// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements string-to-Float conversion functions. package big import ( "fmt" "io" "strings" ) // SetString sets z to the value of s and returns z and a boolean indicating // success. s must be a floating-point number of the same format as accepted // by Parse, with base argument 0. func (z *Float) SetString(s string) (*Float, bool) { if f, _, err := z.Parse(s, 0); err == nil { return f, true } return nil, false } // scan is like Parse but reads the longest possible prefix representing a valid // floating point number from an io.ByteScanner rather than a string. It serves // as the implementation of Parse. It does not recognize ±Inf and does not expect // EOF at the end. func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) { prec := z.prec if prec == 0 { prec = 64 } // A reasonable value in case of an error. z.form = zero // sign z.neg, err = scanSign(r) if err != nil { return } // mantissa var fcount int // fractional digit count; valid if <= 0 z.mant, b, fcount, err = z.mant.scan(r, base, true) if err != nil { return } // exponent var exp int64 var ebase int exp, ebase, err = scanExponent(r, true) if err != nil { return } // special-case 0 if len(z.mant) == 0 { z.prec = prec z.acc = Exact z.form = zero f = z return } // len(z.mant) > 0 // The mantissa may have a decimal point (fcount <= 0) and there // may be a nonzero exponent exp. The decimal point amounts to a // division by b**(-fcount). An exponent means multiplication by // ebase**exp. Finally, mantissa normalization (shift left) requires // a correcting multiplication by 2**(-shiftcount). Multiplications // are commutative, so we can apply them in any order as long as there // is no loss of precision. We only have powers of 2 and 10; keep // track via separate exponents exp2 and exp10. // normalize mantissa and get initial binary exponent var exp2 = int64(len(z.mant))*_W - fnorm(z.mant) // determine binary or decimal exponent contribution of decimal point var exp10 int64 if fcount < 0 { // The mantissa has a "decimal" point ddd.dddd; and // -fcount is the number of digits to the right of '.'. // Adjust relevant exponent accodingly. switch b { case 16: fcount *= 4 // hexadecimal digits are 4 bits each fallthrough case 2: exp2 += int64(fcount) default: // b == 10 exp10 = int64(fcount) } // we don't need fcount anymore } // take actual exponent into account if ebase == 2 { exp2 += exp } else { // ebase == 10 exp10 += exp } // we don't need exp anymore // apply 2**exp2 if MinExp <= exp2 && exp2 <= MaxExp { z.prec = prec z.form = finite z.exp = int32(exp2) f = z } else { err = fmt.Errorf("exponent overflow") return } if exp10 == 0 { // no decimal exponent to consider z.round(0) return } // exp10 != 0 // apply 10**exp10 p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number? if exp10 < 0 { z.uquo(z, p.pow10(-exp10)) } else { z.umul(z, p.pow10(exp10)) } return } // These powers of 10 can be represented exactly as a float64. var pow10tab = [...]float64{ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, } // pow10 sets z to 10**n and returns z. // n must not be negative. func (z *Float) pow10(n int64) *Float { if n < 0 { panic("pow10 called with negative argument") } const m = int64(len(pow10tab) - 1) if n <= m { return z.SetFloat64(pow10tab[n]) } // n > m z.SetFloat64(pow10tab[m]) n -= m // use more bits for f than for z // TODO(gri) what is the right number? f := new(Float).SetPrec(z.Prec() + 64).SetInt64(10) for n > 0 { if n&1 != 0 { z.Mul(z, f) } f.Mul(f, f) n >>= 1 } return z } // Parse parses s which must contain a text representation of a floating- // point number with a mantissa in the given conversion base (the exponent // is always a decimal number), or a string representing an infinite value. // // It sets z to the (possibly rounded) value of the corresponding floating- // point value, and returns z, the actual base b, and an error err, if any. // If z's precision is 0, it is changed to 64 before rounding takes effect. // The number must be of the form: // // number = [ sign ] [ prefix ] mantissa [ exponent ] | infinity . // sign = "+" | "-" . // prefix = "0" ( "x" | "X" | "b" | "B" ) . // mantissa = digits | digits "." [ digits ] | "." digits . // exponent = ( "E" | "e" | "p" ) [ sign ] digits . // digits = digit { digit } . // digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . // infinity = [ sign ] ( "inf" | "Inf" ) . // // The base argument must be 0, 2, 10, or 16. Providing an invalid base // argument will lead to a run-time panic. // // For base 0, the number prefix determines the actual base: A prefix of // "0x" or "0X" selects base 16, and a "0b" or "0B" prefix selects // base 2; otherwise, the actual base is 10 and no prefix is accepted. // The octal prefix "0" is not supported (a leading "0" is simply // considered a "0"). // // A "p" exponent indicates a binary (rather then decimal) exponent; // for instance "0x1.fffffffffffffp1023" (using base 0) represents the // maximum float64 value. For hexadecimal mantissae, the exponent must // be binary, if present (an "e" or "E" exponent indicator cannot be // distinguished from a mantissa digit). // // The returned *Float f is nil and the value of z is valid but not // defined if an error is reported. // func (z *Float) Parse(s string, base int) (f *Float, b int, err error) { // scan doesn't handle ±Inf if len(s) == 3 && (s == "Inf" || s == "inf") { f = z.SetInf(false) return } if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") { f = z.SetInf(s[0] == '-') return } r := strings.NewReader(s) if f, b, err = z.scan(r, base); err != nil { return } // entire string must have been consumed if ch, err2 := r.ReadByte(); err2 == nil { err = fmt.Errorf("expected end of string, found %q", ch) } else if err2 != io.EOF { err = err2 } return } // ParseFloat is like f.Parse(s, base) with f set to the given precision // and rounding mode. func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) { return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base) }