// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package arm import ( "cmd/compile/internal/gc" "cmd/internal/obj" "cmd/internal/obj/arm" ) func defframe(ptxt *obj.Prog) { var n *gc.Node // fill in argument size, stack size ptxt.To.Type = obj.TYPE_TEXTSIZE ptxt.To.Val = int32(gc.Rnd(gc.Curfn.Type.Argwid, int64(gc.Widthptr))) frame := uint32(gc.Rnd(gc.Stksize+gc.Maxarg, int64(gc.Widthreg))) ptxt.To.Offset = int64(frame) // insert code to contain ambiguously live variables // so that garbage collector only sees initialized values // when it looks for pointers. p := ptxt hi := int64(0) lo := hi r0 := uint32(0) for l := gc.Curfn.Func.Dcl; l != nil; l = l.Next { n = l.N if !n.Name.Needzero { continue } if n.Class != gc.PAUTO { gc.Fatal("needzero class %d", n.Class) } if n.Type.Width%int64(gc.Widthptr) != 0 || n.Xoffset%int64(gc.Widthptr) != 0 || n.Type.Width == 0 { gc.Fatal("var %v has size %d offset %d", gc.Nconv(n, obj.FmtLong), int(n.Type.Width), int(n.Xoffset)) } if lo != hi && n.Xoffset+n.Type.Width >= lo-int64(2*gc.Widthptr) { // merge with range we already have lo = gc.Rnd(n.Xoffset, int64(gc.Widthptr)) continue } // zero old range p = zerorange(p, int64(frame), lo, hi, &r0) // set new range hi = n.Xoffset + n.Type.Width lo = n.Xoffset } // zero final range zerorange(p, int64(frame), lo, hi, &r0) } func zerorange(p *obj.Prog, frame int64, lo int64, hi int64, r0 *uint32) *obj.Prog { cnt := hi - lo if cnt == 0 { return p } if *r0 == 0 { p = appendpp(p, arm.AMOVW, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, arm.REG_R0, 0) *r0 = 1 } if cnt < int64(4*gc.Widthptr) { for i := int64(0); i < cnt; i += int64(gc.Widthptr) { p = appendpp(p, arm.AMOVW, obj.TYPE_REG, arm.REG_R0, 0, obj.TYPE_MEM, arm.REGSP, int32(4+frame+lo+i)) } } else if !gc.Nacl && (cnt <= int64(128*gc.Widthptr)) { p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(4+frame+lo), obj.TYPE_REG, arm.REG_R1, 0) p.Reg = arm.REGSP p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0) f := gc.Sysfunc("duffzero") gc.Naddr(&p.To, f) gc.Afunclit(&p.To, f) p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr)) } else { p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(4+frame+lo), obj.TYPE_REG, arm.REG_R1, 0) p.Reg = arm.REGSP p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(cnt), obj.TYPE_REG, arm.REG_R2, 0) p.Reg = arm.REG_R1 p = appendpp(p, arm.AMOVW, obj.TYPE_REG, arm.REG_R0, 0, obj.TYPE_MEM, arm.REG_R1, 4) p1 := p p.Scond |= arm.C_PBIT p = appendpp(p, arm.ACMP, obj.TYPE_REG, arm.REG_R1, 0, obj.TYPE_NONE, 0, 0) p.Reg = arm.REG_R2 p = appendpp(p, arm.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0) gc.Patch(p, p1) } return p } func appendpp(p *obj.Prog, as int, ftype int, freg int, foffset int32, ttype int, treg int, toffset int32) *obj.Prog { q := gc.Ctxt.NewProg() gc.Clearp(q) q.As = int16(as) q.Lineno = p.Lineno q.From.Type = int16(ftype) q.From.Reg = int16(freg) q.From.Offset = int64(foffset) q.To.Type = int16(ttype) q.To.Reg = int16(treg) q.To.Offset = int64(toffset) q.Link = p.Link p.Link = q return q } /* * generate high multiply * res = (nl * nr) >> wordsize */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } t := nl.Type w := int(t.Width * 8) var n1 gc.Node gc.Regalloc(&n1, t, res) gc.Cgen(nl, &n1) var n2 gc.Node gc.Regalloc(&n2, t, nil) gc.Cgen(nr, &n2) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16: gins(optoas(gc.OMUL, t), &n2, &n1) gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1) case gc.TUINT8, gc.TUINT16: gins(optoas(gc.OMUL, t), &n2, &n1) gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(w), &n1) // perform a long multiplication. case gc.TINT32, gc.TUINT32: var p *obj.Prog if gc.Issigned[t.Etype] { p = gins(arm.AMULL, &n2, nil) } else { p = gins(arm.AMULLU, &n2, nil) } // n2 * n1 -> (n1 n2) p.Reg = n1.Reg p.To.Type = obj.TYPE_REGREG p.To.Reg = n1.Reg p.To.Offset = int64(n2.Reg) default: gc.Fatal("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) } /* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Type.Width > 4 { gc.Fatal("cgen_shift %v", nl.Type) } w := int(nl.Type.Width * 8) if op == gc.OLROT { v := nr.Int() var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) if w == 32 { gc.Cgen(nl, &n1) gshift(arm.AMOVW, &n1, arm.SHIFT_RR, int32(w)-int32(v), &n1) } else { var n2 gc.Node gc.Regalloc(&n2, nl.Type, nil) gc.Cgen(nl, &n2) gshift(arm.AMOVW, &n2, arm.SHIFT_LL, int32(v), &n1) gshift(arm.AORR, &n2, arm.SHIFT_LR, int32(w)-int32(v), &n1) gc.Regfree(&n2) // Ensure sign/zero-extended result. gins(optoas(gc.OAS, nl.Type), &n1, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(nr.Int()) if sc == 0 { } else // nothing to do if sc >= uint64(nl.Type.Width*8) { if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1) } else { gins(arm.AEOR, &n1, &n1) } } else { if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(sc), &n1) } else if op == gc.ORSH { gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(sc), &n1) // OLSH } else { gshift(arm.AMOVW, &n1, arm.SHIFT_LL, int32(sc), &n1) } } if w < 32 && op == gc.OLSH { gins(optoas(gc.OAS, nl.Type), &n1, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } tr := nr.Type var t gc.Node var n1 gc.Node var n2 gc.Node var n3 gc.Node if tr.Width > 4 { var nt gc.Node gc.Tempname(&nt, nr.Type) if nl.Ullman >= nr.Ullman { gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) gc.Cgen(nr, &nt) n1 = nt } else { gc.Cgen(nr, &nt) gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) } var hi gc.Node var lo gc.Node split64(&nt, &lo, &hi) gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil) gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil) gmove(&lo, &n1) gmove(&hi, &n3) splitclean() gins(arm.ATST, &n3, nil) gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w)) p1 := gins(arm.AMOVW, &t, &n1) p1.Scond = arm.C_SCOND_NE tr = gc.Types[gc.TUINT32] gc.Regfree(&n3) } else { if nl.Ullman >= nr.Ullman { gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) gc.Regalloc(&n1, nr.Type, nil) gc.Cgen(nr, &n1) } else { gc.Regalloc(&n1, nr.Type, nil) gc.Cgen(nr, &n1) gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) } } // test for shift being 0 gins(arm.ATST, &n1, nil) p3 := gc.Gbranch(arm.ABEQ, nil, -1) // test and fix up large shifts // TODO: if(!bounded), don't emit some of this. gc.Regalloc(&n3, tr, nil) gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w)) gmove(&t, &n3) gins(arm.ACMP, &n1, &n3) if op == gc.ORSH { var p1 *obj.Prog var p2 *obj.Prog if gc.Issigned[nl.Type.Etype] { p1 = gshift(arm.AMOVW, &n2, arm.SHIFT_AR, int32(w)-1, &n2) p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_AR, &n1, &n2) } else { p1 = gins(arm.AEOR, &n2, &n2) p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_LR, &n1, &n2) } p1.Scond = arm.C_SCOND_HS p2.Scond = arm.C_SCOND_LO } else { p1 := gins(arm.AEOR, &n2, &n2) p2 := gregshift(arm.AMOVW, &n2, arm.SHIFT_LL, &n1, &n2) p1.Scond = arm.C_SCOND_HS p2.Scond = arm.C_SCOND_LO } gc.Regfree(&n3) gc.Patch(p3, gc.Pc) // Left-shift of smaller word must be sign/zero-extended. if w < 32 && op == gc.OLSH { gins(optoas(gc.OAS, nl.Type), &n2, &n2) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) } func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { gc.Dump("\nclearfat", nl) } w := uint32(nl.Type.Width) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := w % 4 // bytes q := w / 4 // quads var r0 gc.Node r0.Op = gc.OREGISTER r0.Reg = arm.REG_R0 var r1 gc.Node r1.Op = gc.OREGISTER r1.Reg = arm.REG_R1 var dst gc.Node gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1) gc.Agen(nl, &dst) var nc gc.Node gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0) var nz gc.Node gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0) gc.Cgen(&nc, &nz) if q > 128 { var end gc.Node gc.Regalloc(&end, gc.Types[gc.Tptr], nil) p := gins(arm.AMOVW, &dst, &end) p.From.Type = obj.TYPE_ADDR p.From.Offset = int64(q) * 4 p = gins(arm.AMOVW, &nz, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 4 p.Scond |= arm.C_PBIT pl := p p = gins(arm.ACMP, &dst, nil) raddr(&end, p) gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl) gc.Regfree(&end) } else if q >= 4 && !gc.Nacl { f := gc.Sysfunc("duffzero") p := gins(obj.ADUFFZERO, nil, f) gc.Afunclit(&p.To, f) // 4 and 128 = magic constants: see ../../runtime/asm_arm.s p.To.Offset = 4 * (128 - int64(q)) } else { var p *obj.Prog for q > 0 { p = gins(arm.AMOVW, &nz, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 4 p.Scond |= arm.C_PBIT //print("1. %v\n", p); q-- } } var p *obj.Prog for c > 0 { p = gins(arm.AMOVB, &nz, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 1 p.Scond |= arm.C_PBIT //print("2. %v\n", p); c-- } gc.Regfree(&dst) gc.Regfree(&nz) } // Called after regopt and peep have run. // Expand CHECKNIL pseudo-op into actual nil pointer check. func expandchecks(firstp *obj.Prog) { var reg int var p1 *obj.Prog for p := firstp; p != nil; p = p.Link { if p.As != obj.ACHECKNIL { continue } if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers gc.Warnl(int(p.Lineno), "generated nil check") } if p.From.Type != obj.TYPE_REG { gc.Fatal("invalid nil check %v", p) } reg = int(p.From.Reg) // check is // CMP arg, $0 // MOV.EQ arg, 0(arg) p1 = gc.Ctxt.NewProg() gc.Clearp(p1) p1.Link = p.Link p.Link = p1 p1.Lineno = p.Lineno p1.Pc = 9999 p1.As = arm.AMOVW p1.From.Type = obj.TYPE_REG p1.From.Reg = int16(reg) p1.To.Type = obj.TYPE_MEM p1.To.Reg = int16(reg) p1.To.Offset = 0 p1.Scond = arm.C_SCOND_EQ p.As = arm.ACMP p.From.Type = obj.TYPE_CONST p.From.Reg = 0 p.From.Offset = 0 p.Reg = int16(reg) } } func ginsnop() { var r gc.Node gc.Nodreg(&r, gc.Types[gc.TINT], arm.REG_R0) p := gins(arm.AAND, &r, &r) p.Scond = arm.C_SCOND_EQ } /* * generate * as $c, n */ func ginscon(as int, c int64, n *gc.Node) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT32], c) var n2 gc.Node gc.Regalloc(&n2, gc.Types[gc.TINT32], nil) gmove(&n1, &n2) gins(as, &n2, n) gc.Regfree(&n2) } func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL { op = gc.Brrev(op) n1, n2 = n2, n1 } var r1, r2, g1, g2 gc.Node gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 { gins(arm.ACMP, &r1, n2) } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) gins(optoas(gc.OCMP, t), &r1, &r2) gc.Regfree(&g2) gc.Regfree(&r2) } gc.Regfree(&g1) gc.Regfree(&r1) return gc.Gbranch(optoas(op, t), nil, likely) } // addr += index*width if possible. func addindex(index *gc.Node, width int64, addr *gc.Node) bool { switch width { case 2: gshift(arm.AADD, index, arm.SHIFT_LL, 1, addr) return true case 4: gshift(arm.AADD, index, arm.SHIFT_LL, 2, addr) return true case 8: gshift(arm.AADD, index, arm.SHIFT_LL, 3, addr) return true } return false } // res = runtime.getg() func getg(res *gc.Node) { var n1 gc.Node gc.Nodreg(&n1, res.Type, arm.REGG) gmove(&n1, res) }