// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd netbsd openbsd package syscall import ( "runtime" "unsafe" ) type SysProcAttr struct { Chroot string // Chroot. Credential *Credential // Credential. Ptrace bool // Enable tracing. Setsid bool // Create session. Setpgid bool // Set process group ID to Pgid, or, if Pgid == 0, to new pid. Setctty bool // Set controlling terminal to fd Ctty Noctty bool // Detach fd 0 from controlling terminal Ctty int // Controlling TTY fd Foreground bool // Place child's process group in foreground. (Implies Setpgid. Uses Ctty as fd of controlling TTY) Pgid int // Child's process group ID if Setpgid. } // Implemented in runtime package. func runtime_BeforeFork() func runtime_AfterFork() // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. // If a dup or exec fails, write the errno error to pipe. // (Pipe is close-on-exec so if exec succeeds, it will be closed.) // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. // For the same reason compiler does not race instrument it. // The calls to RawSyscall are okay because they are assembly // functions that do not grow the stack. func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { // Declare all variables at top in case any // declarations require heap allocation (e.g., err1). var ( r1, r2 uintptr err1 Errno nextfd int i int ) // guard against side effects of shuffling fds below. // Make sure that nextfd is beyond any currently open files so // that we can't run the risk of overwriting any of them. fd := make([]int, len(attr.Files)) nextfd = len(attr.Files) for i, ufd := range attr.Files { if nextfd < int(ufd) { nextfd = int(ufd) } fd[i] = int(ufd) } nextfd++ darwin := runtime.GOOS == "darwin" // About to call fork. // No more allocation or calls of non-assembly functions. runtime_BeforeFork() r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0) if err1 != 0 { runtime_AfterFork() return 0, err1 } // On Darwin: // r1 = child pid in both parent and child. // r2 = 0 in parent, 1 in child. // Convert to normal Unix r1 = 0 in child. if darwin && r2 == 1 { r1 = 0 } if r1 != 0 { // parent; return PID runtime_AfterFork() return int(r1), 0 } // Fork succeeded, now in child. // Enable tracing if requested. if sys.Ptrace { _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0) if err1 != 0 { goto childerror } } // Session ID if sys.Setsid { _, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0) if err1 != 0 { goto childerror } } // Set process group if sys.Setpgid || sys.Foreground { // Place child in process group. _, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0) if err1 != 0 { goto childerror } } if sys.Foreground { pgrp := sys.Pgid if pgrp == 0 { r1, _, err1 = RawSyscall(SYS_GETPID, 0, 0, 0) if err1 != 0 { goto childerror } pgrp = int(r1) } // Place process group in foreground. _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp))) if err1 != 0 { goto childerror } } // Chroot if chroot != nil { _, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0) if err1 != 0 { goto childerror } } // User and groups if cred := sys.Credential; cred != nil { ngroups := uintptr(len(cred.Groups)) groups := uintptr(0) if ngroups > 0 { groups = uintptr(unsafe.Pointer(&cred.Groups[0])) } _, _, err1 = RawSyscall(SYS_SETGROUPS, ngroups, groups, 0) if err1 != 0 { goto childerror } _, _, err1 = RawSyscall(SYS_SETGID, uintptr(cred.Gid), 0, 0) if err1 != 0 { goto childerror } _, _, err1 = RawSyscall(SYS_SETUID, uintptr(cred.Uid), 0, 0) if err1 != 0 { goto childerror } } // Chdir if dir != nil { _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0) if err1 != 0 { goto childerror } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. if pipe < nextfd { _, _, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0) if err1 != 0 { goto childerror } RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC) pipe = nextfd nextfd++ } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < int(i) { _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0) if err1 != 0 { goto childerror } RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC) fd[i] = nextfd nextfd++ if nextfd == pipe { // don't stomp on pipe nextfd++ } } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) continue } if fd[i] == int(i) { // dup2(i, i) won't clear close-on-exec flag on Linux, // probably not elsewhere either. _, _, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0) if err1 != 0 { goto childerror } continue } // The new fd is created NOT close-on-exec, // which is exactly what we want. _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0) if err1 != 0 { goto childerror } } // By convention, we don't close-on-exec the fds we are // started with, so if len(fd) < 3, close 0, 1, 2 as needed. // Programs that know they inherit fds >= 3 will need // to set them close-on-exec. for i = len(fd); i < 3; i++ { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) } // Detach fd 0 from tty if sys.Noctty { _, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0) if err1 != 0 { goto childerror } } // Set the controlling TTY to Ctty if sys.Setctty { _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 0) if err1 != 0 { goto childerror } } // Time to exec. _, _, err1 = RawSyscall(SYS_EXECVE, uintptr(unsafe.Pointer(argv0)), uintptr(unsafe.Pointer(&argv[0])), uintptr(unsafe.Pointer(&envv[0]))) childerror: // send error code on pipe RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)) for { RawSyscall(SYS_EXIT, 253, 0, 0) } } // Try to open a pipe with O_CLOEXEC set on both file descriptors. func forkExecPipe(p []int) error { err := Pipe(p) if err != nil { return err } _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC) if err != nil { return err } _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC) return err }