a, &n2, &n1) if n2.Op != OLITERAL { Regfree(&n2) } cgen_norm(n, &n1, res) } var sys_wbptr *Node func cgen_wbptr(n, res *Node) { if Curfn != nil && Curfn.Func.Nowritebarrier { Yyerror("write barrier prohibited") } if Debug_wb > 0 { Warn("write barrier") } var dst, src Node Igen(res, &dst, nil) if n.Op == OREGISTER { src = *n Regrealloc(&src) } else { Cgenr(n, &src, nil) } wbEnabled := syslook("writeBarrierEnabled", 0) pbr := Thearch.Ginscmp(ONE, Types[TUINT8], wbEnabled, Nodintconst(0), -1) Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &src, &dst) pjmp := Gbranch(obj.AJMP, nil, 0) Patch(pbr, Pc) var adst Node Agenr(&dst, &adst, &dst) p := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &adst, nil) a := &p.To a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGSP) a.Offset = 0 if HasLinkRegister() { a.Offset += int64(Widthptr) } p2 := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &src, nil) p2.To = p.To p2.To.Offset += int64(Widthptr) Regfree(&adst) if sys_wbptr == nil { sys_wbptr = writebarrierfn("writebarrierptr", Types[Tptr], Types[Tptr]) } Ginscall(sys_wbptr, 0) Patch(pjmp, Pc) Regfree(&dst) Regfree(&src) } func cgen_wbfat(n, res *Node) { if Curfn != nil && Curfn.Func.Nowritebarrier { Yyerror("write barrier prohibited") } if Debug_wb > 0 { Warn("write barrier") } needType := true funcName := "typedmemmove" var dst, src Node if n.Ullman >= res.Ullman { Agenr(n, &src, nil) Agenr(res, &dst, nil) } else { Agenr(res, &dst, nil) Agenr(n, &src, nil) } p := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &dst, nil) a := &p.To a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGSP) a.Offset = 0 if HasLinkRegister() { a.Offset += int64(Widthptr) } if needType { a.Offset += int64(Widthptr) } p2 := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &src, nil) p2.To = p.To p2.To.Offset += int64(Widthptr) Regfree(&dst) if needType { src.Type = Types[Tptr] Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), typename(n.Type), &src) p3 := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &src, nil) p3.To = p2.To p3.To.Offset -= 2 * int64(Widthptr) } Regfree(&src) Ginscall(writebarrierfn(funcName, Types[Tptr], Types[Tptr]), 0) } // cgen_norm moves n1 to res, truncating to expected type if necessary. // n1 is a register, and cgen_norm frees it. func cgen_norm(n, n1, res *Node) { switch Ctxt.Arch.Thechar { case '6', '8': // We use sized math, so the result is already truncated. default: switch n.Op { case OADD, OSUB, OMUL, ODIV, OCOM, OMINUS: // TODO(rsc): What about left shift? Thearch.Gins(Thearch.Optoas(OAS, n.Type), n1, n1) } } Thearch.Gmove(n1, res) Regfree(n1) } func Mgen(n *Node, n1 *Node, rg *Node) { n1.Op = OEMPTY if n.Addable { *n1 = *n if n1.Op == OREGISTER || n1.Op == OINDREG { reg[n.Reg-int16(Thearch.REGMIN)]++ } return } Tempname(n1, n.Type) Cgen(n, n1) if n.Type.Width <= int64(Widthptr) || Isfloat[n.Type.Etype] { n2 := *n1 Regalloc(n1, n.Type, rg) Thearch.Gmove(&n2, n1) } } func Mfree(n *Node) { if n.Op == OREGISTER { Regfree(n) } } /* * allocate a register (reusing res if possible) and generate * a = n * The caller must call Regfree(a). */ func Cgenr(n *Node, a *Node, res *Node) { if Debug['g'] != 0 { Dump("cgenr-n", n) } if Isfat(n.Type) { Fatal("cgenr on fat node") } if n.Addable { Regalloc(a, n.Type, res) Thearch.Gmove(n, a) return } switch n.Op { case ONAME, ODOT, ODOTPTR, OINDEX, OCALLFUNC, OCALLMETH, OCALLINTER: var n1 Node Igen(n, &n1, res) Regalloc(a, Types[Tptr], &n1) Thearch.Gmove(&n1, a) Regfree(&n1) default: Regalloc(a, n.Type, res) Cgen(n, a) } } /* * allocate a register (reusing res if possible) and generate * a = &n * The caller must call Regfree(a). * The generated code checks that the result is not nil. */ func Agenr(n *Node, a *Node, res *Node) { if Debug['g'] != 0 { Dump("\nagenr-n", n) } nl := n.Left nr := n.Right switch n.Op { case ODOT, ODOTPTR, OCALLFUNC, OCALLMETH, OCALLINTER: var n1 Node Igen(n, &n1, res) Regalloc(a, Types[Tptr], &n1) Agen(&n1, a) Regfree(&n1) case OIND: Cgenr(n.Left, a, res) Cgen_checknil(a) case OINDEX: if Ctxt.Arch.Thechar == '5' { var p2 *obj.Prog // to be patched to panicindex. w := uint32(n.Type.Width) bounded := Debug['B'] != 0 || n.Bounded var n1 Node var n3 Node if nr.Addable { var tmp Node if !Isconst(nr, CTINT) { Tempname(&tmp, Types[TINT32]) } if !Isconst(nl, CTSTR) { Agenr(nl, &n3, res) } if !Isconst(nr, CTINT) { p2 = Thearch.Cgenindex(nr, &tmp, bounded) Regalloc(&n1, tmp.Type, nil) Thearch.Gmove(&tmp, &n1) } } else if nl.Addable { if !Isconst(nr, CTINT) { var tmp Node Tempname(&tmp, Types[TINT32]) p2 = Thearch.Cgenindex(nr, &tmp, bounded) Regalloc(&n1, tmp.Type, nil) Thearch.Gmove(&tmp, &n1) } if !Isconst(nl, CTSTR) { Agenr(nl, &n3, res) } } else { var tmp Node Tempname(&tmp, Types[TINT32]) p2 = Thearch.Cgenindex(nr, &tmp, bounded) nr = &tmp if !Isconst(nl, CTSTR) { Agenr(nl, &n3, res) } Regalloc(&n1, tmp.Type, nil) Thearch.Gins(Thearch.Optoas(OAS, tmp.Type), &tmp, &n1) } // &a is in &n3 (allocated in res) // i is in &n1 (if not constant) // w is width // constant index if Isconst(nr, CTINT) { if Isconst(nl, CTSTR) { Fatal("constant string constant index") } v := uint64(Mpgetfix(nr.Val().U.(*Mpint))) var n2 Node if Isslice(nl.Type) || nl.Type.Etype == TSTRING { if Debug['B'] == 0 && !n.Bounded { n1 = n3 n1.Op = OINDREG n1.Type = Types[Tptr] n1.Xoffset = int64(Array_nel) Nodconst(&n2, Types[TUINT32], int64(v)) p1 := Thearch.Ginscmp(OGT, Types[TUINT32], &n1, &n2, +1) Ginscall(Panicindex, -1) Patch(p1, Pc) } n1 = n3 n1.Op = OINDREG n1.Type = Types[Tptr] n1.Xoffset = int64(Array_array) Thearch.Gmove(&n1, &n3) } Nodconst(&n2, Types[Tptr], int64(v*uint64(w))) Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) *a = n3 break } var n2 Node Regalloc(&n2, Types[TINT32], &n1) // i Thearch.Gmove(&n1, &n2) Regfree(&n1) var n4 Node if Debug['B'] == 0 && !n.Bounded { // check bounds if Isconst(nl, CTSTR) { Nodconst(&n4, Types[TUINT32], int64(len(nl.Val().U.(string)))) } else if Isslice(nl.Type) || nl.Type.Etype == TSTRING { n1 = n3 n1.Op = OINDREG n1.Type = Types[Tptr] n1.Xoffset = int64(Array_nel) Regalloc(&n4, Types[TUINT32], nil) Thearch.Gmove(&n1, &n4) } else { Nodconst(&n4, Types[TUINT32], nl.Type.Bound) } p1 := Thearch.Ginscmp(OLT, Types[TUINT32], &n2, &n4, +1) if n4.Op == OREGISTER { Regfree(&n4) } if p2 != nil { Patch(p2, Pc) } Ginscall(Panicindex, -1) Patch(p1, Pc) } if Isconst(nl, CTSTR) { Regalloc(&n3, Types[Tptr], res) p1 := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), nil, &n3) Datastring(nl.Val().U.(string), &p1.From) p1.From.Type = obj.TYPE_ADDR } else if Isslice(nl.Type) || nl.Type.Etype == TSTRING { n1 = n3 n1.Op = OINDREG n1.Type = Types[Tptr] n1.Xoffset = int64(Array_array) Thearch.Gmove(&n1, &n3) } if w == 0 { // nothing to do } else if Thearch.AddIndex != nil && Thearch.AddIndex(&n2, int64(w), &n3) { // done by back end } else if w == 1 { Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) } else { if w&(w-1) == 0 { // Power of 2. Use shift. Thearch.Ginscon(Thearch.Optoas(OLSH, Types[TUINT32]), int64(log2(uint64(w))), &n2) } else { // Not a power of 2. Use multiply. Regalloc(&n4, Types[TUINT32], nil) Nodconst(&n1, Types[TUINT32], int64(w)) Thearch.Gmove(&n1, &n4) Thearch.Gins(Thearch.Optoas(OMUL, Types[TUINT32]), &n4, &n2) Regfree(&n4) } Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) } *a = n3 Regfree(&n2) break } if Ctxt.Arch.Thechar == '8' { var p2 *obj.Prog // to be patched to panicindex. w := uint32(n.Type.Width) bounded := Debug['B'] != 0 || n.Bounded var n3 Node var tmp Node var n1 Node if nr.Addable { // Generate &nl first, and move nr into register. if !Isconst(nl, CTSTR) { Igen(nl, &n3, res) } if !Isconst(nr, CTINT) { p2 = Thearch.Igenindex(nr, &tmp, bounded) Regalloc(&n1, tmp.Type, nil) Thearch.Gmove(&tmp, &n1) } } else if nl.Addable { // Generate nr first, and move &nl into register. if !Isconst(nr, CTINT) { p2 = Thearch.Igenindex(nr, &tmp, bounded) Regalloc(&n1, tmp.Type, nil) Thearch.Gmove(&tmp, &n1) } if !Isconst(nl, CTSTR) { Igen(nl, &n3, res) } } else { p2 = Thearch.Igenindex(nr, &tmp, bounded) nr = &tmp if !Isconst(nl, CTSTR) { Igen(nl, &n3, res) } Regalloc(&n1, tmp.Type, nil) Thearch.Gins(Thearch.Optoas(OAS, tmp.Type), &tmp, &n1) } // For fixed array we really want the pointer in n3. var n2 Node if Isfixedarray(nl.Type) { Regalloc(&n2, Types[Tptr], &n3) Agen(&n3, &n2) Regfree(&n3) n3 = n2 } // &a[0] is in n3 (allocated in res) // i is in n1 (if not constant) // len(a) is in nlen (if needed) // w is width // constant index if Isconst(nr, CTINT) { if Isconst(nl, CTSTR) { Fatal("constant string constant index") // front end should handle } v := uint64(Mpgetfix(nr.Val().U.(*Mpint))) if Isslice(nl.Type) || nl.Type.Etype == TSTRING { if Debug['B'] == 0 && !n.Bounded { nlen := n3 nlen.Type = Types[TUINT32] nlen.Xoffset += int64(Array_nel) Nodconst(&n2, Types[TUINT32], int64(v)) p1 := Thearch.Ginscmp(OGT, Types[TUINT32], &nlen, &n2, +1) Ginscall(Panicindex, -1) Patch(p1, Pc) } } // Load base pointer in n2 = n3. Regalloc(&n2, Types[Tptr], &n3) n3.Type = Types[Tptr] n3.Xoffset += int64(Array_array) Thearch.Gmove(&n3, &n2) Regfree(&n3) if v*uint64(w) != 0 { Nodconst(&n1, Types[Tptr], int64(v*uint64(w))) Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n1, &n2) } *a = n2 break } // i is in register n1, extend to 32 bits. t := Types[TUINT32] if Issigned[n1.Type.Etype] { t = Types[TINT32] } Regalloc(&n2, t, &n1) // i Thearch.Gmove(&n1, &n2) Regfree(&n1) if Debug['B'] == 0 && !n.Bounded { // check bounds t := Types[TUINT32] var nlen Node if Isconst(nl, CTSTR) { Nodconst(&nlen, t, int64(len(nl.Val().U.(string)))) } else if Isslice(nl.Type) || nl.Type.Etype == TSTRING { nlen = n3 nlen.Type = t nlen.Xoffset += int64(Array_nel) } else { Nodconst(&nlen, t, nl.Type.Bound) } p1 := Thearch.Ginscmp(OLT, t, &n2, &nlen, +1) if p2 != nil { Patch(p2, Pc) } Ginscall(Panicindex, -1) Patch(p1, Pc) } if Isconst(nl, CTSTR) { Regalloc(&n3, Types[Tptr], res) p1 := Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), nil, &n3) Datastring(nl.Val().U.(string), &p1.From) p1.From.Type = obj.TYPE_ADDR Thearch.Gins(Thearch.Optoas(OADD, n3.Type), &n2, &n3) goto indexdone1 } // Load base pointer in n3. Regalloc(&tmp, Types[Tptr], &n3) if Isslice(nl.Type) || nl.Type.Etype == TSTRING { n3.Type = Types[Tptr] n3.Xoffset += int64(Array_array) Thearch.Gmove(&n3, &tmp) } Regfree(&n3) n3 = tmp if w == 0 { // nothing to do } else if Thearch.AddIndex != nil && Thearch.AddIndex(&n2, int64(w), &n3) { // done by back end } else if w == 1 { Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) } else { if w&(w-1) == 0 { // Power of 2. Use shift. Thearch.Ginscon(Thearch.Optoas(OLSH, Types[TUINT32]), int64(log2(uint64(w))), &n2) } else { // Not a power of 2. Use multiply. Thearch.Ginscon(Thearch.Optoas(OMUL, Types[TUINT32]), int64(w), &n2) } Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) } indexdone1: *a = n3 Regfree(&n2) break } freelen := 0 w := uint64(n.Type.Width) // Generate the non-addressable child first. var n3 Node var nlen Node var tmp Node var n1 Node if nr.Addable { goto irad } if nl.Addable { Cgenr(nr, &n1, nil) if !Isconst(nl, CTSTR) { if Isfixedarray(nl.Type) { Agenr(nl, &n3, res) } else { Igen(nl, &nlen, res) freelen = 1 nlen.Type = Types[Tptr] nlen.Xoffset += int64(Array_array) Regalloc(&n3, Types[Tptr], res) Thearch.Gmove(&nlen, &n3) nlen.Type = Types[Simtype[TUINT]] nlen.Xoffset += int64(Array_nel) - int64(Array_array) } } goto index } Tempname(&tmp, nr.Type) Cgen(nr, &tmp) nr = &tmp irad: if !Isconst(nl, CTSTR) { if Isfixedarray(nl.Type) { Agenr(nl, &n3, res) } else { if !nl.Addable { if res != nil && res.Op == OREGISTER { // give up res, which we don't need yet. Regfree(res) } // igen will need an addressable node. var tmp2 Node Tempname(&tmp2, nl.Type) Cgen(nl, &tmp2) nl = &tmp2 if res != nil && res.Op == OREGISTER { // reacquire res Regrealloc(res) } } Igen(nl, &nlen, res) freelen = 1 nlen.Type = Types[Tptr] nlen.Xoffset += int64(Array_array) Regalloc(&n3, Types[Tptr], res) Thearch.Gmove(&nlen, &n3) nlen.Type = Types[Simtype[TUINT]] nlen.Xoffset += int64(Array_nel) - int64(Array_array) } } if !Isconst(nr, CTINT) { Cgenr(nr, &n1, nil) } goto index // &a is in &n3 (allocated in res) // i is in &n1 (if not constant) // len(a) is in nlen (if needed) // w is width // constant index index: if Isconst(nr, CTINT) { if Isconst(nl, CTSTR) { Fatal("constant string constant index") // front end should handle } v := uint64(Mpgetfix(nr.Val().U.(*Mpint))) if Isslice(nl.Type) || nl.Type.Etype == TSTRING { if Debug['B'] == 0 && !n.Bounded { p1 := Thearch.Ginscmp(OGT, Types[Simtype[TUINT]], &nlen, Nodintconst(int64(v)), +1) Ginscall(Panicindex, -1) Patch(p1, Pc) } Regfree(&nlen) } if v*w != 0 { Thearch.Ginscon(Thearch.Optoas(OADD, Types[Tptr]), int64(v*w), &n3) } *a = n3 break } // type of the index t := Types[TUINT64] if Issigned[n1.Type.Etype] { t = Types[TINT64] } var n2 Node Regalloc(&n2, t, &n1) // i Thearch.Gmove(&n1, &n2) Regfree(&n1) if Debug['B'] == 0 && !n.Bounded { // check bounds t = Types[Simtype[TUINT]] if Is64(nr.Type) { t = Types[TUINT64] } if Isconst(nl, CTSTR) { Nodconst(&nlen, t, int64(len(nl.Val().U.(string)))) } else if Isslice(nl.Type) || nl.Type.Etype == TSTRING { // nlen already initialized } else { Nodconst(&nlen, t, nl.Type.Bound) } p1 := Thearch.Ginscmp(OLT, t, &n2, &nlen, +1) Ginscall(Panicindex, -1) Patch(p1, Pc) } if Isconst(nl, CTSTR) { Regalloc(&n3, Types[Tptr], res) p1 := Thearch.Gins(Thearch.Optoas(OAS, n3.Type), nil, &n3) // XXX was LEAQ! Datastring(nl.Val().U.(string), &p1.From) p1.From.Type = obj.TYPE_ADDR Thearch.Gins(Thearch.Optoas(OADD, n3.Type), &n2, &n3) goto indexdone } if w == 0 { // nothing to do } else if Thearch.AddIndex != nil && Thearch.AddIndex(&n2, int64(w), &n3) { // done by back end } else if w == 1 { Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) } else { if w&(w-1) == 0 { // Power of 2. Use shift. Thearch.Ginscon(Thearch.Optoas(OLSH, t), int64(log2(w)), &n2) } else { // Not a power of 2. Use multiply. Thearch.Ginscon(Thearch.Optoas(OMUL, t), int64(w), &n2) } Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n3) } indexdone: *a = n3 Regfree(&n2) if freelen != 0 { Regfree(&nlen) } default: Regalloc(a, Types[Tptr], res) Agen(n, a) } } // log2 returns the logarithm base 2 of n. n must be a power of 2. func log2(n uint64) int { x := 0 for n>>uint(x) != 1 { x++ } return x } /* * generate: * res = &n; * The generated code checks that the result is not nil. */ func Agen(n *Node, res *Node) { if Debug['g'] != 0 { Dump("\nagen-res", res) Dump("agen-r", n) } if n == nil || n.Type == nil { return } for n.Op == OCONVNOP { n = n.Left } if Isconst(n, CTNIL) && n.Type.Width > int64(Widthptr) { // Use of a nil interface or nil slice. // Create a temporary we can take the address of and read. // The generated code is just going to panic, so it need not // be terribly efficient. See issue 3670. var n1 Node Tempname(&n1, n.Type) Gvardef(&n1) Thearch.Clearfat(&n1) var n2 Node Regalloc(&n2, Types[Tptr], res) var n3 Node n3.Op = OADDR n3.Left = &n1 Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &n3, &n2) Thearch.Gmove(&n2, res) Regfree(&n2) return } if n.Op == OINDREG && n.Xoffset == 0 { // Generate MOVW R0, R1 instead of MOVW $0(R0), R1. // This allows better move propagation in the back ends // (and maybe it helps the processor). n1 := *n n1.Op = OREGISTER n1.Type = res.Type Thearch.Gmove(&n1, res) return } if n.Addable { if n.Op == OREGISTER { Fatal("agen OREGISTER") } var n1 Node n1.Op = OADDR n1.Left = n var n2 Node Regalloc(&n2, Types[Tptr], res) Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &n1, &n2) Thearch.Gmove(&n2, res) Regfree(&n2) return } nl := n.Left switch n.Op { default: Fatal("agen: unknown op %v", Nconv(n, obj.FmtShort|obj.FmtSign)) case OCALLMETH: cgen_callmeth(n, 0) cgen_aret(n, res) case OCALLINTER: cgen_callinter(n, res, 0) cgen_aret(n, res) case OCALLFUNC: cgen_call(n, 0) cgen_aret(n, res) case OEFACE, ODOTTYPE, OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR: var n1 Node Tempname(&n1, n.Type) Cgen(n, &n1) Agen(&n1, res) case OINDEX: var n1 Node Agenr(n, &n1, res) Thearch.Gmove(&n1, res) Regfree(&n1) case ONAME: // should only get here with names in this func. if n.Name.Funcdepth > 0 && n.Name.Funcdepth != Funcdepth { Dump("bad agen", n) Fatal("agen: bad ONAME funcdepth %d != %d", n.Name.Funcdepth, Funcdepth) } // should only get here for heap vars or paramref if n.Class&PHEAP == 0 && n.Class != PPARAMREF { Dump("bad agen", n) Fatal("agen: bad ONAME class %#x", n.Class) } Cgen(n.Name.Heapaddr, res) if n.Xoffset != 0 { addOffset(res, n.Xoffset) } case OIND: Cgen(nl, res) Cgen_checknil(res) case ODOT: Agen(nl, res) if n.Xoffset != 0 { addOffset(res, n.Xoffset) } case ODOTPTR: Cgen(nl, res) Cgen_checknil(res) if n.Xoffset != 0 { addOffset(res, n.Xoffset) } } } func addOffset(res *Node, offset int64) { if Ctxt.Arch.Thechar == '6' || Ctxt.Arch.Thechar == '8' { Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), Nodintconst(offset), res) return } var n1, n2 Node Regalloc(&n1, Types[Tptr], nil) Thearch.Gmove(res, &n1) Regalloc(&n2, Types[Tptr], nil) Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), Nodintconst(offset), &n2) Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &n2, &n1) Thearch.Gmove(&n1, res) Regfree(&n1) Regfree(&n2) } // Igen computes the address &n, stores it in a register r, // and rewrites a to refer to *r. The chosen r may be the // stack pointer, it may be borrowed from res, or it may // be a newly allocated register. The caller must call Regfree(a) // to free r when the address is no longer needed. // The generated code ensures that &n is not nil. func Igen(n *Node, a *Node, res *Node) { if Debug['g'] != 0 { Dump("\nigen-n", n) } switch n.Op { case ONAME: if (n.Class&PHEAP != 0) || n.Class == PPARAMREF { break } *a = *n return case OINDREG: // Increase the refcount of the register so that igen's caller // has to call Regfree. if n.Reg != int16(Thearch.REGSP) { reg[n.Reg-int16(Thearch.REGMIN)]++ } *a = *n return case ODOT: Igen(n.Left, a, res) a.Xoffset += n.Xoffset a.Type = n.Type Fixlargeoffset(a) return case ODOTPTR: Cgenr(n.Left, a, res) Cgen_checknil(a) a.Op = OINDREG a.Xoffset += n.Xoffset a.Type = n.Type Fixlargeoffset(a) return case OCALLFUNC, OCALLMETH, OCALLINTER: switch n.Op { case OCALLFUNC: cgen_call(n, 0) case OCALLMETH: cgen_callmeth(n, 0) case OCALLINTER: cgen_callinter(n, nil, 0) } var flist Iter fp := Structfirst(&flist, Getoutarg(n.Left.Type)) *a = Node{} a.Op = OINDREG a.Reg = int16(Thearch.REGSP) a.Addable = true a.Xoffset = fp.Width if HasLinkRegister() { a.Xoffset += int64(Ctxt.Arch.Ptrsize) } a.Type = n.Type return // Index of fixed-size array by constant can // put the offset in the addressing. // Could do the same for slice except that we need // to use the real index for the bounds checking. case OINDEX: if Isfixedarray(n.Left.Type) || (Isptr[n.Left.Type.Etype] && Isfixedarray(n.Left.Left.Type)) { if Isconst(n.Right, CTINT) { // Compute &a. if !Isptr[n.Left.Type.Etype] { Igen(n.Left, a, res) } else { var n1 Node Igen(n.Left, &n1, res) Cgen_checknil(&n1) Regalloc(a, Types[Tptr], res) Thearch.Gmove(&n1, a) Regfree(&n1) a.Op = OINDREG } // Compute &a[i] as &a + i*width. a.Type = n.Type a.Xoffset += Mpgetfix(n.Right.Val().U.(*Mpint)) * n.Type.Width Fixlargeoffset(a) return } } } Agenr(n, a, res) a.Op = OINDREG a.Type = n.Type } // Bgen generates code for branches: // // if n == wantTrue { // goto to // } func Bgen(n *Node, wantTrue bool, likely int, to *obj.Prog) { bgenx(n, nil, wantTrue, likely, to) } // Bvgen generates code for calculating boolean values: // res = n == wantTrue func Bvgen(n, res *Node, wantTrue bool) { if Thearch.Ginsboolval == nil { // Direct value generation not implemented for this architecture. // Implement using jumps. bvgenjump(n, res, wantTrue, true) return } bgenx(n, res, wantTrue, 0, nil) } // bvgenjump implements boolean value generation using jumps: // if n == wantTrue { // res = 1 // } else { // res = 0 // } // geninit controls whether n's Ninit is generated. func bvgenjump(n, res *Node, wantTrue, geninit bool) { init := n.Ninit if !geninit { n.Ninit = nil } p1 := Gbranch(obj.AJMP, nil, 0) p2 := Pc Thearch.Gmove(Nodbool(true), res) p3 := Gbranch(obj.AJMP, nil, 0) Patch(p1, Pc) Bgen(n, wantTrue, 0, p2) Thearch.Gmove(Nodbool(false), res) Patch(p3, Pc) n.Ninit = init } // bgenx is the backend for Bgen and Bvgen. // If res is nil, it generates a branch. // Otherwise, it generates a boolean value. func bgenx(n, res *Node, wantTrue bool, likely int, to *obj.Prog) { if Debug['g'] != 0 { fmt.Printf("\nbgenx wantTrue=%t likely=%d to=%v\n", wantTrue, likely, to) Dump("n", n) Dump("res", res) } genval := res != nil if n == nil { n = Nodbool(true) } Genlist(n.Ninit) if n.Type == nil { Convlit(&n, Types[TBOOL]) if n.Type == nil { return } } if n.Type.Etype != TBOOL { Fatal("bgen: bad type %v for %v", n.Type, Oconv(int(n.Op), 0)) } for n.Op == OCONVNOP { n = n.Left Genlist(n.Ninit) } if Thearch.Bgen_float != nil && n.Left != nil && Isfloat[n.Left.Type.Etype] { if genval { bvgenjump(n, res, wantTrue, false) return } Thearch.Bgen_float(n, wantTrue, likely, to) return } switch n.Op { default: if genval { Cgen(n, res) if !wantTrue { Thearch.Gins(Thearch.Optoas(OXOR, Types[TUINT8]), Nodintconst(1), res) } return } var tmp Node Regalloc(&tmp, n.Type, nil) Cgen(n, &tmp) bgenNonZero(&tmp, nil, wantTrue, likely, to) Regfree(&tmp) return case ONAME: if genval { // 5g, 7g, and 9g might need a temporary or other help here, // but they don't support direct generation of a bool value yet. // We can fix that as we go. switch Ctxt.Arch.Thechar { case '5', '7', '9': Fatal("genval 5g, 7g, 9g ONAMES not fully implemented") } Cgen(n, res) if !wantTrue { Thearch.Gins(Thearch.Optoas(OXOR, Types[TUINT8]), Nodintconst(1), res) } return } if n.Addable && Ctxt.Arch.Thechar != '5' && Ctxt.Arch.Thechar != '7' && Ctxt.Arch.Thechar != '9' { // no need for a temporary bgenNonZero(n, nil, wantTrue, likely, to) return } var tmp Node Regalloc(&tmp, n.Type, nil) Cgen(n, &tmp) bgenNonZero(&tmp, nil, wantTrue, likely, to) Regfree(&tmp) return case OLITERAL: // n is a constant. if !Isconst(n, CTBOOL) { Fatal("bgen: non-bool const %v\n", Nconv(n, obj.FmtLong)) } if genval { Cgen(Nodbool(wantTrue == n.Val().U.(bool)), res) return } // If n == wantTrue, jump; otherwise do nothing. if wantTrue == n.Val().U.(bool) { Patch(Gbranch(obj.AJMP, nil, likely), to) } return case OANDAND, OOROR: and := (n.Op == OANDAND) == wantTrue if genval { p1 := Gbranch(obj.AJMP, nil, 0) p2 := Gbranch(obj.AJMP, nil, 0) Patch(p2, Pc) Cgen(Nodbool(!and), res) p3 := Gbranch(obj.AJMP, nil, 0) Patch(p1, Pc) Bgen(n.Left, wantTrue != and, 0, p2) Bvgen(n.Right, res, wantTrue) Patch(p3, Pc) return } if and { p1 := Gbranch(obj.AJMP, nil, 0) p2 := Gbranch(obj.AJMP, nil, 0) Patch(p1, Pc) Bgen(n.Left, !wantTrue, -likely, p2) Bgen(n.Right, !wantTrue, -likely, p2) p1 = Gbranch(obj.AJMP, nil, 0) Patch(p1, to) Patch(p2, Pc) } else { Bgen(n.Left, wantTrue, likely, to) Bgen(n.Right, wantTrue, likely, to) } return case ONOT: // unary if n.Left == nil || n.Left.Type == nil { return } bgenx(n.Left, res, !wantTrue, likely, to) return case OEQ, ONE, OLT, OGT, OLE, OGE: if n.Left == nil || n.Left.Type == nil || n.Right == nil || n.Right.Type == nil { return } } // n.Op is one of OEQ, ONE, OLT, OGT, OLE, OGE nl := n.Left nr := n.Right a := int(n.Op) if !wantTrue { if Isfloat[nr.Type.Etype] { // Brcom is not valid on floats when NaN is involved. ll := n.Ninit // avoid re-genning Ninit n.Ninit = nil if genval { bgenx(n, res, true, likely, to) Thearch.Gins(Thearch.Optoas(OXOR, Types[TUINT8]), Nodintconst(1), res) // res = !res n.Ninit = ll return } p1 := Gbranch(obj.AJMP, nil, 0) p2 := Gbranch(obj.AJMP, nil, 0) Patch(p1, Pc) bgenx(n, res, true, -likely, p2) Patch(Gbranch(obj.AJMP, nil, 0), to) Patch(p2, Pc) n.Ninit = ll return } a = Brcom(a) } wantTrue = true // make simplest on right if nl.Op == OLITERAL || (nl.Ullman < nr.Ullman && nl.Ullman < UINF) { a = Brrev(a) nl, nr = nr, nl } if Isslice(nl.Type) || Isinter(nl.Type) { // front end should only leave cmp to literal nil if (a != OEQ && a != ONE) || nr.Op != OLITERAL { if Isslice(nl.Type) { Yyerror("illegal slice comparison") } else { Yyerror("illegal interface comparison") } return } var ptr Node Igen(nl, &ptr, nil) if Isslice(nl.Type) { ptr.Xoffset += int64(Array_array) } ptr.Type = Types[Tptr] var tmp Node Regalloc(&tmp, ptr.Type, &ptr) Cgen(&ptr, &tmp) Regfree(&ptr) bgenNonZero(&tmp, res, a == OEQ != wantTrue, likely, to) Regfree(&tmp) return } if Iscomplex[nl.Type.Etype] { complexbool(a, nl, nr, res, wantTrue, likely, to) return } if Ctxt.Arch.Regsize == 4 && Is64(nr.Type) { if genval { // TODO: Teach Cmp64 to generate boolean values and remove this. bvgenjump(n, res, wantTrue, false) return } if !nl.Addable || Isconst(nl, CTINT) { nl = CgenTemp(nl) } if !nr.Addable { nr = CgenTemp(nr) } Thearch.Cmp64(nl, nr, a, likely, to) return } if nr.Ullman >= UINF { var n1 Node Regalloc(&n1, nl.Type, nil) Cgen(nl, &n1) nl = &n1 var tmp Node Tempname(&tmp, nl.Type) Thearch.Gmove(&n1, &tmp) Regfree(&n1) var n2 Node Regalloc(&n2, nr.Type, nil) Cgen(nr, &n2) nr = &n2 Regalloc(&n1, nl.Type, nil) Cgen(&tmp, &n1) Regfree(&n1) Regfree(&n2) } else { var n1 Node if !nl.Addable && Ctxt.Arch.Thechar == '8' { Tempname(&n1, nl.Type) } else { Regalloc(&n1, nl.Type, nil) defer Regfree(&n1) } Cgen(nl, &n1) nl = &n1 if Smallintconst(nr) && Ctxt.Arch.Thechar != '9' { Thearch.Gins(Thearch.Optoas(OCMP, nr.Type), nl, nr) bins(nr.Type, res, a, likely, to) return } if !nr.Addable && Ctxt.Arch.Thechar == '8' { nr = CgenTemp(nr) } var n2 Node Regalloc(&n2, nr.Type, nil) Cgen(nr, &n2) nr = &n2 Regfree(&n2) } l, r := nl, nr // On x86, only < and <= work right with NaN; reverse if needed if Ctxt.Arch.Thechar == '6' && Isfloat[nl.Type.Etype] && (a == OGT || a == OGE) { l, r = r, l a = Brrev(a) } // Do the comparison. Thearch.Gins(Thearch.Optoas(OCMP, nr.Type), l, r) // Handle floating point special cases. // Note that 8g has Bgen_float and is handled above. if Isfloat[nl.Type.Etype] { switch Ctxt.Arch.Thechar { case '5': if genval { Fatal("genval 5g Isfloat special cases not implemented") } switch n.Op { case ONE: Patch(Gbranch(Thearch.Optoas(OPS, nr.Type), nr.Type, likely), to) Patch(Gbranch(Thearch.Optoas(a, nr.Type), nr.Type, likely), to) default: p := Gbranch(Thearch.Optoas(OPS, nr.Type), nr.Type, -likely) Patch(Gbranch(Thearch.Optoas(a, nr.Type), nr.Type, likely), to) Patch(p, Pc) } return case '6': switch n.Op { case OEQ: // neither NE nor P if genval { var reg Node Regalloc(®, Types[TBOOL], nil) Thearch.Ginsboolval(Thearch.Optoas(OEQ, nr.Type), ®) Thearch.Ginsboolval(Thearch.Optoas(OPC, nr.Type), res) Thearch.Gins(Thearch.Optoas(OAND, Types[TBOOL]), ®, res) Regfree(®) } else { p1 := Gbranch(Thearch.Optoas(ONE, nr.Type), nil, -likely) p2 := Gbranch(Thearch.Optoas(OPS, nr.Type), nil, -likely) Patch(Gbranch(obj.AJMP, nil, 0), to) Patch(p1, Pc) Patch(p2, Pc) } return case ONE: // either NE or P if genval { var reg Node Regalloc(®, Types[TBOOL], nil) Thearch.Ginsboolval(Thearch.Optoas(ONE, nr.Type), ®) Thearch.Ginsboolval(Thearch.Optoas(OPS, nr.Type), res) Thearch.Gins(Thearch.Optoas(OOR, Types[TBOOL]), ®, res) Regfree(®) } else { Patch(Gbranch(Thearch.Optoas(ONE, nr.Type), nil, likely), to) Patch(Gbranch(Thearch.Optoas(OPS, nr.Type), nil, likely), to) } return } case '7', '9': if genval { Fatal("genval 7g, 9g Isfloat special cases not implemented") } switch n.Op { // On arm64 and ppc64, <= and >= mishandle NaN. Must decompose into < or > and =. // TODO(josh): Convert a <= b to b > a instead? case OLE, OGE: if a == OLE { a = OLT } else { a = OGT } Patch(Gbranch(Thearch.Optoas(a, nr.Type), nr.Type, likely), to) Patch(Gbranch(Thearch.Optoas(OEQ, nr.Type), nr.Type, likely), to) return } } } // Not a special case. Insert the conditional jump or value gen. bins(nr.Type, res, a, likely, to) } func bgenNonZero(n, res *Node, wantTrue bool, likely int, to *obj.Prog) { // TODO: Optimize on systems that can compare to zero easily. a := ONE if !wantTrue { a = OEQ } var zero Node Nodconst(&zero, n.Type, 0) Thearch.Gins(Thearch.Optoas(OCMP, n.Type), n, &zero) bins(n.Type, res, a, likely, to) } // bins inserts an instruction to handle the result of a compare. // If res is non-nil, it inserts appropriate value generation instructions. // If res is nil, it inserts a branch to to. func bins(typ *Type, res *Node, a, likely int, to *obj.Prog) { a = Thearch.Optoas(a, typ) if res != nil { // value gen Thearch.Ginsboolval(a, res) } else { // jump Patch(Gbranch(a, typ, likely), to) } } // stkof returns n's offset from SP if n is on the stack // (either a local variable or the return value from a function call // or the arguments to a function call). // If n is not on the stack, stkof returns -1000. // If n is on the stack but in an unknown location // (due to array index arithmetic), stkof returns +1000. // // NOTE(rsc): It is possible that the ODOT and OINDEX cases // are not relevant here, since it shouldn't be possible for them // to be involved in an overlapping copy. Only function results // from one call and the arguments to the next can overlap in // any non-trivial way. If they can be dropped, then this function // becomes much simpler and also more trustworthy. // The fact that it works at all today is probably due to the fact // that ODOT and OINDEX are irrelevant. func stkof(n *Node) int64 { switch n.Op { case OINDREG: if n.Reg != int16(Thearch.REGSP) { return -1000 // not on stack } return n.Xoffset case ODOT: t := n.Left.Type if Isptr[t.Etype] { break } off := stkof(n.Left) if off == -1000 || off == +1000 { return off } return off + n.Xoffset case OINDEX: t := n.Left.Type if !Isfixedarray(t) { break } off := stkof(n.Left) if off == -1000 || off == +1000 { return off } if Isconst(n.Right, CTINT) { return off + t.Type.Width*Mpgetfix(n.Right.Val().U.(*Mpint)) } return +1000 // on stack but not sure exactly where case OCALLMETH, OCALLINTER, OCALLFUNC: t := n.Left.Type if Isptr[t.Etype] { t = t.Type } var flist Iter t = Structfirst(&flist, Getoutarg(t)) if t != nil { w := t.Width if HasLinkRegister() { w += int64(Ctxt.Arch.Ptrsize) } return w } } // botch - probably failing to recognize address // arithmetic on the above. eg INDEX and DOT return -1000 // not on stack } /* * block copy: * memmove(&ns, &n, w); * if wb is true, needs write barrier. */ func sgen_wb(n *Node, ns *Node, w int64, wb bool) { if Debug['g'] != 0 { op := "sgen" if wb { op = "sgen-wb" } fmt.Printf("\n%s w=%d\n", op, w) Dump("r", n) Dump("res", ns) } if n.Ullman >= UINF && ns.Ullman >= UINF { Fatal("sgen UINF") } if w < 0 { Fatal("sgen copy %d", w) } // If copying .args, that's all the results, so record definition sites // for them for the liveness analysis. if ns.Op == ONAME && ns.Sym.Name == ".args" { for l := Curfn.Func.Dcl; l != nil; l = l.Next { if l.N.Class == PPARAMOUT { Gvardef(l.N) } } } // Avoid taking the address for simple enough types. if componentgen_wb(n, ns, wb) { return } if w == 0 { // evaluate side effects only var nodr Node Regalloc(&nodr, Types[Tptr], nil) Agen(ns, &nodr) Agen(n, &nodr) Regfree(&nodr) return } // offset on the stack osrc := stkof(n) odst := stkof(ns) if odst != -1000 { // on stack, write barrier not needed after all wb = false } if osrc != -1000 && odst != -1000 && (osrc == 1000 || odst == 1000) || wb && osrc != -1000 { // osrc and odst both on stack, and at least one is in // an unknown position. Could generate code to test // for forward/backward copy, but instead just copy // to a temporary location first. // // OR: write barrier needed and source is on stack. // Invoking the write barrier will use the stack to prepare its call. // Copy to temporary. var tmp Node Tempname(&tmp, n.Type) sgen_wb(n, &tmp, w, false) sgen_wb(&tmp, ns, w, wb) return } if wb { cgen_wbfat(n, ns) return } Thearch.Blockcopy(n, ns, osrc, odst, w) } /* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func Ginscall(f *Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(Widthptr) } Setmaxarg(f.Type, extra) } switch proc { default: Fatal("Ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == ONAME && f.Class == PFUNC { if f == Deferreturn { // Deferred calls will appear to be returning to // the CALL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction byte before the return PC. // To avoid that being an unrelated instruction, // insert an actual hardware NOP that will have the right line number. // This is different from obj.ANOP, which is a virtual no-op // that doesn't make it into the instruction stream. Thearch.Ginsnop() } p := Thearch.Gins(obj.ACALL, nil, f) Afunclit(&p.To, f) if proc == -1 || Noreturn(p) { Thearch.Gins(obj.AUNDEF, nil, nil) } break } var reg Node Nodreg(®, Types[Tptr], Thearch.REGCTXT) var r1 Node Nodreg(&r1, Types[Tptr], Thearch.REGCALLX) Thearch.Gmove(f, ®) reg.Op = OINDREG Thearch.Gmove(®, &r1) reg.Op = OREGISTER Thearch.Gins(obj.ACALL, ®, &r1) case 3: // normal call of c function pointer Thearch.Gins(obj.ACALL, nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var stk Node // size of arguments at 0(SP) stk.Op = OINDREG stk.Reg = int16(Thearch.REGSP) stk.Xoffset = 0 if HasLinkRegister() { stk.Xoffset += int64(Ctxt.Arch.Ptrsize) } Thearch.Ginscon(Thearch.Optoas(OAS, Types[TINT32]), int64(Argsize(f.Type)), &stk) // FuncVal* at 8(SP) stk.Xoffset = int64(Widthptr) if HasLinkRegister() { stk.Xoffset += int64(Ctxt.Arch.Ptrsize) } var reg Node Nodreg(®, Types[Tptr], Thearch.REGCALLX2) Thearch.Gmove(f, ®) Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), ®, &stk) if proc == 1 { Ginscall(Newproc, 0) } else { if Hasdefer == 0 { Fatal("hasdefer=0 but has defer") } Ginscall(Deferproc, 0) } if proc == 2 { Nodreg(®, Types[TINT32], Thearch.REGRETURN) p := Thearch.Ginscmp(OEQ, Types[TINT32], ®, Nodintconst(0), +1) cgen_ret(nil) Patch(p, Pc) } } } /* * n is call to interface method. * generate res = n. */ func cgen_callinter(n *Node, res *Node, proc int) { i := n.Left if i.Op != ODOTINTER { Fatal("cgen_callinter: not ODOTINTER %v", Oconv(int(i.Op), 0)) } f := i.Right // field if f.Op != ONAME { Fatal("cgen_callinter: not ONAME %v", Oconv(int(f.Op), 0)) } i = i.Left // interface if !i.Addable { var tmpi Node Tempname(&tmpi, i.Type) Cgen(i, &tmpi) i = &tmpi } Genlist(n.List) // assign the args // i is now addable, prepare an indirected // register to hold its address. var nodi Node Igen(i, &nodi, res) // REG = &inter var nodsp Node Nodindreg(&nodsp, Types[Tptr], Thearch.REGSP) nodsp.Xoffset = 0 if HasLinkRegister() { nodsp.Xoffset += int64(Ctxt.Arch.Ptrsize) } if proc != 0 { nodsp.Xoffset += 2 * int64(Widthptr) // leave room for size & fn } nodi.Type = Types[Tptr] nodi.Xoffset += int64(Widthptr) Cgen(&nodi, &nodsp) // {0, 8(nacl), or 16}(SP) = 8(REG) -- i.data var nodo Node Regalloc(&nodo, Types[Tptr], res) nodi.Type = Types[Tptr] nodi.Xoffset -= int64(Widthptr) Cgen(&nodi, &nodo) // REG = 0(REG) -- i.tab Regfree(&nodi) var nodr Node Regalloc(&nodr, Types[Tptr], &nodo) if n.Left.Xoffset == BADWIDTH { Fatal("cgen_callinter: badwidth") } Cgen_checknil(&nodo) // in case offset is huge nodo.Op = OINDREG nodo.Xoffset = n.Left.Xoffset + 3*int64(Widthptr) + 8 if proc == 0 { // plain call: use direct c function pointer - more efficient Cgen(&nodo, &nodr) // REG = 32+offset(REG) -- i.tab->fun[f] proc = 3 } else { // go/defer. generate go func value. Agen(&nodo, &nodr) // REG = &(32+offset(REG)) -- i.tab->fun[f] } nodr.Type = n.Left.Type Ginscall(&nodr, proc) Regfree(&nodr) Regfree(&nodo) } /* * generate function call; * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack */ func cgen_call(n *Node, proc int) { if n == nil { return } var afun Node if n.Left.Ullman >= UINF { // if name involves a fn call // precompute the address of the fn Tempname(&afun, Types[Tptr]) Cgen(n.Left, &afun) } Genlist(n.List) // assign the args t := n.Left.Type // call tempname pointer if n.Left.Ullman >= UINF { var nod Node Regalloc(&nod, Types[Tptr], nil) Cgen_as(&nod, &afun) nod.Type = t Ginscall(&nod, proc) Regfree(&nod) return } // call pointer if n.Left.Op != ONAME || n.Left.Class != PFUNC { var nod Node Regalloc(&nod, Types[Tptr], nil) Cgen_as(&nod, n.Left) nod.Type = t Ginscall(&nod, proc) Regfree(&nod) return } // call direct n.Left.Name.Method = true Ginscall(n.Left, proc) } func HasLinkRegister() bool { c := Ctxt.Arch.Thechar return c != '6' && c != '8' } /* * call to n has already been generated. * generate: * res = return value from call. */ func cgen_callret(n *Node, res *Node) { t := n.Left.Type if t.Etype == TPTR32 || t.Etype == TPTR64 { t = t.Type } var flist Iter fp := Structfirst(&flist, Getoutarg(t)) if fp == nil { Fatal("cgen_callret: nil") } var nod Node nod.Op = OINDREG nod.Reg = int16(Thearch.REGSP) nod.Addable = true nod.Xoffset = fp.Width if HasLinkRegister() { nod.Xoffset += int64(Ctxt.Arch.Ptrsize) } nod.Type = fp.Type Cgen_as(res, &nod) } /* * call to n has already been generated. * generate: * res = &return value from call. */ func cgen_aret(n *Node, res *Node) { t := n.Left.Type if Isptr[t.Etype] { t = t.Type } var flist Iter fp := Structfirst(&flist, Getoutarg(t)) if fp == nil { Fatal("cgen_aret: nil") } var nod1 Node nod1.Op = OINDREG nod1.Reg = int16(Thearch.REGSP) nod1.Addable = true nod1.Xoffset = fp.Width if HasLinkRegister() { nod1.Xoffset += int64(Ctxt.Arch.Ptrsize) } nod1.Type = fp.Type if res.Op != OREGISTER { var nod2 Node Regalloc(&nod2, Types[Tptr], res) Agen(&nod1, &nod2) Thearch.Gins(Thearch.Optoas(OAS, Types[Tptr]), &nod2, res) Regfree(&nod2) } else { Agen(&nod1, res) } } /* * generate return. * n->left is assignments to return values. */ func cgen_ret(n *Node) { if n != nil { Genlist(n.List) // copy out args } if Hasdefer != 0 { Ginscall(Deferreturn, 0) } Genlist(Curfn.Func.Exit) p := Thearch.Gins(obj.ARET, nil, nil) if n != nil && n.Op == ORETJMP { p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = Linksym(n.Left.Sym) } } /* * generate division according to op, one of: * res = nl / nr * res = nl % nr */ func cgen_div(op int, nl *Node, nr *Node, res *Node) { var w int // TODO(rsc): arm64 needs to support the relevant instructions // in peep and optoas in order to enable this. // TODO(rsc): ppc64 needs to support the relevant instructions // in peep and optoas in order to enable this. if nr.Op != OLITERAL || Ctxt.Arch.Thechar == '7' || Ctxt.Arch.Thechar == '9' { goto longdiv } w = int(nl.Type.Width * 8) // Front end handled 32-bit division. We only need to handle 64-bit. // try to do division by multiply by (2^w)/d // see hacker's delight chapter 10 switch Simtype[nl.Type.Etype] { default: goto longdiv case TUINT64: var m Magic m.W = w m.Ud = uint64(Mpgetfix(nr.Val().U.(*Mpint))) Umagic(&m) if m.Bad != 0 { break } if op == OMOD { goto longmod } var n1 Node Cgenr(nl, &n1, nil) var n2 Node Nodconst(&n2, nl.Type, int64(m.Um)) var n3 Node Regalloc(&n3, nl.Type, res) Thearch.Cgen_hmul(&n1, &n2, &n3) if m.Ua != 0 { // need to add numerator accounting for overflow Thearch.Gins(Thearch.Optoas(OADD, nl.Type), &n1, &n3) Nodconst(&n2, nl.Type, 1) Thearch.Gins(Thearch.Optoas(ORROTC, nl.Type), &n2, &n3) Nodconst(&n2, nl.Type, int64(m.S)-1) Thearch.Gins(Thearch.Optoas(ORSH, nl.Type), &n2, &n3) } else { Nodconst(&n2, nl.Type, int64(m.S)) Thearch.Gins(Thearch.Optoas(ORSH, nl.Type), &n2, &n3) // shift dx } Thearch.Gmove(&n3, res) Regfree(&n1) Regfree(&n3) return case TINT64: var m Magic m.W = w m.Sd = Mpgetfix(nr.Val().U.(*Mpint)) Smagic(&m) if m.Bad != 0 { break } if op == OMOD { goto longmod } var n1 Node Cgenr(nl, &n1, res) var n2 Node Nodconst(&n2, nl.Type, m.Sm) var n3 Node Regalloc(&n3, nl.Type, nil) Thearch.Cgen_hmul(&n1, &n2, &n3) if m.Sm < 0 { // need to add numerator Thearch.Gins(Thearch.Optoas(OADD, nl.Type), &n1, &n3) } Nodconst(&n2, nl.Type, int64(m.S)) Thearch.Gins(Thearch.Optoas(ORSH, nl.Type), &n2, &n3) // shift n3 Nodconst(&n2, nl.Type, int64(w)-1) Thearch.Gins(Thearch.Optoas(ORSH, nl.Type), &n2, &n1) // -1 iff num is neg Thearch.Gins(Thearch.Optoas(OSUB, nl.Type), &n1, &n3) // added if m.Sd < 0 { // this could probably be removed // by factoring it into the multiplier Thearch.Gins(Thearch.Optoas(OMINUS, nl.Type), nil, &n3) } Thearch.Gmove(&n3, res) Regfree(&n1) Regfree(&n3) return } goto longdiv // division and mod using (slow) hardware instruction longdiv: Thearch.Dodiv(op, nl, nr, res) return // mod using formula A%B = A-(A/B*B) but // we know that there is a fast algorithm for A/B longmod: var n1 Node Regalloc(&n1, nl.Type, res) Cgen(nl, &n1) var n2 Node Regalloc(&n2, nl.Type, nil) cgen_div(ODIV, &n1, nr, &n2) a := Thearch.Optoas(OMUL, nl.Type) if w == 8 { // use 2-operand 16-bit multiply // because there is no 2-operand 8-bit multiply a = Thearch.Optoas(OMUL, Types[TINT16]) // XXX was IMULW } if !Smallintconst(nr) { var n3 Node Regalloc(&n3, nl.Type, nil) Cgen(nr, &n3) Thearch.Gins(a, &n3, &n2) Regfree(&n3) } else { Thearch.Gins(a, nr, &n2) } Thearch.Gins(Thearch.Optoas(OSUB, nl.Type), &n2, &n1) Thearch.Gmove(&n1, res) Regfree(&n1) Regfree(&n2) } func Fixlargeoffset(n *Node) { if n == nil { return } if n.Op != OINDREG { return } if n.Reg == int16(Thearch.REGSP) { // stack offset cannot be large return } if n.Xoffset != int64(int32(n.Xoffset)) { // offset too large, add to register instead. a := *n a.Op = OREGISTER a.Type = Types[Tptr] a.Xoffset = 0 Cgen_checknil(&a) Thearch.Ginscon(Thearch.Optoas(OADD, Types[Tptr]), n.Xoffset, &a) n.Xoffset = 0 } } func cgen_append(n, res *Node) { if Debug['g'] != 0 { Dump("cgen_append-n", n) Dump("cgen_append-res", res) } if res.Op != ONAME && !samesafeexpr(res, n.List.N) { Dump("cgen_append-n", n) Dump("cgen_append-res", res) Fatal("append not lowered") } for l := n.List; l != nil; l = l.Next { if l.N.Ullman >= UINF { Fatal("append with function call arguments") } } // res = append(src, x, y, z) // // If res and src are the same, we can avoid writing to base and cap // unless we grow the underlying array. needFullUpdate := !samesafeexpr(res, n.List.N) // Copy src triple into base, len, cap. base := temp(Types[Tptr]) len := temp(Types[TUINT]) cap := temp(Types[TUINT]) var src Node Igen(n.List.N, &src, nil) src.Type = Types[Tptr] Thearch.Gmove(&src, base) src.Type = Types[TUINT] src.Xoffset += int64(Widthptr) Thearch.Gmove(&src, len) src.Xoffset += int64(Widthptr) Thearch.Gmove(&src, cap) // if len+argc <= cap goto L1 var rlen Node Regalloc(&rlen, Types[TUINT], nil) Thearch.Gmove(len, &rlen) Thearch.Ginscon(Thearch.Optoas(OADD, Types[TUINT]), int64(count(n.List)-1), &rlen) p := Thearch.Ginscmp(OLE, Types[TUINT], &rlen, cap, +1) // Note: rlen and src are Regrealloc'ed below at the target of the // branch we just emitted; do not reuse these Go variables for // other purposes. They need to still describe the same things // below that they describe right here. Regfree(&src) // base, len, cap = growslice(type, base, len, cap, newlen) var arg Node arg.Op = OINDREG arg.Reg = int16(Thearch.REGSP) arg.Addable = true arg.Xoffset = 0 if HasLinkRegister() { arg.Xoffset = int64(Ctxt.Arch.Ptrsize) } arg.Type = Ptrto(Types[TUINT8]) Cgen(typename(res.Type), &arg) arg.Xoffset += int64(Widthptr) arg.Type = Types[Tptr] Cgen(base, &arg) arg.Xoffset += int64(Widthptr) arg.Type = Types[TUINT] Cgen(len, &arg) arg.Xoffset += int64(Widthptr) arg.Type = Types[TUINT] Cgen(cap, &arg) arg.Xoffset += int64(Widthptr) arg.Type = Types[TUINT] Cgen(&rlen, &arg) arg.Xoffset += int64(Widthptr) Regfree(&rlen) fn := syslook("growslice", 1) substArgTypes(fn, res.Type.Type, res.Type.Type) Ginscall(fn, 0) if Widthptr == 4 && Widthreg == 8 { arg.Xoffset += 4 } arg.Type = Types[Tptr] Cgen(&arg, base) arg.Xoffset += int64(Widthptr) arg.Type = Types[TUINT] Cgen(&arg, len) arg.Xoffset += int64(Widthptr) arg.Type = Types[TUINT] Cgen(&arg, cap) // Update res with base, len+argc, cap. if needFullUpdate { if Debug_append > 0 { Warn("append: full update") } Patch(p, Pc) } if res.Op == ONAME { Gvardef(res) } var dst, r1 Node Igen(res, &dst, nil) dst.Type = Types[TUINT] dst.Xoffset += int64(Widthptr) Regalloc(&r1, Types[TUINT], nil) Thearch.Gmove(len, &r1) Thearch.Ginscon(Thearch.Optoas(OADD, Types[TUINT]), int64(count(n.List)-1), &r1) Thearch.Gmove(&r1, &dst) Regfree(&r1) dst.Xoffset += int64(Widthptr) Thearch.Gmove(cap, &dst) dst.Type = Types[Tptr] dst.Xoffset -= 2 * int64(Widthptr) cgen_wb(base, &dst, needwritebarrier(&dst, base)) Regfree(&dst) if !needFullUpdate { if Debug_append > 0 { Warn("append: len-only update") } // goto L2; // L1: // update len only // L2: q := Gbranch(obj.AJMP, nil, 0) Patch(p, Pc) // At the goto above, src refers to cap and rlen holds the new len if src.Op == OREGISTER || src.Op == OINDREG { Regrealloc(&src) } Regrealloc(&rlen) src.Xoffset -= int64(Widthptr) Thearch.Gmove(&rlen, &src) Regfree(&src) Regfree(&rlen) Patch(q, Pc) } // Copy data into place. // Could do write barrier check around entire copy instead of each element. // Could avoid reloading registers on each iteration if we know the cgen_wb // is not going to use a write barrier. i := 0 var r2 Node for l := n.List.Next; l != nil; l = l.Next { Regalloc(&r1, Types[Tptr], nil) Thearch.Gmove(base, &r1) Regalloc(&r2, Types[TUINT], nil) Thearch.Gmove(len, &r2) if i > 0 { Thearch.Gins(Thearch.Optoas(OADD, Types[TUINT]), Nodintconst(int64(i)), &r2) } w := res.Type.Type.Width if Thearch.AddIndex != nil && Thearch.AddIndex(&r2, w, &r1) { // r1 updated by back end } else if w == 1 { Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &r2, &r1) } else { Thearch.Ginscon(Thearch.Optoas(OMUL, Types[TUINT]), int64(w), &r2) Thearch.Gins(Thearch.Optoas(OADD, Types[Tptr]), &r2, &r1) } Regfree(&r2) r1.Op = OINDREG r1.Type = res.Type.Type cgen_wb(l.N, &r1, needwritebarrier(&r1, l.N)) Regfree(&r1) i++ } } // Generate res = n, where n is x[i:j] or x[i:j:k]. // If wb is true, need write barrier updating res's base pointer. // On systems with 32-bit ints, i, j, k are guaranteed to be 32-bit values. func cgen_slice(n, res *Node, wb bool) { if Debug['g'] != 0 { Dump("cgen_slice-n", n) Dump("cgen_slice-res", res) } needFullUpdate := !samesafeexpr(n.Left, res) // orderexpr has made sure that x is safe (but possibly expensive) // and i, j, k are cheap. On a system with registers (anything but 386) // we can evaluate x first and then know we have enough registers // for i, j, k as well. var x, xbase, xlen, xcap, i, j, k Node if n.Op != OSLICEARR && n.Op != OSLICE3ARR { Igen(n.Left, &x, nil) } indexRegType := Types[TUINT] if Widthreg > Widthptr { // amd64p32 indexRegType = Types[TUINT64] } // On most systems, we use registers. // The 386 has basically no registers, so substitute functions // that can work with temporaries instead. regalloc := Regalloc ginscon := Thearch.Ginscon gins := Thearch.Gins if Thearch.Thechar == '8' { regalloc = func(n *Node, t *Type, reuse *Node) { Tempname(n, t) } ginscon = func(as int, c int64, n *Node) { var n1 Node Regalloc(&n1, n.Type, n) Thearch.Gmove(n, &n1) Thearch.Ginscon(as, c, &n1) Thearch.Gmove(&n1, n) Regfree(&n1) } gins = func(as int, f, t *Node) *obj.Prog { var n1 Node Regalloc(&n1, t.Type, t) Thearch.Gmove(t, &n1) Thearch.Gins(as, f, &n1) Thearch.Gmove(&n1, t) Regfree(&n1) return nil } } panics := make([]*obj.Prog, 0, 6) // 3 loads + 3 checks loadlen := func() { if xlen.Op != 0 { return } if n.Op == OSLICEARR || n.Op == OSLICE3ARR { Nodconst(&xlen, indexRegType, n.Left.Type.Type.Bound) return } if n.Op == OSLICESTR && Isconst(n.Left, CTSTR) { Nodconst(&xlen, indexRegType, int64(len(n.Left.Val().U.(string)))) return } regalloc(&xlen, indexRegType, nil) x.Xoffset += int64(Widthptr) x.Type = Types[TUINT] Thearch.Gmove(&x, &xlen) x.Xoffset -= int64(Widthptr) } loadcap := func() { if xcap.Op != 0 { return } if n.Op == OSLICEARR || n.Op == OSLICE3ARR || n.Op == OSLICESTR { loadlen() xcap = xlen if xcap.Op == OREGISTER { Regrealloc(&xcap) } return } regalloc(&xcap, indexRegType, nil) x.Xoffset += 2 * int64(Widthptr) x.Type = Types[TUINT] Thearch.Gmove(&x, &xcap) x.Xoffset -= 2 * int64(Widthptr) } var x1, x2, x3 *Node // unevaluated index arguments x1 = n.Right.Left switch n.Op { default: x2 = n.Right.Right case OSLICE3, OSLICE3ARR: x2 = n.Right.Right.Left x3 = n.Right.Right.Right } // load computes src into targ, but if src refers to the len or cap of n.Left, // load copies those from xlen, xcap, loading xlen if needed. // If targ.Op == OREGISTER on return, it must be Regfreed, // but it should not be modified without first checking whether it is // xlen or xcap's register. load := func(src, targ *Node) { if src == nil { return } switch src.Op { case OLITERAL: *targ = *src return case OLEN: // NOTE(rsc): This doesn't actually trigger, because order.go // has pulled all the len and cap calls into separate assignments // to temporaries. There are tests in test/sliceopt.go that could // be enabled if this is fixed. if samesafeexpr(n.Left, src.Left) { if Debug_slice > 0 { Warn("slice: reuse len") } loadlen() *targ = xlen if targ.Op == OREGISTER { Regrealloc(targ) } return } case OCAP: // NOTE(rsc): This doesn't actually trigger; see note in case OLEN above. if samesafeexpr(n.Left, src.Left) { if Debug_slice > 0 { Warn("slice: reuse cap") } loadcap() *targ = xcap if targ.Op == OREGISTER { Regrealloc(targ) } return } } if i.Op != 0 && samesafeexpr(x1, src) { if Debug_slice > 0 { Warn("slice: reuse 1st index") } *targ = i if targ.Op == OREGISTER { Regrealloc(targ) } return } if j.Op != 0 && samesafeexpr(x2, src) { if Debug_slice > 0 { Warn("slice: reuse 2nd index") } *targ = j if targ.Op == OREGISTER { Regrealloc(targ) } return } if Thearch.Cgenindex != nil { regalloc(targ, indexRegType, nil) p := Thearch.Cgenindex(src, targ, false) if p != nil { panics = append(panics, p) } } else if Thearch.Igenindex != nil { p := Thearch.Igenindex(src, targ, false) if p != nil { panics = append(panics, p) } } else { regalloc(targ, indexRegType, nil) var tmp Node Cgenr(src, &tmp, targ) Thearch.Gmove(&tmp, targ) Regfree(&tmp) } } load(x1, &i) load(x2, &j) load(x3, &k) // i defaults to 0. if i.Op == 0 { Nodconst(&i, indexRegType, 0) } // j defaults to len(x) if j.Op == 0 { loadlen() j = xlen if j.Op == OREGISTER { Regrealloc(&j) } } // k defaults to cap(x) // Only need to load it if we're recalculating cap or doing a full update. if k.Op == 0 && n.Op != OSLICESTR && (!iszero(&i) || needFullUpdate) { loadcap() k = xcap if k.Op == OREGISTER { Regrealloc(&k) } } // Check constant indexes for negative values, and against constant length if known. // The func obvious below checks for out-of-order constant indexes. var bound int64 = -1 if n.Op == OSLICEARR || n.Op == OSLICE3ARR { bound = n.Left.Type.Type.Bound } else if n.Op == OSLICESTR && Isconst(n.Left, CTSTR) { bound = int64(len(n.Left.Val().U.(string))) } if Isconst(&i, CTINT) { if mpcmpfixc(i.Val().U.(*Mpint), 0) < 0 || bound >= 0 && mpcmpfixc(i.Val().U.(*Mpint), bound) > 0 { Yyerror("slice index out of bounds") } } if Isconst(&j, CTINT) { if mpcmpfixc(j.Val().U.(*Mpint), 0) < 0 || bound >= 0 && mpcmpfixc(j.Val().U.(*Mpint), bound) > 0 { Yyerror("slice index out of bounds") } } if Isconst(&k, CTINT) { if mpcmpfixc(k.Val().U.(*Mpint), 0) < 0 || bound >= 0 && mpcmpfixc(k.Val().U.(*Mpint), bound) > 0 { Yyerror("slice index out of bounds") } } // same reports whether n1 and n2 are the same register or constant. same := func(n1, n2 *Node) bool { return n1.Op == OREGISTER && n2.Op == OREGISTER && n1.Reg == n2.Reg || n1.Op == ONAME && n2.Op == ONAME && n1.Orig == n2.Orig && n1.Type == n2.Type && n1.Xoffset == n2.Xoffset || n1.Op == OLITERAL && n2.Op == OLITERAL && Mpcmpfixfix(n1.Val().U.(*Mpint), n2.Val().U.(*Mpint)) == 0 } // obvious reports whether n1 <= n2 is obviously true, // and it calls Yyerror if n1 <= n2 is obviously false. obvious := func(n1, n2 *Node) bool { if Debug['B'] != 0 { // -B disables bounds checks return true } if same(n1, n2) { return true // n1 == n2 } if iszero(n1) { return true // using unsigned compare, so 0 <= n2 always true } if xlen.Op != 0 && same(n1, &xlen) && xcap.Op != 0 && same(n2, &xcap) { return true // len(x) <= cap(x) always true } if Isconst(n1, CTINT) && Isconst(n2, CTINT) { if Mpcmpfixfix(n1.Val().U.(*Mpint), n2.Val().U.(*Mpint)) <= 0 { return true // n1, n2 constants such that n1 <= n2 } Yyerror("slice index out of bounds") return true } return false } compare := func(n1, n2 *Node) { // n1 might be a 64-bit constant, even on 32-bit architectures, // but it will be represented in 32 bits. if Ctxt.Arch.Regsize == 4 && Is64(n1.Type) { if mpcmpfixc(n1.Val().U.(*Mpint), 1<<31) >= 0 { Fatal("missed slice out of bounds check") } var tmp Node Nodconst(&tmp, indexRegType, Mpgetfix(n1.Val().U.(*Mpint))) n1 = &tmp } p := Thearch.Ginscmp(OGT, indexRegType, n1, n2, -1) panics = append(panics, p) } loadcap() max := &xcap if k.Op != 0 && (n.Op == OSLICE3 || n.Op == OSLICE3ARR) { if obvious(&k, max) { if Debug_slice > 0 { Warn("slice: omit check for 3rd index") } } else { compare(&k, max) } max = &k } if j.Op != 0 { if obvious(&j, max) { if Debug_slice > 0 { Warn("slice: omit check for 2nd index") } } else { compare(&j, max) } max = &j } if i.Op != 0 { if obvious(&i, max) { if Debug_slice > 0 { Warn("slice: omit check for 1st index") } } else { compare(&i, max) } max = &i } if k.Op != 0 && i.Op != 0 { obvious(&i, &k) // emit compile-time error for x[3:n:2] } if len(panics) > 0 { p := Gbranch(obj.AJMP, nil, 0) for _, q := range panics { Patch(q, Pc) } Ginscall(panicslice, -1) Patch(p, Pc) } // Checks are done. // Compute new len as j-i, cap as k-i. // If i and j are same register, len is constant 0. // If i and k are same register, cap is constant 0. // If j and k are same register, len and cap are same. // Done with xlen and xcap. // Now safe to modify j and k even if they alias xlen, xcap. if xlen.Op == OREGISTER { Regfree(&xlen) } if xcap.Op == OREGISTER { Regfree(&xcap) } // are j and k the same value? sameJK := same(&j, &k) if i.Op != 0 { // j -= i if same(&i, &j) { if Debug_slice > 0 { Warn("slice: result len == 0") } if j.Op == OREGISTER { Regfree(&j) } Nodconst(&j, indexRegType, 0) } else { switch j.Op { case OLITERAL: if Isconst(&i, CTINT) { Nodconst(&j, indexRegType, Mpgetfix(j.Val().U.(*Mpint))-Mpgetfix(i.Val().U.(*Mpint))) if Debug_slice > 0 { Warn("slice: result len == %d", Mpgetfix(j.Val().U.(*Mpint))) } break } fallthrough case ONAME: if !istemp(&j) { var r Node regalloc(&r, indexRegType, nil) Thearch.Gmove(&j, &r) j = r } fallthrough case OREGISTER: if i.Op == OLITERAL { v := Mpgetfix(i.Val().U.(*Mpint)) if v != 0 { ginscon(Thearch.Optoas(OSUB, indexRegType), v, &j) } } else { gins(Thearch.Optoas(OSUB, indexRegType), &i, &j) } } } // k -= i if k different from j and cap is needed.j // (The modifications to j above cannot affect i: if j and i were aliased, // we replace j with a constant 0 instead of doing a subtraction, // leaving i unmodified.) if k.Op == 0 { if Debug_slice > 0 && n.Op != OSLICESTR { Warn("slice: result cap not computed") } // no need } else if same(&i, &k) { if k.Op == OREGISTER { Regfree(&k) } Nodconst(&k, indexRegType, 0) if Debug_slice > 0 { Warn("slice: result cap == 0") } } else if sameJK { if Debug_slice > 0 { Warn("slice: result cap == result len") } // k and j were the same value; make k-i the same as j-i. if k.Op == OREGISTER { Regfree(&k) } k = j if k.Op == OREGISTER { Regrealloc(&k) } } else { switch k.Op { case OLITERAL: if Isconst(&i, CTINT) { Nodconst(&k, indexRegType, Mpgetfix(k.Val().U.(*Mpint))-Mpgetfix(i.Val().U.(*Mpint))) if Debug_slice > 0 { Warn("slice: result cap == %d", Mpgetfix(k.Val().U.(*Mpint))) } break } fallthrough case ONAME: if !istemp(&k) { var r Node regalloc(&r, indexRegType, nil) Thearch.Gmove(&k, &r) k = r } fallthrough case OREGISTER: if same(&i, &k) { Regfree(&k) Nodconst(&k, indexRegType, 0) if Debug_slice > 0 { Warn("slice: result cap == 0") } } else if i.Op == OLITERAL { v := Mpgetfix(i.Val().U.(*Mpint)) if v != 0 { ginscon(Thearch.Optoas(OSUB, indexRegType), v, &k) } } else { gins(Thearch.Optoas(OSUB, indexRegType), &i, &k) } } } } adjustBase := true if i.Op == 0 || iszero(&i) { if Debug_slice > 0 { Warn("slice: skip base adjustment for 1st index 0") } adjustBase = false } else if k.Op != 0 && iszero(&k) || k.Op == 0 && iszero(&j) { if Debug_slice > 0 { if n.Op == OSLICESTR { Warn("slice: skip base adjustment for string len == 0") } else { Warn("slice: skip base adjustment for cap == 0") } } adjustBase = false } if !adjustBase && !needFullUpdate { if Debug_slice > 0 { if k.Op != 0 { Warn("slice: len/cap-only update") } else { Warn("slice: len-only update") } } if i.Op == OREGISTER { Regfree(&i) } // Write len (and cap if needed) back to x. x.Xoffset += int64(Widthptr) x.Type = Types[TUINT] Thearch.Gmove(&j, &x) x.Xoffset -= int64(Widthptr) if k.Op != 0 { x.Xoffset += 2 * int64(Widthptr) x.Type = Types[TUINT] Thearch.Gmove(&k, &x) x.Xoffset -= 2 * int64(Widthptr) } Regfree(&x) } else { // Compute new base. May smash i. if n.Op == OSLICEARR || n.Op == OSLICE3ARR { Cgenr(n.Left, &xbase, nil) Cgen_checknil(&xbase) } else { regalloc(&xbase, Ptrto(res.Type.Type), nil) x.Type = xbase.Type Thearch.Gmove(&x, &xbase) Regfree(&x) } if i.Op != 0 && adjustBase { // Branch around the base adjustment if the resulting cap will be 0. var p *obj.Prog size := &k if k.Op == 0 { size = &j } if Isconst(size, CTINT) { // zero was checked above, must be non-zero. } else { var tmp Node Nodconst(&tmp, indexRegType, 0) p = Thearch.Ginscmp(OEQ, indexRegType, size, &tmp, -1) } var w int64 if n.Op == OSLICESTR { w = 1 // res is string, elem size is 1 (byte) } else { w = res.Type.Type.Width // res is []T, elem size is T.width } if Isconst(&i, CTINT) { ginscon(Thearch.Optoas(OADD, xbase.Type), Mpgetfix(i.Val().U.(*Mpint))*w, &xbase) } else if Thearch.AddIndex != nil && Thearch.AddIndex(&i, w, &xbase) { // done by back end } else if w == 1 { gins(Thearch.Optoas(OADD, xbase.Type), &i, &xbase) } else { if i.Op == ONAME && !istemp(&i) { var tmp Node Tempname(&tmp, i.Type) Thearch.Gmove(&i, &tmp) i = tmp } ginscon(Thearch.Optoas(OMUL, i.Type), w, &i) gins(Thearch.Optoas(OADD, xbase.Type), &i, &xbase) } if p != nil { Patch(p, Pc) } } if i.Op == OREGISTER { Regfree(&i) } // Write len, cap, base to result. if res.Op == ONAME { Gvardef(res) } Igen(res, &x, nil) x.Xoffset += int64(Widthptr) x.Type = Types[TUINT] Thearch.Gmove(&j, &x) x.Xoffset -= int64(Widthptr) if k.Op != 0 { x.Xoffset += 2 * int64(Widthptr) Thearch.Gmove(&k, &x) x.Xoffset -= 2 * int64(Widthptr) } x.Type = xbase.Type cgen_wb(&xbase, &x, wb) Regfree(&xbase) Regfree(&x) } if j.Op == OREGISTER { Regfree(&j) } if k.Op == OREGISTER { Regfree(&k) } }