/* //device/libs/telephony/ril.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "RILC" #include <hardware_legacy/power.h> #include <telephony/ril.h> #include <telephony/ril_cdma_sms.h> #include <cutils/sockets.h> #include <cutils/jstring.h> #include <telephony/record_stream.h> #include <utils/Log.h> #include <utils/SystemClock.h> #include <pthread.h> #include <binder/Parcel.h> #include <cutils/jstring.h> #include <sys/types.h> #include <sys/limits.h> #include <sys/system_properties.h> #include <pwd.h> #include <stdio.h> #include <stdlib.h> #include <stdarg.h> #include <string.h> #include <unistd.h> #include <fcntl.h> #include <time.h> #include <errno.h> #include <assert.h> #include <ctype.h> #include <sys/un.h> #include <assert.h> #include <netinet/in.h> #include <cutils/properties.h> #include <RilSapSocket.h> extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen); extern "C" void RIL_onRequestAck(RIL_Token t); namespace android { #define PHONE_PROCESS "radio" #define BLUETOOTH_PROCESS "bluetooth" #define SOCKET_NAME_RIL "rild" #define SOCKET2_NAME_RIL "rild2" #define SOCKET3_NAME_RIL "rild3" #define SOCKET4_NAME_RIL "rild4" #define SOCKET_NAME_RIL_DEBUG "rild-debug" #define ANDROID_WAKE_LOCK_NAME "radio-interface" #define ANDROID_WAKE_LOCK_SECS 0 #define ANDROID_WAKE_LOCK_USECS 200000 #define PROPERTY_RIL_IMPL "gsm.version.ril-impl" // match with constant in RIL.java #define MAX_COMMAND_BYTES (8 * 1024) // Basically: memset buffers that the client library // shouldn't be using anymore in an attempt to find // memory usage issues sooner. #define MEMSET_FREED 1 #define NUM_ELEMS(a) (sizeof (a) / sizeof (a)[0]) #define MIN(a,b) ((a)<(b) ? (a) : (b)) /* Constants for response types */ #define RESPONSE_SOLICITED 0 #define RESPONSE_UNSOLICITED 1 #define RESPONSE_SOLICITED_ACK 2 #define RESPONSE_SOLICITED_ACK_EXP 3 #define RESPONSE_UNSOLICITED_ACK_EXP 4 /* Negative values for private RIL errno's */ #define RIL_ERRNO_INVALID_RESPONSE -1 #define RIL_ERRNO_NO_MEMORY -12 // request, response, and unsolicited msg print macro #define PRINTBUF_SIZE 8096 // Enable verbose logging #define VDBG 0 // Enable RILC log #define RILC_LOG 0 #if RILC_LOG #define startRequest sprintf(printBuf, "(") #define closeRequest sprintf(printBuf, "%s)", printBuf) #define printRequest(token, req) \ RLOGD("[%04d]> %s %s", token, requestToString(req), printBuf) #define startResponse sprintf(printBuf, "%s {", printBuf) #define closeResponse sprintf(printBuf, "%s}", printBuf) #define printResponse RLOGD("%s", printBuf) #define clearPrintBuf printBuf[0] = 0 #define removeLastChar printBuf[strlen(printBuf)-1] = 0 #define appendPrintBuf(x...) snprintf(printBuf, PRINTBUF_SIZE, x) #else #define startRequest #define closeRequest #define printRequest(token, req) #define startResponse #define closeResponse #define printResponse #define clearPrintBuf #define removeLastChar #define appendPrintBuf(x...) #endif enum WakeType {DONT_WAKE, WAKE_PARTIAL}; typedef struct { int requestNumber; void (*dispatchFunction) (Parcel &p, struct RequestInfo *pRI); int(*responseFunction) (Parcel &p, void *response, size_t responselen); } CommandInfo; typedef struct { int requestNumber; int (*responseFunction) (Parcel &p, void *response, size_t responselen); WakeType wakeType; } UnsolResponseInfo; typedef struct RequestInfo { int32_t token; //this is not RIL_Token CommandInfo *pCI; struct RequestInfo *p_next; char cancelled; char local; // responses to local commands do not go back to command process RIL_SOCKET_ID socket_id; int wasAckSent; // Indicates whether an ack was sent earlier } RequestInfo; typedef struct UserCallbackInfo { RIL_TimedCallback p_callback; void *userParam; struct ril_event event; struct UserCallbackInfo *p_next; } UserCallbackInfo; extern "C" const char * requestToString(int request); extern "C" const char * failCauseToString(RIL_Errno); extern "C" const char * callStateToString(RIL_CallState); extern "C" const char * radioStateToString(RIL_RadioState); extern "C" const char * rilSocketIdToString(RIL_SOCKET_ID socket_id); extern "C" char rild[MAX_SOCKET_NAME_LENGTH] = SOCKET_NAME_RIL; /*******************************************************************/ RIL_RadioFunctions s_callbacks = {0, NULL, NULL, NULL, NULL, NULL}; static int s_registerCalled = 0; static pthread_t s_tid_dispatch; static pthread_t s_tid_reader; static int s_started = 0; static int s_fdDebug = -1; static int s_fdDebug_socket2 = -1; static int s_fdWakeupRead; static int s_fdWakeupWrite; int s_wakelock_count = 0; static struct ril_event s_commands_event; static struct ril_event s_wakeupfd_event; static struct ril_event s_listen_event; static SocketListenParam s_ril_param_socket; static pthread_mutex_t s_pendingRequestsMutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t s_writeMutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t s_wakeLockCountMutex = PTHREAD_MUTEX_INITIALIZER; static RequestInfo *s_pendingRequests = NULL; #if (SIM_COUNT >= 2) static struct ril_event s_commands_event_socket2; static struct ril_event s_listen_event_socket2; static SocketListenParam s_ril_param_socket2; static pthread_mutex_t s_pendingRequestsMutex_socket2 = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t s_writeMutex_socket2 = PTHREAD_MUTEX_INITIALIZER; static RequestInfo *s_pendingRequests_socket2 = NULL; #endif #if (SIM_COUNT >= 3) static struct ril_event s_commands_event_socket3; static struct ril_event s_listen_event_socket3; static SocketListenParam s_ril_param_socket3; static pthread_mutex_t s_pendingRequestsMutex_socket3 = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t s_writeMutex_socket3 = PTHREAD_MUTEX_INITIALIZER; static RequestInfo *s_pendingRequests_socket3 = NULL; #endif #if (SIM_COUNT >= 4) static struct ril_event s_commands_event_socket4; static struct ril_event s_listen_event_socket4; static SocketListenParam s_ril_param_socket4; static pthread_mutex_t s_pendingRequestsMutex_socket4 = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t s_writeMutex_socket4 = PTHREAD_MUTEX_INITIALIZER; static RequestInfo *s_pendingRequests_socket4 = NULL; #endif static struct ril_event s_wake_timeout_event; static struct ril_event s_debug_event; static const struct timeval TIMEVAL_WAKE_TIMEOUT = {ANDROID_WAKE_LOCK_SECS,ANDROID_WAKE_LOCK_USECS}; static pthread_mutex_t s_startupMutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t s_startupCond = PTHREAD_COND_INITIALIZER; static pthread_mutex_t s_dispatchMutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t s_dispatchCond = PTHREAD_COND_INITIALIZER; static RequestInfo *s_toDispatchHead = NULL; static RequestInfo *s_toDispatchTail = NULL; static UserCallbackInfo *s_last_wake_timeout_info = NULL; static void *s_lastNITZTimeData = NULL; static size_t s_lastNITZTimeDataSize; #if RILC_LOG static char printBuf[PRINTBUF_SIZE]; #endif /*******************************************************************/ static int sendResponse (Parcel &p, RIL_SOCKET_ID socket_id); static void dispatchVoid (Parcel& p, RequestInfo *pRI); static void dispatchString (Parcel& p, RequestInfo *pRI); static void dispatchStrings (Parcel& p, RequestInfo *pRI); static void dispatchInts (Parcel& p, RequestInfo *pRI); static void dispatchDial (Parcel& p, RequestInfo *pRI); static void dispatchSIM_IO (Parcel& p, RequestInfo *pRI); static void dispatchSIM_APDU (Parcel& p, RequestInfo *pRI); static void dispatchCallForward(Parcel& p, RequestInfo *pRI); static void dispatchRaw(Parcel& p, RequestInfo *pRI); static void dispatchSmsWrite (Parcel &p, RequestInfo *pRI); static void dispatchDataCall (Parcel& p, RequestInfo *pRI); static void dispatchVoiceRadioTech (Parcel& p, RequestInfo *pRI); static void dispatchSetInitialAttachApn (Parcel& p, RequestInfo *pRI); static void dispatchCdmaSubscriptionSource (Parcel& p, RequestInfo *pRI); static void dispatchCdmaSms(Parcel &p, RequestInfo *pRI); static void dispatchImsSms(Parcel &p, RequestInfo *pRI); static void dispatchImsCdmaSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef); static void dispatchImsGsmSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef); static void dispatchCdmaSmsAck(Parcel &p, RequestInfo *pRI); static void dispatchGsmBrSmsCnf(Parcel &p, RequestInfo *pRI); static void dispatchCdmaBrSmsCnf(Parcel &p, RequestInfo *pRI); static void dispatchRilCdmaSmsWriteArgs(Parcel &p, RequestInfo *pRI); static void dispatchNVReadItem(Parcel &p, RequestInfo *pRI); static void dispatchNVWriteItem(Parcel &p, RequestInfo *pRI); static void dispatchUiccSubscripton(Parcel &p, RequestInfo *pRI); static void dispatchSimAuthentication(Parcel &p, RequestInfo *pRI); static void dispatchDataProfile(Parcel &p, RequestInfo *pRI); static void dispatchRadioCapability(Parcel &p, RequestInfo *pRI); static int responseInts(Parcel &p, void *response, size_t responselen); static int responseFailCause(Parcel &p, void *response, size_t responselen); static int responseStrings(Parcel &p, void *response, size_t responselen); static int responseString(Parcel &p, void *response, size_t responselen); static int responseVoid(Parcel &p, void *response, size_t responselen); static int responseCallList(Parcel &p, void *response, size_t responselen); static int responseSMS(Parcel &p, void *response, size_t responselen); static int responseSIM_IO(Parcel &p, void *response, size_t responselen); static int responseCallForwards(Parcel &p, void *response, size_t responselen); static int responseDataCallList(Parcel &p, void *response, size_t responselen); static int responseSetupDataCall(Parcel &p, void *response, size_t responselen); static int responseRaw(Parcel &p, void *response, size_t responselen); static int responseSsn(Parcel &p, void *response, size_t responselen); static int responseSimStatus(Parcel &p, void *response, size_t responselen); static int responseGsmBrSmsCnf(Parcel &p, void *response, size_t responselen); static int responseCdmaBrSmsCnf(Parcel &p, void *response, size_t responselen); static int responseCdmaSms(Parcel &p, void *response, size_t responselen); static int responseCellList(Parcel &p, void *response, size_t responselen); static int responseCdmaInformationRecords(Parcel &p,void *response, size_t responselen); static int responseRilSignalStrength(Parcel &p,void *response, size_t responselen); static int responseCallRing(Parcel &p, void *response, size_t responselen); static int responseCdmaSignalInfoRecord(Parcel &p,void *response, size_t responselen); static int responseCdmaCallWaiting(Parcel &p,void *response, size_t responselen); static int responseSimRefresh(Parcel &p, void *response, size_t responselen); static int responseCellInfoList(Parcel &p, void *response, size_t responselen); static int responseHardwareConfig(Parcel &p, void *response, size_t responselen); static int responseDcRtInfo(Parcel &p, void *response, size_t responselen); static int responseRadioCapability(Parcel &p, void *response, size_t responselen); static int responseSSData(Parcel &p, void *response, size_t responselen); static int responseLceStatus(Parcel &p, void *response, size_t responselen); static int responseLceData(Parcel &p, void *response, size_t responselen); static int responseActivityData(Parcel &p, void *response, size_t responselen); static int decodeVoiceRadioTechnology (RIL_RadioState radioState); static int decodeCdmaSubscriptionSource (RIL_RadioState radioState); static RIL_RadioState processRadioState(RIL_RadioState newRadioState); static void grabPartialWakeLock(); static void releaseWakeLock(); static void wakeTimeoutCallback(void *); static bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType); static bool isDebuggable(); #ifdef RIL_SHLIB #if defined(ANDROID_MULTI_SIM) extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data, size_t datalen, RIL_SOCKET_ID socket_id); #else extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data, size_t datalen); #endif #endif #if defined(ANDROID_MULTI_SIM) #define RIL_UNSOL_RESPONSE(a, b, c, d) RIL_onUnsolicitedResponse((a), (b), (c), (d)) #define CALL_ONREQUEST(a, b, c, d, e) s_callbacks.onRequest((a), (b), (c), (d), (e)) #define CALL_ONSTATEREQUEST(a) s_callbacks.onStateRequest(a) #else #define RIL_UNSOL_RESPONSE(a, b, c, d) RIL_onUnsolicitedResponse((a), (b), (c)) #define CALL_ONREQUEST(a, b, c, d, e) s_callbacks.onRequest((a), (b), (c), (d)) #define CALL_ONSTATEREQUEST(a) s_callbacks.onStateRequest() #endif static UserCallbackInfo * internalRequestTimedCallback (RIL_TimedCallback callback, void *param, const struct timeval *relativeTime); /** Index == requestNumber */ static CommandInfo s_commands[] = { #include "ril_commands.h" }; static UnsolResponseInfo s_unsolResponses[] = { #include "ril_unsol_commands.h" }; /* For older RILs that do not support new commands RIL_REQUEST_VOICE_RADIO_TECH and RIL_UNSOL_VOICE_RADIO_TECH_CHANGED messages, decode the voice radio tech from radio state message and store it. Every time there is a change in Radio State check to see if voice radio tech changes and notify telephony */ int voiceRadioTech = -1; /* For older RILs that do not support new commands RIL_REQUEST_GET_CDMA_SUBSCRIPTION_SOURCE and RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED messages, decode the subscription source from radio state and store it. Every time there is a change in Radio State check to see if subscription source changed and notify telephony */ int cdmaSubscriptionSource = -1; /* For older RILs that do not send RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, decode the SIM/RUIM state from radio state and store it. Every time there is a change in Radio State, check to see if SIM/RUIM status changed and notify telephony */ int simRuimStatus = -1; static char * RIL_getRilSocketName() { return rild; } extern "C" void RIL_setRilSocketName(const char * s) { strncpy(rild, s, MAX_SOCKET_NAME_LENGTH); } static char * strdupReadString(Parcel &p) { size_t stringlen; const char16_t *s16; s16 = p.readString16Inplace(&stringlen); return strndup16to8(s16, stringlen); } static status_t readStringFromParcelInplace(Parcel &p, char *str, size_t maxLen) { size_t s16Len; const char16_t *s16; s16 = p.readString16Inplace(&s16Len); if (s16 == NULL) { return NO_MEMORY; } size_t strLen = strnlen16to8(s16, s16Len); if ((strLen + 1) > maxLen) { return NO_MEMORY; } if (strncpy16to8(str, s16, strLen) == NULL) { return NO_MEMORY; } else { return NO_ERROR; } } static void writeStringToParcel(Parcel &p, const char *s) { char16_t *s16; size_t s16_len; s16 = strdup8to16(s, &s16_len); p.writeString16(s16, s16_len); free(s16); } static void memsetString (char *s) { if (s != NULL) { memset (s, 0, strlen(s)); } } void nullParcelReleaseFunction (const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsSize, void* cookie) { // do nothing -- the data reference lives longer than the Parcel object } /** * To be called from dispatch thread * Issue a single local request, ensuring that the response * is not sent back up to the command process */ static void issueLocalRequest(int request, void *data, int len, RIL_SOCKET_ID socket_id) { RequestInfo *pRI; int ret; /* Hook for current context */ /* pendingRequestsMutextHook refer to &s_pendingRequestsMutex */ pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex; /* pendingRequestsHook refer to &s_pendingRequests */ RequestInfo** pendingRequestsHook = &s_pendingRequests; #if (SIM_COUNT == 2) if (socket_id == RIL_SOCKET_2) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2; pendingRequestsHook = &s_pendingRequests_socket2; } #endif pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo)); if (pRI == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(request)); return; } pRI->local = 1; pRI->token = 0xffffffff; // token is not used in this context pRI->pCI = &(s_commands[request]); pRI->socket_id = socket_id; ret = pthread_mutex_lock(pendingRequestsMutexHook); assert (ret == 0); pRI->p_next = *pendingRequestsHook; *pendingRequestsHook = pRI; ret = pthread_mutex_unlock(pendingRequestsMutexHook); assert (ret == 0); RLOGD("C[locl]> %s", requestToString(request)); CALL_ONREQUEST(request, data, len, pRI, pRI->socket_id); } static int processCommandBuffer(void *buffer, size_t buflen, RIL_SOCKET_ID socket_id) { Parcel p; status_t status; int32_t request; int32_t token; RequestInfo *pRI; int ret; /* Hook for current context */ /* pendingRequestsMutextHook refer to &s_pendingRequestsMutex */ pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex; /* pendingRequestsHook refer to &s_pendingRequests */ RequestInfo** pendingRequestsHook = &s_pendingRequests; p.setData((uint8_t *) buffer, buflen); // status checked at end status = p.readInt32(&request); status = p.readInt32 (&token); #if (SIM_COUNT >= 2) if (socket_id == RIL_SOCKET_2) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2; pendingRequestsHook = &s_pendingRequests_socket2; } #if (SIM_COUNT >= 3) else if (socket_id == RIL_SOCKET_3) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3; pendingRequestsHook = &s_pendingRequests_socket3; } #endif #if (SIM_COUNT >= 4) else if (socket_id == RIL_SOCKET_4) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4; pendingRequestsHook = &s_pendingRequests_socket4; } #endif #endif if (status != NO_ERROR) { RLOGE("invalid request block"); return 0; } // Received an Ack for the previous result sent to RIL.java, // so release wakelock and exit if (request == RIL_RESPONSE_ACKNOWLEDGEMENT) { releaseWakeLock(); return 0; } if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) { Parcel pErr; RLOGE("unsupported request code %d token %d", request, token); // FIXME this should perhaps return a response pErr.writeInt32 (RESPONSE_SOLICITED); pErr.writeInt32 (token); pErr.writeInt32 (RIL_E_GENERIC_FAILURE); sendResponse(pErr, socket_id); return 0; } pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo)); if (pRI == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(request)); return 0; } pRI->token = token; pRI->pCI = &(s_commands[request]); pRI->socket_id = socket_id; ret = pthread_mutex_lock(pendingRequestsMutexHook); assert (ret == 0); pRI->p_next = *pendingRequestsHook; *pendingRequestsHook = pRI; ret = pthread_mutex_unlock(pendingRequestsMutexHook); assert (ret == 0); /* sLastDispatchedToken = token; */ pRI->pCI->dispatchFunction(p, pRI); return 0; } static void invalidCommandBlock (RequestInfo *pRI) { RLOGE("invalid command block for token %d request %s", pRI->token, requestToString(pRI->pCI->requestNumber)); } /** Callee expects NULL */ static void dispatchVoid (Parcel& p, RequestInfo *pRI) { clearPrintBuf; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, NULL, 0, pRI, pRI->socket_id); } /** Callee expects const char * */ static void dispatchString (Parcel& p, RequestInfo *pRI) { status_t status; size_t datalen; size_t stringlen; char *string8 = NULL; string8 = strdupReadString(p); startRequest; appendPrintBuf("%s%s", printBuf, string8); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, string8, sizeof(char *), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString(string8); #endif free(string8); return; invalid: invalidCommandBlock(pRI); return; } /** Callee expects const char ** */ static void dispatchStrings (Parcel &p, RequestInfo *pRI) { int32_t countStrings; status_t status; size_t datalen; char **pStrings; status = p.readInt32 (&countStrings); if (status != NO_ERROR) { goto invalid; } startRequest; if (countStrings == 0) { // just some non-null pointer pStrings = (char **)calloc(1, sizeof(char *)); if (pStrings == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); closeRequest; return; } datalen = 0; } else if (countStrings < 0) { pStrings = NULL; datalen = 0; } else { datalen = sizeof(char *) * countStrings; pStrings = (char **)calloc(countStrings, sizeof(char *)); if (pStrings == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); closeRequest; return; } for (int i = 0 ; i < countStrings ; i++) { pStrings[i] = strdupReadString(p); appendPrintBuf("%s%s,", printBuf, pStrings[i]); } } removeLastChar; closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, pStrings, datalen, pRI, pRI->socket_id); if (pStrings != NULL) { for (int i = 0 ; i < countStrings ; i++) { #ifdef MEMSET_FREED memsetString (pStrings[i]); #endif free(pStrings[i]); } #ifdef MEMSET_FREED memset(pStrings, 0, datalen); #endif free(pStrings); } return; invalid: invalidCommandBlock(pRI); return; } /** Callee expects const int * */ static void dispatchInts (Parcel &p, RequestInfo *pRI) { int32_t count; status_t status; size_t datalen; int *pInts; status = p.readInt32 (&count); if (status != NO_ERROR || count <= 0) { goto invalid; } datalen = sizeof(int) * count; pInts = (int *)calloc(count, sizeof(int)); if (pInts == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); return; } startRequest; for (int i = 0 ; i < count ; i++) { int32_t t; status = p.readInt32(&t); pInts[i] = (int)t; appendPrintBuf("%s%d,", printBuf, t); if (status != NO_ERROR) { free(pInts); goto invalid; } } removeLastChar; closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, const_cast<int *>(pInts), datalen, pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(pInts, 0, datalen); #endif free(pInts); return; invalid: invalidCommandBlock(pRI); return; } /** * Callee expects const RIL_SMS_WriteArgs * * Payload is: * int32_t status * String pdu */ static void dispatchSmsWrite (Parcel &p, RequestInfo *pRI) { RIL_SMS_WriteArgs args; int32_t t; status_t status; RLOGD("dispatchSmsWrite"); memset (&args, 0, sizeof(args)); status = p.readInt32(&t); args.status = (int)t; args.pdu = strdupReadString(p); if (status != NO_ERROR || args.pdu == NULL) { goto invalid; } args.smsc = strdupReadString(p); startRequest; appendPrintBuf("%s%d,%s,smsc=%s", printBuf, args.status, (char*)args.pdu, (char*)args.smsc); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString (args.pdu); #endif free (args.pdu); #ifdef MEMSET_FREED memset(&args, 0, sizeof(args)); #endif return; invalid: invalidCommandBlock(pRI); return; } /** * Callee expects const RIL_Dial * * Payload is: * String address * int32_t clir */ static void dispatchDial (Parcel &p, RequestInfo *pRI) { RIL_Dial dial; RIL_UUS_Info uusInfo; int32_t sizeOfDial; int32_t t; int32_t uusPresent; status_t status; RLOGD("dispatchDial"); memset (&dial, 0, sizeof(dial)); dial.address = strdupReadString(p); status = p.readInt32(&t); dial.clir = (int)t; if (status != NO_ERROR || dial.address == NULL) { goto invalid; } if (s_callbacks.version < 3) { // Remove when partners upgrade to version 3 uusPresent = 0; sizeOfDial = sizeof(dial) - sizeof(RIL_UUS_Info *); } else { status = p.readInt32(&uusPresent); if (status != NO_ERROR) { goto invalid; } if (uusPresent == 0) { dial.uusInfo = NULL; } else { int32_t len; memset(&uusInfo, 0, sizeof(RIL_UUS_Info)); status = p.readInt32(&t); uusInfo.uusType = (RIL_UUS_Type) t; status = p.readInt32(&t); uusInfo.uusDcs = (RIL_UUS_DCS) t; status = p.readInt32(&len); if (status != NO_ERROR) { goto invalid; } // The java code writes -1 for null arrays if (((int) len) == -1) { uusInfo.uusData = NULL; len = 0; } else { uusInfo.uusData = (char*) p.readInplace(len); } uusInfo.uusLength = len; dial.uusInfo = &uusInfo; } sizeOfDial = sizeof(dial); } startRequest; appendPrintBuf("%snum=%s,clir=%d", printBuf, dial.address, dial.clir); if (uusPresent) { appendPrintBuf("%s,uusType=%d,uusDcs=%d,uusLen=%d", printBuf, dial.uusInfo->uusType, dial.uusInfo->uusDcs, dial.uusInfo->uusLength); } closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString (dial.address); #endif free (dial.address); #ifdef MEMSET_FREED memset(&uusInfo, 0, sizeof(RIL_UUS_Info)); memset(&dial, 0, sizeof(dial)); #endif return; invalid: invalidCommandBlock(pRI); return; } /** * Callee expects const RIL_SIM_IO * * Payload is: * int32_t command * int32_t fileid * String path * int32_t p1, p2, p3 * String data * String pin2 * String aidPtr */ static void dispatchSIM_IO (Parcel &p, RequestInfo *pRI) { union RIL_SIM_IO { RIL_SIM_IO_v6 v6; RIL_SIM_IO_v5 v5; } simIO; int32_t t; int size; status_t status; #if VDBG RLOGD("dispatchSIM_IO"); #endif memset (&simIO, 0, sizeof(simIO)); // note we only check status at the end status = p.readInt32(&t); simIO.v6.command = (int)t; status = p.readInt32(&t); simIO.v6.fileid = (int)t; simIO.v6.path = strdupReadString(p); status = p.readInt32(&t); simIO.v6.p1 = (int)t; status = p.readInt32(&t); simIO.v6.p2 = (int)t; status = p.readInt32(&t); simIO.v6.p3 = (int)t; simIO.v6.data = strdupReadString(p); simIO.v6.pin2 = strdupReadString(p); simIO.v6.aidPtr = strdupReadString(p); startRequest; appendPrintBuf("%scmd=0x%X,efid=0x%X,path=%s,%d,%d,%d,%s,pin2=%s,aid=%s", printBuf, simIO.v6.command, simIO.v6.fileid, (char*)simIO.v6.path, simIO.v6.p1, simIO.v6.p2, simIO.v6.p3, (char*)simIO.v6.data, (char*)simIO.v6.pin2, simIO.v6.aidPtr); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); if (status != NO_ERROR) { goto invalid; } size = (s_callbacks.version < 6) ? sizeof(simIO.v5) : sizeof(simIO.v6); CALL_ONREQUEST(pRI->pCI->requestNumber, &simIO, size, pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString (simIO.v6.path); memsetString (simIO.v6.data); memsetString (simIO.v6.pin2); memsetString (simIO.v6.aidPtr); #endif free (simIO.v6.path); free (simIO.v6.data); free (simIO.v6.pin2); free (simIO.v6.aidPtr); #ifdef MEMSET_FREED memset(&simIO, 0, sizeof(simIO)); #endif return; invalid: invalidCommandBlock(pRI); return; } /** * Callee expects const RIL_SIM_APDU * * Payload is: * int32_t sessionid * int32_t cla * int32_t instruction * int32_t p1, p2, p3 * String data */ static void dispatchSIM_APDU (Parcel &p, RequestInfo *pRI) { int32_t t; status_t status; RIL_SIM_APDU apdu; #if VDBG RLOGD("dispatchSIM_APDU"); #endif memset (&apdu, 0, sizeof(RIL_SIM_APDU)); // Note we only check status at the end. Any single failure leads to // subsequent reads filing. status = p.readInt32(&t); apdu.sessionid = (int)t; status = p.readInt32(&t); apdu.cla = (int)t; status = p.readInt32(&t); apdu.instruction = (int)t; status = p.readInt32(&t); apdu.p1 = (int)t; status = p.readInt32(&t); apdu.p2 = (int)t; status = p.readInt32(&t); apdu.p3 = (int)t; apdu.data = strdupReadString(p); startRequest; appendPrintBuf("%ssessionid=%d,cla=%d,ins=%d,p1=%d,p2=%d,p3=%d,data=%s", printBuf, apdu.sessionid, apdu.cla, apdu.instruction, apdu.p1, apdu.p2, apdu.p3, (char*)apdu.data); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); if (status != NO_ERROR) { goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, &apdu, sizeof(RIL_SIM_APDU), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString(apdu.data); #endif free(apdu.data); #ifdef MEMSET_FREED memset(&apdu, 0, sizeof(RIL_SIM_APDU)); #endif return; invalid: invalidCommandBlock(pRI); return; } /** * Callee expects const RIL_CallForwardInfo * * Payload is: * int32_t status/action * int32_t reason * int32_t serviceCode * int32_t toa * String number (0 length -> null) * int32_t timeSeconds */ static void dispatchCallForward(Parcel &p, RequestInfo *pRI) { RIL_CallForwardInfo cff; int32_t t; status_t status; RLOGD("dispatchCallForward"); memset (&cff, 0, sizeof(cff)); // note we only check status at the end status = p.readInt32(&t); cff.status = (int)t; status = p.readInt32(&t); cff.reason = (int)t; status = p.readInt32(&t); cff.serviceClass = (int)t; status = p.readInt32(&t); cff.toa = (int)t; cff.number = strdupReadString(p); status = p.readInt32(&t); cff.timeSeconds = (int)t; if (status != NO_ERROR) { goto invalid; } // special case: number 0-length fields is null if (cff.number != NULL && strlen (cff.number) == 0) { cff.number = NULL; } startRequest; appendPrintBuf("%sstat=%d,reason=%d,serv=%d,toa=%d,%s,tout=%d", printBuf, cff.status, cff.reason, cff.serviceClass, cff.toa, (char*)cff.number, cff.timeSeconds); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &cff, sizeof(cff), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString(cff.number); #endif free (cff.number); #ifdef MEMSET_FREED memset(&cff, 0, sizeof(cff)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchRaw(Parcel &p, RequestInfo *pRI) { int32_t len; status_t status; const void *data; status = p.readInt32(&len); if (status != NO_ERROR) { goto invalid; } // The java code writes -1 for null arrays if (((int)len) == -1) { data = NULL; len = 0; } data = p.readInplace(len); startRequest; appendPrintBuf("%sraw_size=%d", printBuf, len); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, const_cast<void *>(data), len, pRI, pRI->socket_id); return; invalid: invalidCommandBlock(pRI); return; } static status_t constructCdmaSms(Parcel &p, RequestInfo *pRI, RIL_CDMA_SMS_Message& rcsm) { int32_t t; uint8_t ut; status_t status; int32_t digitCount; int digitLimit; memset(&rcsm, 0, sizeof(rcsm)); status = p.readInt32(&t); rcsm.uTeleserviceID = (int) t; status = p.read(&ut,sizeof(ut)); rcsm.bIsServicePresent = (uint8_t) ut; status = p.readInt32(&t); rcsm.uServicecategory = (int) t; status = p.readInt32(&t); rcsm.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) t; status = p.readInt32(&t); rcsm.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) t; status = p.readInt32(&t); rcsm.sAddress.number_type = (RIL_CDMA_SMS_NumberType) t; status = p.readInt32(&t); rcsm.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) t; status = p.read(&ut,sizeof(ut)); rcsm.sAddress.number_of_digits= (uint8_t) ut; digitLimit= MIN((rcsm.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX); for(digitCount =0 ; digitCount < digitLimit; digitCount ++) { status = p.read(&ut,sizeof(ut)); rcsm.sAddress.digits[digitCount] = (uint8_t) ut; } status = p.readInt32(&t); rcsm.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) t; status = p.read(&ut,sizeof(ut)); rcsm.sSubAddress.odd = (uint8_t) ut; status = p.read(&ut,sizeof(ut)); rcsm.sSubAddress.number_of_digits = (uint8_t) ut; digitLimit= MIN((rcsm.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX); for(digitCount =0 ; digitCount < digitLimit; digitCount ++) { status = p.read(&ut,sizeof(ut)); rcsm.sSubAddress.digits[digitCount] = (uint8_t) ut; } status = p.readInt32(&t); rcsm.uBearerDataLen = (int) t; digitLimit= MIN((rcsm.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX); for(digitCount =0 ; digitCount < digitLimit; digitCount ++) { status = p.read(&ut, sizeof(ut)); rcsm.aBearerData[digitCount] = (uint8_t) ut; } if (status != NO_ERROR) { return status; } startRequest; appendPrintBuf("%suTeleserviceID=%d, bIsServicePresent=%d, uServicecategory=%d, \ sAddress.digit_mode=%d, sAddress.Number_mode=%d, sAddress.number_type=%d, ", printBuf, rcsm.uTeleserviceID,rcsm.bIsServicePresent,rcsm.uServicecategory, rcsm.sAddress.digit_mode, rcsm.sAddress.number_mode,rcsm.sAddress.number_type); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); return status; } static void dispatchCdmaSms(Parcel &p, RequestInfo *pRI) { RIL_CDMA_SMS_Message rcsm; RLOGD("dispatchCdmaSms"); if (NO_ERROR != constructCdmaSms(p, pRI, rcsm)) { goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm),pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(&rcsm, 0, sizeof(rcsm)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchImsCdmaSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef) { RIL_IMS_SMS_Message rism; RIL_CDMA_SMS_Message rcsm; RLOGD("dispatchImsCdmaSms: retry=%d, messageRef=%d", retry, messageRef); if (NO_ERROR != constructCdmaSms(p, pRI, rcsm)) { goto invalid; } memset(&rism, 0, sizeof(rism)); rism.tech = RADIO_TECH_3GPP2; rism.retry = retry; rism.messageRef = messageRef; rism.message.cdmaMessage = &rcsm; CALL_ONREQUEST(pRI->pCI->requestNumber, &rism, sizeof(RIL_RadioTechnologyFamily)+sizeof(uint8_t)+sizeof(int32_t) +sizeof(rcsm),pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(&rcsm, 0, sizeof(rcsm)); memset(&rism, 0, sizeof(rism)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchImsGsmSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef) { RIL_IMS_SMS_Message rism; int32_t countStrings; status_t status; size_t datalen; char **pStrings; RLOGD("dispatchImsGsmSms: retry=%d, messageRef=%d", retry, messageRef); status = p.readInt32 (&countStrings); if (status != NO_ERROR) { goto invalid; } memset(&rism, 0, sizeof(rism)); rism.tech = RADIO_TECH_3GPP; rism.retry = retry; rism.messageRef = messageRef; startRequest; appendPrintBuf("%stech=%d, retry=%d, messageRef=%d, ", printBuf, (int)rism.tech, (int)rism.retry, rism.messageRef); if (countStrings == 0) { // just some non-null pointer pStrings = (char **)calloc(1, sizeof(char *)); if (pStrings == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); closeRequest; return; } datalen = 0; } else if (countStrings < 0) { pStrings = NULL; datalen = 0; } else { if (countStrings > (INT_MAX/sizeof(char *))) { RLOGE("Invalid value of countStrings: \n"); closeRequest; return; } datalen = sizeof(char *) * countStrings; pStrings = (char **)calloc(countStrings, sizeof(char *)); if (pStrings == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); closeRequest; return; } for (int i = 0 ; i < countStrings ; i++) { pStrings[i] = strdupReadString(p); appendPrintBuf("%s%s,", printBuf, pStrings[i]); } } removeLastChar; closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); rism.message.gsmMessage = pStrings; CALL_ONREQUEST(pRI->pCI->requestNumber, &rism, sizeof(RIL_RadioTechnologyFamily)+sizeof(uint8_t)+sizeof(int32_t) +datalen, pRI, pRI->socket_id); if (pStrings != NULL) { for (int i = 0 ; i < countStrings ; i++) { #ifdef MEMSET_FREED memsetString (pStrings[i]); #endif free(pStrings[i]); } #ifdef MEMSET_FREED memset(pStrings, 0, datalen); #endif free(pStrings); } #ifdef MEMSET_FREED memset(&rism, 0, sizeof(rism)); #endif return; invalid: ALOGE("dispatchImsGsmSms invalid block"); invalidCommandBlock(pRI); return; } static void dispatchImsSms(Parcel &p, RequestInfo *pRI) { int32_t t; status_t status = p.readInt32(&t); RIL_RadioTechnologyFamily format; uint8_t retry; int32_t messageRef; RLOGD("dispatchImsSms"); if (status != NO_ERROR) { goto invalid; } format = (RIL_RadioTechnologyFamily) t; // read retry field status = p.read(&retry,sizeof(retry)); if (status != NO_ERROR) { goto invalid; } // read messageRef field status = p.read(&messageRef,sizeof(messageRef)); if (status != NO_ERROR) { goto invalid; } if (RADIO_TECH_3GPP == format) { dispatchImsGsmSms(p, pRI, retry, messageRef); } else if (RADIO_TECH_3GPP2 == format) { dispatchImsCdmaSms(p, pRI, retry, messageRef); } else { ALOGE("requestImsSendSMS invalid format value =%d", format); } return; invalid: invalidCommandBlock(pRI); return; } static void dispatchCdmaSmsAck(Parcel &p, RequestInfo *pRI) { RIL_CDMA_SMS_Ack rcsa; int32_t t; status_t status; int32_t digitCount; RLOGD("dispatchCdmaSmsAck"); memset(&rcsa, 0, sizeof(rcsa)); status = p.readInt32(&t); rcsa.uErrorClass = (RIL_CDMA_SMS_ErrorClass) t; status = p.readInt32(&t); rcsa.uSMSCauseCode = (int) t; if (status != NO_ERROR) { goto invalid; } startRequest; appendPrintBuf("%suErrorClass=%d, uTLStatus=%d, ", printBuf, rcsa.uErrorClass, rcsa.uSMSCauseCode); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsa, sizeof(rcsa),pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(&rcsa, 0, sizeof(rcsa)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchGsmBrSmsCnf(Parcel &p, RequestInfo *pRI) { int32_t t; status_t status; int32_t num; status = p.readInt32(&num); if (status != NO_ERROR) { goto invalid; } { RIL_GSM_BroadcastSmsConfigInfo gsmBci[num]; RIL_GSM_BroadcastSmsConfigInfo *gsmBciPtrs[num]; startRequest; for (int i = 0 ; i < num ; i++ ) { gsmBciPtrs[i] = &gsmBci[i]; status = p.readInt32(&t); gsmBci[i].fromServiceId = (int) t; status = p.readInt32(&t); gsmBci[i].toServiceId = (int) t; status = p.readInt32(&t); gsmBci[i].fromCodeScheme = (int) t; status = p.readInt32(&t); gsmBci[i].toCodeScheme = (int) t; status = p.readInt32(&t); gsmBci[i].selected = (uint8_t) t; appendPrintBuf("%s [%d: fromServiceId=%d, toServiceId =%d, \ fromCodeScheme=%d, toCodeScheme=%d, selected =%d]", printBuf, i, gsmBci[i].fromServiceId, gsmBci[i].toServiceId, gsmBci[i].fromCodeScheme, gsmBci[i].toCodeScheme, gsmBci[i].selected); } closeRequest; if (status != NO_ERROR) { goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, gsmBciPtrs, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *), pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(gsmBci, 0, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo)); memset(gsmBciPtrs, 0, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *)); #endif } return; invalid: invalidCommandBlock(pRI); return; } static void dispatchCdmaBrSmsCnf(Parcel &p, RequestInfo *pRI) { int32_t t; status_t status; int32_t num; status = p.readInt32(&num); if (status != NO_ERROR) { goto invalid; } { RIL_CDMA_BroadcastSmsConfigInfo cdmaBci[num]; RIL_CDMA_BroadcastSmsConfigInfo *cdmaBciPtrs[num]; startRequest; for (int i = 0 ; i < num ; i++ ) { cdmaBciPtrs[i] = &cdmaBci[i]; status = p.readInt32(&t); cdmaBci[i].service_category = (int) t; status = p.readInt32(&t); cdmaBci[i].language = (int) t; status = p.readInt32(&t); cdmaBci[i].selected = (uint8_t) t; appendPrintBuf("%s [%d: service_category=%d, language =%d, \ entries.bSelected =%d]", printBuf, i, cdmaBci[i].service_category, cdmaBci[i].language, cdmaBci[i].selected); } closeRequest; if (status != NO_ERROR) { goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, cdmaBciPtrs, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *), pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(cdmaBci, 0, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo)); memset(cdmaBciPtrs, 0, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *)); #endif } return; invalid: invalidCommandBlock(pRI); return; } static void dispatchRilCdmaSmsWriteArgs(Parcel &p, RequestInfo *pRI) { RIL_CDMA_SMS_WriteArgs rcsw; int32_t t; uint32_t ut; uint8_t uct; status_t status; int32_t digitCount; int32_t digitLimit; memset(&rcsw, 0, sizeof(rcsw)); status = p.readInt32(&t); rcsw.status = t; status = p.readInt32(&t); rcsw.message.uTeleserviceID = (int) t; status = p.read(&uct,sizeof(uct)); rcsw.message.bIsServicePresent = (uint8_t) uct; status = p.readInt32(&t); rcsw.message.uServicecategory = (int) t; status = p.readInt32(&t); rcsw.message.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) t; status = p.readInt32(&t); rcsw.message.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) t; status = p.readInt32(&t); rcsw.message.sAddress.number_type = (RIL_CDMA_SMS_NumberType) t; status = p.readInt32(&t); rcsw.message.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) t; status = p.read(&uct,sizeof(uct)); rcsw.message.sAddress.number_of_digits = (uint8_t) uct; digitLimit = MIN((rcsw.message.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX); for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) { status = p.read(&uct,sizeof(uct)); rcsw.message.sAddress.digits[digitCount] = (uint8_t) uct; } status = p.readInt32(&t); rcsw.message.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) t; status = p.read(&uct,sizeof(uct)); rcsw.message.sSubAddress.odd = (uint8_t) uct; status = p.read(&uct,sizeof(uct)); rcsw.message.sSubAddress.number_of_digits = (uint8_t) uct; digitLimit = MIN((rcsw.message.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX); for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) { status = p.read(&uct,sizeof(uct)); rcsw.message.sSubAddress.digits[digitCount] = (uint8_t) uct; } status = p.readInt32(&t); rcsw.message.uBearerDataLen = (int) t; digitLimit = MIN((rcsw.message.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX); for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) { status = p.read(&uct, sizeof(uct)); rcsw.message.aBearerData[digitCount] = (uint8_t) uct; } if (status != NO_ERROR) { goto invalid; } startRequest; appendPrintBuf("%sstatus=%d, message.uTeleserviceID=%d, message.bIsServicePresent=%d, \ message.uServicecategory=%d, message.sAddress.digit_mode=%d, \ message.sAddress.number_mode=%d, \ message.sAddress.number_type=%d, ", printBuf, rcsw.status, rcsw.message.uTeleserviceID, rcsw.message.bIsServicePresent, rcsw.message.uServicecategory, rcsw.message.sAddress.digit_mode, rcsw.message.sAddress.number_mode, rcsw.message.sAddress.number_type); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsw, sizeof(rcsw),pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(&rcsw, 0, sizeof(rcsw)); #endif return; invalid: invalidCommandBlock(pRI); return; } // For backwards compatibility in RIL_REQUEST_SETUP_DATA_CALL. // Version 4 of the RIL interface adds a new PDP type parameter to support // IPv6 and dual-stack PDP contexts. When dealing with a previous version of // RIL, remove the parameter from the request. static void dispatchDataCall(Parcel& p, RequestInfo *pRI) { // In RIL v3, REQUEST_SETUP_DATA_CALL takes 6 parameters. const int numParamsRilV3 = 6; // The first bytes of the RIL parcel contain the request number and the // serial number - see processCommandBuffer(). Copy them over too. int pos = p.dataPosition(); int numParams = p.readInt32(); if (s_callbacks.version < 4 && numParams > numParamsRilV3) { Parcel p2; p2.appendFrom(&p, 0, pos); p2.writeInt32(numParamsRilV3); for(int i = 0; i < numParamsRilV3; i++) { p2.writeString16(p.readString16()); } p2.setDataPosition(pos); dispatchStrings(p2, pRI); } else { p.setDataPosition(pos); dispatchStrings(p, pRI); } } // For backwards compatibility with RILs that dont support RIL_REQUEST_VOICE_RADIO_TECH. // When all RILs handle this request, this function can be removed and // the request can be sent directly to the RIL using dispatchVoid. static void dispatchVoiceRadioTech(Parcel& p, RequestInfo *pRI) { RIL_RadioState state = CALL_ONSTATEREQUEST((RIL_SOCKET_ID)pRI->socket_id); if ((RADIO_STATE_UNAVAILABLE == state) || (RADIO_STATE_OFF == state)) { RIL_onRequestComplete(pRI, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); } // RILs that support RADIO_STATE_ON should support this request. if (RADIO_STATE_ON == state) { dispatchVoid(p, pRI); return; } // For Older RILs, that do not support RADIO_STATE_ON, assume that they // will not support this new request either and decode Voice Radio Technology // from Radio State voiceRadioTech = decodeVoiceRadioTechnology(state); if (voiceRadioTech < 0) RIL_onRequestComplete(pRI, RIL_E_GENERIC_FAILURE, NULL, 0); else RIL_onRequestComplete(pRI, RIL_E_SUCCESS, &voiceRadioTech, sizeof(int)); } // For backwards compatibility in RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE:. // When all RILs handle this request, this function can be removed and // the request can be sent directly to the RIL using dispatchVoid. static void dispatchCdmaSubscriptionSource(Parcel& p, RequestInfo *pRI) { RIL_RadioState state = CALL_ONSTATEREQUEST((RIL_SOCKET_ID)pRI->socket_id); if ((RADIO_STATE_UNAVAILABLE == state) || (RADIO_STATE_OFF == state)) { RIL_onRequestComplete(pRI, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0); } // RILs that support RADIO_STATE_ON should support this request. if (RADIO_STATE_ON == state) { dispatchVoid(p, pRI); return; } // For Older RILs, that do not support RADIO_STATE_ON, assume that they // will not support this new request either and decode CDMA Subscription Source // from Radio State cdmaSubscriptionSource = decodeCdmaSubscriptionSource(state); if (cdmaSubscriptionSource < 0) RIL_onRequestComplete(pRI, RIL_E_GENERIC_FAILURE, NULL, 0); else RIL_onRequestComplete(pRI, RIL_E_SUCCESS, &cdmaSubscriptionSource, sizeof(int)); } static void dispatchSetInitialAttachApn(Parcel &p, RequestInfo *pRI) { RIL_InitialAttachApn pf; int32_t t; status_t status; memset(&pf, 0, sizeof(pf)); pf.apn = strdupReadString(p); pf.protocol = strdupReadString(p); status = p.readInt32(&t); pf.authtype = (int) t; pf.username = strdupReadString(p); pf.password = strdupReadString(p); startRequest; appendPrintBuf("%sapn=%s, protocol=%s, authtype=%d, username=%s, password=%s", printBuf, pf.apn, pf.protocol, pf.authtype, pf.username, pf.password); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); if (status != NO_ERROR) { goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString(pf.apn); memsetString(pf.protocol); memsetString(pf.username); memsetString(pf.password); #endif free(pf.apn); free(pf.protocol); free(pf.username); free(pf.password); #ifdef MEMSET_FREED memset(&pf, 0, sizeof(pf)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchNVReadItem(Parcel &p, RequestInfo *pRI) { RIL_NV_ReadItem nvri; int32_t t; status_t status; memset(&nvri, 0, sizeof(nvri)); status = p.readInt32(&t); nvri.itemID = (RIL_NV_Item) t; if (status != NO_ERROR) { goto invalid; } startRequest; appendPrintBuf("%snvri.itemID=%d, ", printBuf, nvri.itemID); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &nvri, sizeof(nvri), pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(&nvri, 0, sizeof(nvri)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchNVWriteItem(Parcel &p, RequestInfo *pRI) { RIL_NV_WriteItem nvwi; int32_t t; status_t status; memset(&nvwi, 0, sizeof(nvwi)); status = p.readInt32(&t); nvwi.itemID = (RIL_NV_Item) t; nvwi.value = strdupReadString(p); if (status != NO_ERROR || nvwi.value == NULL) { goto invalid; } startRequest; appendPrintBuf("%snvwi.itemID=%d, value=%s, ", printBuf, nvwi.itemID, nvwi.value); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &nvwi, sizeof(nvwi), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString(nvwi.value); #endif free(nvwi.value); #ifdef MEMSET_FREED memset(&nvwi, 0, sizeof(nvwi)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchUiccSubscripton(Parcel &p, RequestInfo *pRI) { RIL_SelectUiccSub uicc_sub; status_t status; int32_t t; memset(&uicc_sub, 0, sizeof(uicc_sub)); status = p.readInt32(&t); if (status != NO_ERROR) { goto invalid; } uicc_sub.slot = (int) t; status = p.readInt32(&t); if (status != NO_ERROR) { goto invalid; } uicc_sub.app_index = (int) t; status = p.readInt32(&t); if (status != NO_ERROR) { goto invalid; } uicc_sub.sub_type = (RIL_SubscriptionType) t; status = p.readInt32(&t); if (status != NO_ERROR) { goto invalid; } uicc_sub.act_status = (RIL_UiccSubActStatus) t; startRequest; appendPrintBuf("slot=%d, app_index=%d, act_status = %d", uicc_sub.slot, uicc_sub.app_index, uicc_sub.act_status); RLOGD("dispatchUiccSubscription, slot=%d, app_index=%d, act_status = %d", uicc_sub.slot, uicc_sub.app_index, uicc_sub.act_status); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &uicc_sub, sizeof(uicc_sub), pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(&uicc_sub, 0, sizeof(uicc_sub)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchSimAuthentication(Parcel &p, RequestInfo *pRI) { RIL_SimAuthentication pf; int32_t t; status_t status; memset(&pf, 0, sizeof(pf)); status = p.readInt32(&t); pf.authContext = (int) t; pf.authData = strdupReadString(p); pf.aid = strdupReadString(p); startRequest; appendPrintBuf("authContext=%s, authData=%s, aid=%s", pf.authContext, pf.authData, pf.aid); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); if (status != NO_ERROR) { goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, pRI->socket_id); #ifdef MEMSET_FREED memsetString(pf.authData); memsetString(pf.aid); #endif free(pf.authData); free(pf.aid); #ifdef MEMSET_FREED memset(&pf, 0, sizeof(pf)); #endif return; invalid: invalidCommandBlock(pRI); return; } static void dispatchDataProfile(Parcel &p, RequestInfo *pRI) { int32_t t; status_t status; int32_t num; status = p.readInt32(&num); if (status != NO_ERROR || num < 0) { goto invalid; } { RIL_DataProfileInfo *dataProfiles = (RIL_DataProfileInfo *)calloc(num, sizeof(RIL_DataProfileInfo)); if (dataProfiles == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); return; } RIL_DataProfileInfo **dataProfilePtrs = (RIL_DataProfileInfo **)calloc(num, sizeof(RIL_DataProfileInfo *)); if (dataProfilePtrs == NULL) { RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber)); free(dataProfiles); return; } startRequest; for (int i = 0 ; i < num ; i++ ) { dataProfilePtrs[i] = &dataProfiles[i]; status = p.readInt32(&t); dataProfiles[i].profileId = (int) t; dataProfiles[i].apn = strdupReadString(p); dataProfiles[i].protocol = strdupReadString(p); status = p.readInt32(&t); dataProfiles[i].authType = (int) t; dataProfiles[i].user = strdupReadString(p); dataProfiles[i].password = strdupReadString(p); status = p.readInt32(&t); dataProfiles[i].type = (int) t; status = p.readInt32(&t); dataProfiles[i].maxConnsTime = (int) t; status = p.readInt32(&t); dataProfiles[i].maxConns = (int) t; status = p.readInt32(&t); dataProfiles[i].waitTime = (int) t; status = p.readInt32(&t); dataProfiles[i].enabled = (int) t; appendPrintBuf("%s [%d: profileId=%d, apn =%s, protocol =%s, authType =%d, \ user =%s, password =%s, type =%d, maxConnsTime =%d, maxConns =%d, \ waitTime =%d, enabled =%d]", printBuf, i, dataProfiles[i].profileId, dataProfiles[i].apn, dataProfiles[i].protocol, dataProfiles[i].authType, dataProfiles[i].user, dataProfiles[i].password, dataProfiles[i].type, dataProfiles[i].maxConnsTime, dataProfiles[i].maxConns, dataProfiles[i].waitTime, dataProfiles[i].enabled); } closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); if (status != NO_ERROR) { free(dataProfiles); free(dataProfilePtrs); goto invalid; } CALL_ONREQUEST(pRI->pCI->requestNumber, dataProfilePtrs, num * sizeof(RIL_DataProfileInfo *), pRI, pRI->socket_id); #ifdef MEMSET_FREED memset(dataProfiles, 0, num * sizeof(RIL_DataProfileInfo)); memset(dataProfilePtrs, 0, num * sizeof(RIL_DataProfileInfo *)); #endif free(dataProfiles); free(dataProfilePtrs); } return; invalid: invalidCommandBlock(pRI); return; } static void dispatchRadioCapability(Parcel &p, RequestInfo *pRI){ RIL_RadioCapability rc; int32_t t; status_t status; memset (&rc, 0, sizeof(RIL_RadioCapability)); status = p.readInt32(&t); rc.version = (int)t; if (status != NO_ERROR) { goto invalid; } status = p.readInt32(&t); rc.session= (int)t; if (status != NO_ERROR) { goto invalid; } status = p.readInt32(&t); rc.phase= (int)t; if (status != NO_ERROR) { goto invalid; } status = p.readInt32(&t); rc.rat = (int)t; if (status != NO_ERROR) { goto invalid; } status = readStringFromParcelInplace(p, rc.logicalModemUuid, sizeof(rc.logicalModemUuid)); if (status != NO_ERROR) { goto invalid; } status = p.readInt32(&t); rc.status = (int)t; if (status != NO_ERROR) { goto invalid; } startRequest; appendPrintBuf("%s [version:%d, session:%d, phase:%d, rat:%d, \ logicalModemUuid:%s, status:%d", printBuf, rc.version, rc.session, rc.phase, rc.rat, rc.logicalModemUuid, rc.session); closeRequest; printRequest(pRI->token, pRI->pCI->requestNumber); CALL_ONREQUEST(pRI->pCI->requestNumber, &rc, sizeof(RIL_RadioCapability), pRI, pRI->socket_id); return; invalid: invalidCommandBlock(pRI); return; } static int blockingWrite(int fd, const void *buffer, size_t len) { size_t writeOffset = 0; const uint8_t *toWrite; toWrite = (const uint8_t *)buffer; while (writeOffset < len) { ssize_t written; do { written = write (fd, toWrite + writeOffset, len - writeOffset); } while (written < 0 && ((errno == EINTR) || (errno == EAGAIN))); if (written >= 0) { writeOffset += written; } else { // written < 0 RLOGE ("RIL Response: unexpected error on write errno:%d", errno); close(fd); return -1; } } #if VDBG RLOGE("RIL Response bytes written:%d", writeOffset); #endif return 0; } static int sendResponseRaw (const void *data, size_t dataSize, RIL_SOCKET_ID socket_id) { int fd = s_ril_param_socket.fdCommand; int ret; uint32_t header; pthread_mutex_t * writeMutexHook = &s_writeMutex; #if VDBG RLOGE("Send Response to %s", rilSocketIdToString(socket_id)); #endif #if (SIM_COUNT >= 2) if (socket_id == RIL_SOCKET_2) { fd = s_ril_param_socket2.fdCommand; writeMutexHook = &s_writeMutex_socket2; } #if (SIM_COUNT >= 3) else if (socket_id == RIL_SOCKET_3) { fd = s_ril_param_socket3.fdCommand; writeMutexHook = &s_writeMutex_socket3; } #endif #if (SIM_COUNT >= 4) else if (socket_id == RIL_SOCKET_4) { fd = s_ril_param_socket4.fdCommand; writeMutexHook = &s_writeMutex_socket4; } #endif #endif if (fd < 0) { return -1; } if (dataSize > MAX_COMMAND_BYTES) { RLOGE("RIL: packet larger than %u (%u)", MAX_COMMAND_BYTES, (unsigned int )dataSize); return -1; } pthread_mutex_lock(writeMutexHook); header = htonl(dataSize); ret = blockingWrite(fd, (void *)&header, sizeof(header)); if (ret < 0) { pthread_mutex_unlock(writeMutexHook); return ret; } ret = blockingWrite(fd, data, dataSize); if (ret < 0) { pthread_mutex_unlock(writeMutexHook); return ret; } pthread_mutex_unlock(writeMutexHook); return 0; } static int sendResponse (Parcel &p, RIL_SOCKET_ID socket_id) { printResponse; return sendResponseRaw(p.data(), p.dataSize(), socket_id); } /** response is an int* pointing to an array of ints */ static int responseInts(Parcel &p, void *response, size_t responselen) { int numInts; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(int) != 0) { RLOGE("responseInts: invalid response length %d expected multiple of %d\n", (int)responselen, (int)sizeof(int)); return RIL_ERRNO_INVALID_RESPONSE; } int *p_int = (int *) response; numInts = responselen / sizeof(int); p.writeInt32 (numInts); /* each int*/ startResponse; for (int i = 0 ; i < numInts ; i++) { appendPrintBuf("%s%d,", printBuf, p_int[i]); p.writeInt32(p_int[i]); } removeLastChar; closeResponse; return 0; } // Response is an int or RIL_LastCallFailCauseInfo. // Currently, only Shamu plans to use RIL_LastCallFailCauseInfo. // TODO(yjl): Let all implementations use RIL_LastCallFailCauseInfo. static int responseFailCause(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen == sizeof(int)) { startResponse; int *p_int = (int *) response; appendPrintBuf("%s%d,", printBuf, p_int[0]); p.writeInt32(p_int[0]); removeLastChar; closeResponse; } else if (responselen == sizeof(RIL_LastCallFailCauseInfo)) { startResponse; RIL_LastCallFailCauseInfo *p_fail_cause_info = (RIL_LastCallFailCauseInfo *) response; appendPrintBuf("%s[cause_code=%d,vendor_cause=%s]", printBuf, p_fail_cause_info->cause_code, p_fail_cause_info->vendor_cause); p.writeInt32(p_fail_cause_info->cause_code); writeStringToParcel(p, p_fail_cause_info->vendor_cause); removeLastChar; closeResponse; } else { RLOGE("responseFailCause: invalid response length %d expected an int or " "RIL_LastCallFailCauseInfo", (int)responselen); return RIL_ERRNO_INVALID_RESPONSE; } return 0; } /** response is a char **, pointing to an array of char *'s The parcel will begin with the version */ static int responseStringsWithVersion(int version, Parcel &p, void *response, size_t responselen) { p.writeInt32(version); return responseStrings(p, response, responselen); } /** response is a char **, pointing to an array of char *'s */ static int responseStrings(Parcel &p, void *response, size_t responselen) { int numStrings; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(char *) != 0) { RLOGE("responseStrings: invalid response length %d expected multiple of %d\n", (int)responselen, (int)sizeof(char *)); return RIL_ERRNO_INVALID_RESPONSE; } if (response == NULL) { p.writeInt32 (0); } else { char **p_cur = (char **) response; numStrings = responselen / sizeof(char *); p.writeInt32 (numStrings); /* each string*/ startResponse; for (int i = 0 ; i < numStrings ; i++) { appendPrintBuf("%s%s,", printBuf, (char*)p_cur[i]); writeStringToParcel (p, p_cur[i]); } removeLastChar; closeResponse; } return 0; } /** * NULL strings are accepted * FIXME currently ignores responselen */ static int responseString(Parcel &p, void *response, size_t responselen) { /* one string only */ startResponse; appendPrintBuf("%s%s", printBuf, (char*)response); closeResponse; writeStringToParcel(p, (const char *)response); return 0; } static int responseVoid(Parcel &p, void *response, size_t responselen) { startResponse; removeLastChar; return 0; } static int responseCallList(Parcel &p, void *response, size_t responselen) { int num; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof (RIL_Call *) != 0) { RLOGE("responseCallList: invalid response length %d expected multiple of %d\n", (int)responselen, (int)sizeof (RIL_Call *)); return RIL_ERRNO_INVALID_RESPONSE; } startResponse; /* number of call info's */ num = responselen / sizeof(RIL_Call *); p.writeInt32(num); for (int i = 0 ; i < num ; i++) { RIL_Call *p_cur = ((RIL_Call **) response)[i]; /* each call info */ p.writeInt32(p_cur->state); p.writeInt32(p_cur->index); p.writeInt32(p_cur->toa); p.writeInt32(p_cur->isMpty); p.writeInt32(p_cur->isMT); p.writeInt32(p_cur->als); p.writeInt32(p_cur->isVoice); p.writeInt32(p_cur->isVoicePrivacy); writeStringToParcel(p, p_cur->number); p.writeInt32(p_cur->numberPresentation); writeStringToParcel(p, p_cur->name); p.writeInt32(p_cur->namePresentation); // Remove when partners upgrade to version 3 if ((s_callbacks.version < 3) || (p_cur->uusInfo == NULL || p_cur->uusInfo->uusData == NULL)) { p.writeInt32(0); /* UUS Information is absent */ } else { RIL_UUS_Info *uusInfo = p_cur->uusInfo; p.writeInt32(1); /* UUS Information is present */ p.writeInt32(uusInfo->uusType); p.writeInt32(uusInfo->uusDcs); p.writeInt32(uusInfo->uusLength); p.write(uusInfo->uusData, uusInfo->uusLength); } appendPrintBuf("%s[id=%d,%s,toa=%d,", printBuf, p_cur->index, callStateToString(p_cur->state), p_cur->toa); appendPrintBuf("%s%s,%s,als=%d,%s,%s,", printBuf, (p_cur->isMpty)?"conf":"norm", (p_cur->isMT)?"mt":"mo", p_cur->als, (p_cur->isVoice)?"voc":"nonvoc", (p_cur->isVoicePrivacy)?"evp":"noevp"); appendPrintBuf("%s%s,cli=%d,name='%s',%d]", printBuf, p_cur->number, p_cur->numberPresentation, p_cur->name, p_cur->namePresentation); } removeLastChar; closeResponse; return 0; } static int responseSMS(Parcel &p, void *response, size_t responselen) { if (response == NULL) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof (RIL_SMS_Response) ) { RLOGE("invalid response length %d expected %d", (int)responselen, (int)sizeof (RIL_SMS_Response)); return RIL_ERRNO_INVALID_RESPONSE; } RIL_SMS_Response *p_cur = (RIL_SMS_Response *) response; p.writeInt32(p_cur->messageRef); writeStringToParcel(p, p_cur->ackPDU); p.writeInt32(p_cur->errorCode); startResponse; appendPrintBuf("%s%d,%s,%d", printBuf, p_cur->messageRef, (char*)p_cur->ackPDU, p_cur->errorCode); closeResponse; return 0; } static int responseDataCallListV4(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_Data_Call_Response_v4) != 0) { RLOGE("responseDataCallListV4: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_Data_Call_Response_v4)); return RIL_ERRNO_INVALID_RESPONSE; } // Write version p.writeInt32(4); int num = responselen / sizeof(RIL_Data_Call_Response_v4); p.writeInt32(num); RIL_Data_Call_Response_v4 *p_cur = (RIL_Data_Call_Response_v4 *) response; startResponse; int i; for (i = 0; i < num; i++) { p.writeInt32(p_cur[i].cid); p.writeInt32(p_cur[i].active); writeStringToParcel(p, p_cur[i].type); // apn is not used, so don't send. writeStringToParcel(p, p_cur[i].address); appendPrintBuf("%s[cid=%d,%s,%s,%s],", printBuf, p_cur[i].cid, (p_cur[i].active==0)?"down":"up", (char*)p_cur[i].type, (char*)p_cur[i].address); } removeLastChar; closeResponse; return 0; } static int responseDataCallListV6(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_Data_Call_Response_v6) != 0) { RLOGE("responseDataCallListV6: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_Data_Call_Response_v6)); return RIL_ERRNO_INVALID_RESPONSE; } // Write version p.writeInt32(6); int num = responselen / sizeof(RIL_Data_Call_Response_v6); p.writeInt32(num); RIL_Data_Call_Response_v6 *p_cur = (RIL_Data_Call_Response_v6 *) response; startResponse; int i; for (i = 0; i < num; i++) { p.writeInt32((int)p_cur[i].status); p.writeInt32(p_cur[i].suggestedRetryTime); p.writeInt32(p_cur[i].cid); p.writeInt32(p_cur[i].active); writeStringToParcel(p, p_cur[i].type); writeStringToParcel(p, p_cur[i].ifname); writeStringToParcel(p, p_cur[i].addresses); writeStringToParcel(p, p_cur[i].dnses); writeStringToParcel(p, p_cur[i].gateways); appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s],", printBuf, p_cur[i].status, p_cur[i].suggestedRetryTime, p_cur[i].cid, (p_cur[i].active==0)?"down":"up", (char*)p_cur[i].type, (char*)p_cur[i].ifname, (char*)p_cur[i].addresses, (char*)p_cur[i].dnses, (char*)p_cur[i].gateways); } removeLastChar; closeResponse; return 0; } static int responseDataCallListV9(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_Data_Call_Response_v9) != 0) { RLOGE("responseDataCallListV9: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_Data_Call_Response_v9)); return RIL_ERRNO_INVALID_RESPONSE; } // Write version p.writeInt32(10); int num = responselen / sizeof(RIL_Data_Call_Response_v9); p.writeInt32(num); RIL_Data_Call_Response_v9 *p_cur = (RIL_Data_Call_Response_v9 *) response; startResponse; int i; for (i = 0; i < num; i++) { p.writeInt32((int)p_cur[i].status); p.writeInt32(p_cur[i].suggestedRetryTime); p.writeInt32(p_cur[i].cid); p.writeInt32(p_cur[i].active); writeStringToParcel(p, p_cur[i].type); writeStringToParcel(p, p_cur[i].ifname); writeStringToParcel(p, p_cur[i].addresses); writeStringToParcel(p, p_cur[i].dnses); writeStringToParcel(p, p_cur[i].gateways); writeStringToParcel(p, p_cur[i].pcscf); appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s,%s],", printBuf, p_cur[i].status, p_cur[i].suggestedRetryTime, p_cur[i].cid, (p_cur[i].active==0)?"down":"up", (char*)p_cur[i].type, (char*)p_cur[i].ifname, (char*)p_cur[i].addresses, (char*)p_cur[i].dnses, (char*)p_cur[i].gateways, (char*)p_cur[i].pcscf); } removeLastChar; closeResponse; return 0; } static int responseDataCallListV11(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_Data_Call_Response_v11) != 0) { RLOGE("invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_Data_Call_Response_v11)); return RIL_ERRNO_INVALID_RESPONSE; } // Write version p.writeInt32(11); int num = responselen / sizeof(RIL_Data_Call_Response_v11); p.writeInt32(num); RIL_Data_Call_Response_v11 *p_cur = (RIL_Data_Call_Response_v11 *) response; startResponse; int i; for (i = 0; i < num; i++) { p.writeInt32((int)p_cur[i].status); p.writeInt32(p_cur[i].suggestedRetryTime); p.writeInt32(p_cur[i].cid); p.writeInt32(p_cur[i].active); writeStringToParcel(p, p_cur[i].type); writeStringToParcel(p, p_cur[i].ifname); writeStringToParcel(p, p_cur[i].addresses); writeStringToParcel(p, p_cur[i].dnses); writeStringToParcel(p, p_cur[i].gateways); writeStringToParcel(p, p_cur[i].pcscf); p.writeInt32(p_cur[i].mtu); appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s,%s,mtu=%d],", printBuf, p_cur[i].status, p_cur[i].suggestedRetryTime, p_cur[i].cid, (p_cur[i].active==0)?"down":"up", (char*)p_cur[i].type, (char*)p_cur[i].ifname, (char*)p_cur[i].addresses, (char*)p_cur[i].dnses, (char*)p_cur[i].gateways, (char*)p_cur[i].pcscf, p_cur[i].mtu); } removeLastChar; closeResponse; return 0; } static int responseDataCallList(Parcel &p, void *response, size_t responselen) { if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) { if (s_callbacks.version < 5) { RLOGD("responseDataCallList: v4"); return responseDataCallListV4(p, response, responselen); } else if (responselen % sizeof(RIL_Data_Call_Response_v6) == 0) { return responseDataCallListV6(p, response, responselen); } else if (responselen % sizeof(RIL_Data_Call_Response_v9) == 0) { return responseDataCallListV9(p, response, responselen); } else { return responseDataCallListV11(p, response, responselen); } } else { // RIL version >= 13 if (responselen % sizeof(RIL_Data_Call_Response_v11) != 0) { RLOGE("Data structure expected is RIL_Data_Call_Response_v11"); if (!isDebuggable()) { return RIL_ERRNO_INVALID_RESPONSE; } else { assert(0); } } return responseDataCallListV11(p, response, responselen); } } static int responseSetupDataCall(Parcel &p, void *response, size_t responselen) { if (s_callbacks.version < 5) { return responseStringsWithVersion(s_callbacks.version, p, response, responselen); } else { return responseDataCallList(p, response, responselen); } } static int responseRaw(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL with responselen != 0"); return RIL_ERRNO_INVALID_RESPONSE; } // The java code reads -1 size as null byte array if (response == NULL) { p.writeInt32(-1); } else { p.writeInt32(responselen); p.write(response, responselen); } return 0; } static int responseSIM_IO(Parcel &p, void *response, size_t responselen) { if (response == NULL) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof (RIL_SIM_IO_Response) ) { RLOGE("invalid response length was %d expected %d", (int)responselen, (int)sizeof (RIL_SIM_IO_Response)); return RIL_ERRNO_INVALID_RESPONSE; } RIL_SIM_IO_Response *p_cur = (RIL_SIM_IO_Response *) response; p.writeInt32(p_cur->sw1); p.writeInt32(p_cur->sw2); writeStringToParcel(p, p_cur->simResponse); startResponse; appendPrintBuf("%ssw1=0x%X,sw2=0x%X,%s", printBuf, p_cur->sw1, p_cur->sw2, (char*)p_cur->simResponse); closeResponse; return 0; } static int responseCallForwards(Parcel &p, void *response, size_t responselen) { int num; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_CallForwardInfo *) != 0) { RLOGE("responseCallForwards: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_CallForwardInfo *)); return RIL_ERRNO_INVALID_RESPONSE; } /* number of call info's */ num = responselen / sizeof(RIL_CallForwardInfo *); p.writeInt32(num); startResponse; for (int i = 0 ; i < num ; i++) { RIL_CallForwardInfo *p_cur = ((RIL_CallForwardInfo **) response)[i]; p.writeInt32(p_cur->status); p.writeInt32(p_cur->reason); p.writeInt32(p_cur->serviceClass); p.writeInt32(p_cur->toa); writeStringToParcel(p, p_cur->number); p.writeInt32(p_cur->timeSeconds); appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d],", printBuf, (p_cur->status==1)?"enable":"disable", p_cur->reason, p_cur->serviceClass, p_cur->toa, (char*)p_cur->number, p_cur->timeSeconds); } removeLastChar; closeResponse; return 0; } static int responseSsn(Parcel &p, void *response, size_t responselen) { if (response == NULL) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof(RIL_SuppSvcNotification)) { RLOGE("invalid response length was %d expected %d", (int)responselen, (int)sizeof (RIL_SuppSvcNotification)); return RIL_ERRNO_INVALID_RESPONSE; } RIL_SuppSvcNotification *p_cur = (RIL_SuppSvcNotification *) response; p.writeInt32(p_cur->notificationType); p.writeInt32(p_cur->code); p.writeInt32(p_cur->index); p.writeInt32(p_cur->type); writeStringToParcel(p, p_cur->number); startResponse; appendPrintBuf("%s%s,code=%d,id=%d,type=%d,%s", printBuf, (p_cur->notificationType==0)?"mo":"mt", p_cur->code, p_cur->index, p_cur->type, (char*)p_cur->number); closeResponse; return 0; } static int responseCellList(Parcel &p, void *response, size_t responselen) { int num; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof (RIL_NeighboringCell *) != 0) { RLOGE("responseCellList: invalid response length %d expected multiple of %d\n", (int)responselen, (int)sizeof (RIL_NeighboringCell *)); return RIL_ERRNO_INVALID_RESPONSE; } startResponse; /* number of records */ num = responselen / sizeof(RIL_NeighboringCell *); p.writeInt32(num); for (int i = 0 ; i < num ; i++) { RIL_NeighboringCell *p_cur = ((RIL_NeighboringCell **) response)[i]; p.writeInt32(p_cur->rssi); writeStringToParcel (p, p_cur->cid); appendPrintBuf("%s[cid=%s,rssi=%d],", printBuf, p_cur->cid, p_cur->rssi); } removeLastChar; closeResponse; return 0; } /** * Marshall the signalInfoRecord into the parcel if it exists. */ static void marshallSignalInfoRecord(Parcel &p, RIL_CDMA_SignalInfoRecord &p_signalInfoRecord) { p.writeInt32(p_signalInfoRecord.isPresent); p.writeInt32(p_signalInfoRecord.signalType); p.writeInt32(p_signalInfoRecord.alertPitch); p.writeInt32(p_signalInfoRecord.signal); } static int responseCdmaInformationRecords(Parcel &p, void *response, size_t responselen) { int num; char* string8 = NULL; int buffer_lenght; RIL_CDMA_InformationRecord *infoRec; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof (RIL_CDMA_InformationRecords)) { RLOGE("responseCdmaInformationRecords: invalid response length %d expected multiple of %d\n", (int)responselen, (int)sizeof (RIL_CDMA_InformationRecords *)); return RIL_ERRNO_INVALID_RESPONSE; } RIL_CDMA_InformationRecords *p_cur = (RIL_CDMA_InformationRecords *) response; num = MIN(p_cur->numberOfInfoRecs, RIL_CDMA_MAX_NUMBER_OF_INFO_RECS); startResponse; p.writeInt32(num); for (int i = 0 ; i < num ; i++) { infoRec = &p_cur->infoRec[i]; p.writeInt32(infoRec->name); switch (infoRec->name) { case RIL_CDMA_DISPLAY_INFO_REC: case RIL_CDMA_EXTENDED_DISPLAY_INFO_REC: if (infoRec->rec.display.alpha_len > CDMA_ALPHA_INFO_BUFFER_LENGTH) { RLOGE("invalid display info response length %d \ expected not more than %d\n", (int)infoRec->rec.display.alpha_len, CDMA_ALPHA_INFO_BUFFER_LENGTH); return RIL_ERRNO_INVALID_RESPONSE; } string8 = (char*) calloc(infoRec->rec.display.alpha_len + 1, sizeof(char)); if (string8 == NULL) { RLOGE("Memory allocation failed for responseCdmaInformationRecords"); closeRequest; return RIL_ERRNO_NO_MEMORY; } for (int i = 0 ; i < infoRec->rec.display.alpha_len ; i++) { string8[i] = infoRec->rec.display.alpha_buf[i]; } string8[(int)infoRec->rec.display.alpha_len] = '\0'; writeStringToParcel(p, (const char*)string8); free(string8); string8 = NULL; break; case RIL_CDMA_CALLED_PARTY_NUMBER_INFO_REC: case RIL_CDMA_CALLING_PARTY_NUMBER_INFO_REC: case RIL_CDMA_CONNECTED_NUMBER_INFO_REC: if (infoRec->rec.number.len > CDMA_NUMBER_INFO_BUFFER_LENGTH) { RLOGE("invalid display info response length %d \ expected not more than %d\n", (int)infoRec->rec.number.len, CDMA_NUMBER_INFO_BUFFER_LENGTH); return RIL_ERRNO_INVALID_RESPONSE; } string8 = (char*) calloc(infoRec->rec.number.len + 1, sizeof(char)); if (string8 == NULL) { RLOGE("Memory allocation failed for responseCdmaInformationRecords"); closeRequest; return RIL_ERRNO_NO_MEMORY; } for (int i = 0 ; i < infoRec->rec.number.len; i++) { string8[i] = infoRec->rec.number.buf[i]; } string8[(int)infoRec->rec.number.len] = '\0'; writeStringToParcel(p, (const char*)string8); free(string8); string8 = NULL; p.writeInt32(infoRec->rec.number.number_type); p.writeInt32(infoRec->rec.number.number_plan); p.writeInt32(infoRec->rec.number.pi); p.writeInt32(infoRec->rec.number.si); break; case RIL_CDMA_SIGNAL_INFO_REC: p.writeInt32(infoRec->rec.signal.isPresent); p.writeInt32(infoRec->rec.signal.signalType); p.writeInt32(infoRec->rec.signal.alertPitch); p.writeInt32(infoRec->rec.signal.signal); appendPrintBuf("%sisPresent=%X, signalType=%X, \ alertPitch=%X, signal=%X, ", printBuf, (int)infoRec->rec.signal.isPresent, (int)infoRec->rec.signal.signalType, (int)infoRec->rec.signal.alertPitch, (int)infoRec->rec.signal.signal); removeLastChar; break; case RIL_CDMA_REDIRECTING_NUMBER_INFO_REC: if (infoRec->rec.redir.redirectingNumber.len > CDMA_NUMBER_INFO_BUFFER_LENGTH) { RLOGE("invalid display info response length %d \ expected not more than %d\n", (int)infoRec->rec.redir.redirectingNumber.len, CDMA_NUMBER_INFO_BUFFER_LENGTH); return RIL_ERRNO_INVALID_RESPONSE; } string8 = (char*) calloc(infoRec->rec.redir.redirectingNumber.len + 1, sizeof(char)); if (string8 == NULL) { RLOGE("Memory allocation failed for responseCdmaInformationRecords"); closeRequest; return RIL_ERRNO_NO_MEMORY; } for (int i = 0; i < infoRec->rec.redir.redirectingNumber.len; i++) { string8[i] = infoRec->rec.redir.redirectingNumber.buf[i]; } string8[(int)infoRec->rec.redir.redirectingNumber.len] = '\0'; writeStringToParcel(p, (const char*)string8); free(string8); string8 = NULL; p.writeInt32(infoRec->rec.redir.redirectingNumber.number_type); p.writeInt32(infoRec->rec.redir.redirectingNumber.number_plan); p.writeInt32(infoRec->rec.redir.redirectingNumber.pi); p.writeInt32(infoRec->rec.redir.redirectingNumber.si); p.writeInt32(infoRec->rec.redir.redirectingReason); break; case RIL_CDMA_LINE_CONTROL_INFO_REC: p.writeInt32(infoRec->rec.lineCtrl.lineCtrlPolarityIncluded); p.writeInt32(infoRec->rec.lineCtrl.lineCtrlToggle); p.writeInt32(infoRec->rec.lineCtrl.lineCtrlReverse); p.writeInt32(infoRec->rec.lineCtrl.lineCtrlPowerDenial); appendPrintBuf("%slineCtrlPolarityIncluded=%d, \ lineCtrlToggle=%d, lineCtrlReverse=%d, \ lineCtrlPowerDenial=%d, ", printBuf, (int)infoRec->rec.lineCtrl.lineCtrlPolarityIncluded, (int)infoRec->rec.lineCtrl.lineCtrlToggle, (int)infoRec->rec.lineCtrl.lineCtrlReverse, (int)infoRec->rec.lineCtrl.lineCtrlPowerDenial); removeLastChar; break; case RIL_CDMA_T53_CLIR_INFO_REC: p.writeInt32((int)(infoRec->rec.clir.cause)); appendPrintBuf("%scause%d", printBuf, infoRec->rec.clir.cause); removeLastChar; break; case RIL_CDMA_T53_AUDIO_CONTROL_INFO_REC: p.writeInt32(infoRec->rec.audioCtrl.upLink); p.writeInt32(infoRec->rec.audioCtrl.downLink); appendPrintBuf("%supLink=%d, downLink=%d, ", printBuf, infoRec->rec.audioCtrl.upLink, infoRec->rec.audioCtrl.downLink); removeLastChar; break; case RIL_CDMA_T53_RELEASE_INFO_REC: // TODO(Moto): See David Krause, he has the answer:) RLOGE("RIL_CDMA_T53_RELEASE_INFO_REC: return INVALID_RESPONSE"); return RIL_ERRNO_INVALID_RESPONSE; default: RLOGE("Incorrect name value"); return RIL_ERRNO_INVALID_RESPONSE; } } closeResponse; return 0; } static void responseRilSignalStrengthV5(Parcel &p, RIL_SignalStrength_v10 *p_cur) { p.writeInt32(p_cur->GW_SignalStrength.signalStrength); p.writeInt32(p_cur->GW_SignalStrength.bitErrorRate); p.writeInt32(p_cur->CDMA_SignalStrength.dbm); p.writeInt32(p_cur->CDMA_SignalStrength.ecio); p.writeInt32(p_cur->EVDO_SignalStrength.dbm); p.writeInt32(p_cur->EVDO_SignalStrength.ecio); p.writeInt32(p_cur->EVDO_SignalStrength.signalNoiseRatio); } static void responseRilSignalStrengthV6Extra(Parcel &p, RIL_SignalStrength_v10 *p_cur) { /* * Fixup LTE for backwards compatibility */ // signalStrength: -1 -> 99 if (p_cur->LTE_SignalStrength.signalStrength == -1) { p_cur->LTE_SignalStrength.signalStrength = 99; } // rsrp: -1 -> INT_MAX all other negative value to positive. // So remap here if (p_cur->LTE_SignalStrength.rsrp == -1) { p_cur->LTE_SignalStrength.rsrp = INT_MAX; } else if (p_cur->LTE_SignalStrength.rsrp < -1) { p_cur->LTE_SignalStrength.rsrp = -p_cur->LTE_SignalStrength.rsrp; } // rsrq: -1 -> INT_MAX if (p_cur->LTE_SignalStrength.rsrq == -1) { p_cur->LTE_SignalStrength.rsrq = INT_MAX; } // Not remapping rssnr is already using INT_MAX // cqi: -1 -> INT_MAX if (p_cur->LTE_SignalStrength.cqi == -1) { p_cur->LTE_SignalStrength.cqi = INT_MAX; } p.writeInt32(p_cur->LTE_SignalStrength.signalStrength); p.writeInt32(p_cur->LTE_SignalStrength.rsrp); p.writeInt32(p_cur->LTE_SignalStrength.rsrq); p.writeInt32(p_cur->LTE_SignalStrength.rssnr); p.writeInt32(p_cur->LTE_SignalStrength.cqi); } static void responseRilSignalStrengthV10(Parcel &p, RIL_SignalStrength_v10 *p_cur) { responseRilSignalStrengthV5(p, p_cur); responseRilSignalStrengthV6Extra(p, p_cur); p.writeInt32(p_cur->TD_SCDMA_SignalStrength.rscp); } static int responseRilSignalStrength(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } RIL_SignalStrength_v10 *p_cur; if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) { if (responselen >= sizeof (RIL_SignalStrength_v5)) { p_cur = ((RIL_SignalStrength_v10 *) response); responseRilSignalStrengthV5(p, p_cur); if (responselen >= sizeof (RIL_SignalStrength_v6)) { responseRilSignalStrengthV6Extra(p, p_cur); if (responselen >= sizeof (RIL_SignalStrength_v10)) { p.writeInt32(p_cur->TD_SCDMA_SignalStrength.rscp); } else { p.writeInt32(INT_MAX); } } else { p.writeInt32(99); p.writeInt32(INT_MAX); p.writeInt32(INT_MAX); p.writeInt32(INT_MAX); p.writeInt32(INT_MAX); p.writeInt32(INT_MAX); } } else { RLOGE("invalid response length"); return RIL_ERRNO_INVALID_RESPONSE; } } else { // RIL version >= 13 if (responselen % sizeof(RIL_SignalStrength_v10) != 0) { RLOGE("Data structure expected is RIL_SignalStrength_v10"); if (!isDebuggable()) { return RIL_ERRNO_INVALID_RESPONSE; } else { assert(0); } } p_cur = ((RIL_SignalStrength_v10 *) response); responseRilSignalStrengthV10(p, p_cur); } startResponse; appendPrintBuf("%s[signalStrength=%d,bitErrorRate=%d,\ CDMA_SS.dbm=%d,CDMA_SSecio=%d,\ EVDO_SS.dbm=%d,EVDO_SS.ecio=%d,\ EVDO_SS.signalNoiseRatio=%d,\ LTE_SS.signalStrength=%d,LTE_SS.rsrp=%d,LTE_SS.rsrq=%d,\ LTE_SS.rssnr=%d,LTE_SS.cqi=%d,TDSCDMA_SS.rscp=%d]", printBuf, p_cur->GW_SignalStrength.signalStrength, p_cur->GW_SignalStrength.bitErrorRate, p_cur->CDMA_SignalStrength.dbm, p_cur->CDMA_SignalStrength.ecio, p_cur->EVDO_SignalStrength.dbm, p_cur->EVDO_SignalStrength.ecio, p_cur->EVDO_SignalStrength.signalNoiseRatio, p_cur->LTE_SignalStrength.signalStrength, p_cur->LTE_SignalStrength.rsrp, p_cur->LTE_SignalStrength.rsrq, p_cur->LTE_SignalStrength.rssnr, p_cur->LTE_SignalStrength.cqi, p_cur->TD_SCDMA_SignalStrength.rscp); closeResponse; return 0; } static int responseCallRing(Parcel &p, void *response, size_t responselen) { if ((response == NULL) || (responselen == 0)) { return responseVoid(p, response, responselen); } else { return responseCdmaSignalInfoRecord(p, response, responselen); } } static int responseCdmaSignalInfoRecord(Parcel &p, void *response, size_t responselen) { if (response == NULL || responselen == 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof (RIL_CDMA_SignalInfoRecord)) { RLOGE("invalid response length %d expected sizeof (RIL_CDMA_SignalInfoRecord) of %d\n", (int)responselen, (int)sizeof (RIL_CDMA_SignalInfoRecord)); return RIL_ERRNO_INVALID_RESPONSE; } startResponse; RIL_CDMA_SignalInfoRecord *p_cur = ((RIL_CDMA_SignalInfoRecord *) response); marshallSignalInfoRecord(p, *p_cur); appendPrintBuf("%s[isPresent=%d,signalType=%d,alertPitch=%d\ signal=%d]", printBuf, p_cur->isPresent, p_cur->signalType, p_cur->alertPitch, p_cur->signal); closeResponse; return 0; } static int responseCdmaCallWaiting(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen < sizeof(RIL_CDMA_CallWaiting_v6)) { RLOGW("Upgrade to ril version %d\n", RIL_VERSION); } RIL_CDMA_CallWaiting_v6 *p_cur = ((RIL_CDMA_CallWaiting_v6 *) response); writeStringToParcel(p, p_cur->number); p.writeInt32(p_cur->numberPresentation); writeStringToParcel(p, p_cur->name); marshallSignalInfoRecord(p, p_cur->signalInfoRecord); if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) { if (responselen >= sizeof(RIL_CDMA_CallWaiting_v6)) { p.writeInt32(p_cur->number_type); p.writeInt32(p_cur->number_plan); } else { p.writeInt32(0); p.writeInt32(0); } } else { // RIL version >= 13 if (responselen % sizeof(RIL_CDMA_CallWaiting_v6) != 0) { RLOGE("Data structure expected is RIL_CDMA_CallWaiting_v6"); if (!isDebuggable()) { return RIL_ERRNO_INVALID_RESPONSE; } else { assert(0); } } p.writeInt32(p_cur->number_type); p.writeInt32(p_cur->number_plan); } startResponse; appendPrintBuf("%snumber=%s,numberPresentation=%d, name=%s,\ signalInfoRecord[isPresent=%d,signalType=%d,alertPitch=%d\ signal=%d,number_type=%d,number_plan=%d]", printBuf, p_cur->number, p_cur->numberPresentation, p_cur->name, p_cur->signalInfoRecord.isPresent, p_cur->signalInfoRecord.signalType, p_cur->signalInfoRecord.alertPitch, p_cur->signalInfoRecord.signal, p_cur->number_type, p_cur->number_plan); closeResponse; return 0; } static void responseSimRefreshV7(Parcel &p, void *response) { RIL_SimRefreshResponse_v7 *p_cur = ((RIL_SimRefreshResponse_v7 *) response); p.writeInt32(p_cur->result); p.writeInt32(p_cur->ef_id); writeStringToParcel(p, p_cur->aid); appendPrintBuf("%sresult=%d, ef_id=%d, aid=%s", printBuf, p_cur->result, p_cur->ef_id, p_cur->aid); } static int responseSimRefresh(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("responseSimRefresh: invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } startResponse; if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) { if (s_callbacks.version >= 7) { responseSimRefreshV7(p, response); } else { int *p_cur = ((int *) response); p.writeInt32(p_cur[0]); p.writeInt32(p_cur[1]); writeStringToParcel(p, NULL); appendPrintBuf("%sresult=%d, ef_id=%d", printBuf, p_cur[0], p_cur[1]); } } else { // RIL version >= 13 if (responselen % sizeof(RIL_SimRefreshResponse_v7) != 0) { RLOGE("Data structure expected is RIL_SimRefreshResponse_v7"); if (!isDebuggable()) { return RIL_ERRNO_INVALID_RESPONSE; } else { assert(0); } } responseSimRefreshV7(p, response); } closeResponse; return 0; } static int responseCellInfoListV6(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_CellInfo) != 0) { RLOGE("responseCellInfoList: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_CellInfo)); return RIL_ERRNO_INVALID_RESPONSE; } int num = responselen / sizeof(RIL_CellInfo); p.writeInt32(num); RIL_CellInfo *p_cur = (RIL_CellInfo *) response; startResponse; int i; for (i = 0; i < num; i++) { p.writeInt32((int)p_cur->cellInfoType); p.writeInt32(p_cur->registered); p.writeInt32(p_cur->timeStampType); p.writeInt64(p_cur->timeStamp); switch(p_cur->cellInfoType) { case RIL_CELL_INFO_TYPE_GSM: { p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid); p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength); p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate); break; } case RIL_CELL_INFO_TYPE_WCDMA: { p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc); p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength); p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate); break; } case RIL_CELL_INFO_TYPE_CDMA: { p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio); break; } case RIL_CELL_INFO_TYPE_LTE: { p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance); break; } case RIL_CELL_INFO_TYPE_TD_SCDMA: { p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid); p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp); break; } } p_cur += 1; } removeLastChar; closeResponse; return 0; } static int responseCellInfoListV12(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_CellInfo_v12) != 0) { RLOGE("responseCellInfoList: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_CellInfo_v12)); return RIL_ERRNO_INVALID_RESPONSE; } int num = responselen / sizeof(RIL_CellInfo_v12); p.writeInt32(num); RIL_CellInfo_v12 *p_cur = (RIL_CellInfo_v12 *) response; startResponse; int i; for (i = 0; i < num; i++) { p.writeInt32((int)p_cur->cellInfoType); p.writeInt32(p_cur->registered); p.writeInt32(p_cur->timeStampType); p.writeInt64(p_cur->timeStamp); switch(p_cur->cellInfoType) { case RIL_CELL_INFO_TYPE_GSM: { p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.arfcn); p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.bsic); p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength); p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate); p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.timingAdvance); break; } case RIL_CELL_INFO_TYPE_WCDMA: { p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc); p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.uarfcn); p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength); p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate); break; } case RIL_CELL_INFO_TYPE_CDMA: { p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude); p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio); p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio); break; } case RIL_CELL_INFO_TYPE_LTE: { p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac); p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.earfcn); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi); p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance); break; } case RIL_CELL_INFO_TYPE_TD_SCDMA: { p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid); p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid); p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp); break; } } p_cur += 1; } removeLastChar; closeResponse; return 0; } static int responseCellInfoList(Parcel &p, void *response, size_t responselen) { if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) { if (s_callbacks.version < 12) { RLOGD("responseCellInfoList: v6"); return responseCellInfoListV6(p, response, responselen); } else { RLOGD("responseCellInfoList: v12"); return responseCellInfoListV12(p, response, responselen); } } else { // RIL version >= 13 if (responselen % sizeof(RIL_CellInfo_v12) != 0) { RLOGE("Data structure expected is RIL_CellInfo_v12"); if (!isDebuggable()) { return RIL_ERRNO_INVALID_RESPONSE; } else { assert(0); } } return responseCellInfoListV12(p, response, responselen); } return 0; } static int responseHardwareConfig(Parcel &p, void *response, size_t responselen) { if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen % sizeof(RIL_HardwareConfig) != 0) { RLOGE("responseHardwareConfig: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_HardwareConfig)); return RIL_ERRNO_INVALID_RESPONSE; } int num = responselen / sizeof(RIL_HardwareConfig); int i; RIL_HardwareConfig *p_cur = (RIL_HardwareConfig *) response; p.writeInt32(num); startResponse; for (i = 0; i < num; i++) { switch (p_cur[i].type) { case RIL_HARDWARE_CONFIG_MODEM: { writeStringToParcel(p, p_cur[i].uuid); p.writeInt32((int)p_cur[i].state); p.writeInt32(p_cur[i].cfg.modem.rat); p.writeInt32(p_cur[i].cfg.modem.maxVoice); p.writeInt32(p_cur[i].cfg.modem.maxData); p.writeInt32(p_cur[i].cfg.modem.maxStandby); appendPrintBuf("%s modem: uuid=%s,state=%d,rat=%08x,maxV=%d,maxD=%d,maxS=%d", printBuf, p_cur[i].uuid, (int)p_cur[i].state, p_cur[i].cfg.modem.rat, p_cur[i].cfg.modem.maxVoice, p_cur[i].cfg.modem.maxData, p_cur[i].cfg.modem.maxStandby); break; } case RIL_HARDWARE_CONFIG_SIM: { writeStringToParcel(p, p_cur[i].uuid); p.writeInt32((int)p_cur[i].state); writeStringToParcel(p, p_cur[i].cfg.sim.modemUuid); appendPrintBuf("%s sim: uuid=%s,state=%d,modem-uuid=%s", printBuf, p_cur[i].uuid, (int)p_cur[i].state, p_cur[i].cfg.sim.modemUuid); break; } } } removeLastChar; closeResponse; return 0; } static int responseRadioCapability(Parcel &p, void *response, size_t responselen) { if (response == NULL) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof (RIL_RadioCapability) ) { RLOGE("invalid response length was %d expected %d", (int)responselen, (int)sizeof (RIL_SIM_IO_Response)); return RIL_ERRNO_INVALID_RESPONSE; } RIL_RadioCapability *p_cur = (RIL_RadioCapability *) response; p.writeInt32(p_cur->version); p.writeInt32(p_cur->session); p.writeInt32(p_cur->phase); p.writeInt32(p_cur->rat); writeStringToParcel(p, p_cur->logicalModemUuid); p.writeInt32(p_cur->status); startResponse; appendPrintBuf("%s[version=%d,session=%d,phase=%d,\ rat=%s,logicalModemUuid=%s,status=%d]", printBuf, p_cur->version, p_cur->session, p_cur->phase, p_cur->rat, p_cur->logicalModemUuid, p_cur->status); closeResponse; return 0; } static int responseSSData(Parcel &p, void *response, size_t responselen) { RLOGD("In responseSSData"); int num; if (response == NULL && responselen != 0) { RLOGE("invalid response length was %d expected %d", (int)responselen, (int)sizeof (RIL_SIM_IO_Response)); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof(RIL_StkCcUnsolSsResponse)) { RLOGE("invalid response length %d, expected %d", (int)responselen, (int)sizeof(RIL_StkCcUnsolSsResponse)); return RIL_ERRNO_INVALID_RESPONSE; } startResponse; RIL_StkCcUnsolSsResponse *p_cur = (RIL_StkCcUnsolSsResponse *) response; p.writeInt32(p_cur->serviceType); p.writeInt32(p_cur->requestType); p.writeInt32(p_cur->teleserviceType); p.writeInt32(p_cur->serviceClass); p.writeInt32(p_cur->result); if (isServiceTypeCfQuery(p_cur->serviceType, p_cur->requestType)) { RLOGD("responseSSData CF type, num of Cf elements %d", p_cur->cfData.numValidIndexes); if (p_cur->cfData.numValidIndexes > NUM_SERVICE_CLASSES) { RLOGE("numValidIndexes is greater than max value %d, " "truncating it to max value", NUM_SERVICE_CLASSES); p_cur->cfData.numValidIndexes = NUM_SERVICE_CLASSES; } /* number of call info's */ p.writeInt32(p_cur->cfData.numValidIndexes); for (int i = 0; i < p_cur->cfData.numValidIndexes; i++) { RIL_CallForwardInfo cf = p_cur->cfData.cfInfo[i]; p.writeInt32(cf.status); p.writeInt32(cf.reason); p.writeInt32(cf.serviceClass); p.writeInt32(cf.toa); writeStringToParcel(p, cf.number); p.writeInt32(cf.timeSeconds); appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d],", printBuf, (cf.status==1)?"enable":"disable", cf.reason, cf.serviceClass, cf.toa, (char*)cf.number, cf.timeSeconds); RLOGD("Data: %d,reason=%d,cls=%d,toa=%d,num=%s,tout=%d],", cf.status, cf.reason, cf.serviceClass, cf.toa, (char*)cf.number, cf.timeSeconds); } } else { p.writeInt32 (SS_INFO_MAX); /* each int*/ for (int i = 0; i < SS_INFO_MAX; i++) { appendPrintBuf("%s%d,", printBuf, p_cur->ssInfo[i]); RLOGD("Data: %d",p_cur->ssInfo[i]); p.writeInt32(p_cur->ssInfo[i]); } } removeLastChar; closeResponse; return 0; } static bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType) { if ((reqType == SS_INTERROGATION) && (serType == SS_CFU || serType == SS_CF_BUSY || serType == SS_CF_NO_REPLY || serType == SS_CF_NOT_REACHABLE || serType == SS_CF_ALL || serType == SS_CF_ALL_CONDITIONAL)) { return true; } return false; } static void triggerEvLoop() { int ret; if (!pthread_equal(pthread_self(), s_tid_dispatch)) { /* trigger event loop to wakeup. No reason to do this, * if we're in the event loop thread */ do { ret = write (s_fdWakeupWrite, " ", 1); } while (ret < 0 && errno == EINTR); } } static void rilEventAddWakeup(struct ril_event *ev) { ril_event_add(ev); triggerEvLoop(); } static void sendSimStatusAppInfo(Parcel &p, int num_apps, RIL_AppStatus appStatus[]) { p.writeInt32(num_apps); startResponse; for (int i = 0; i < num_apps; i++) { p.writeInt32(appStatus[i].app_type); p.writeInt32(appStatus[i].app_state); p.writeInt32(appStatus[i].perso_substate); writeStringToParcel(p, (const char*)(appStatus[i].aid_ptr)); writeStringToParcel(p, (const char*) (appStatus[i].app_label_ptr)); p.writeInt32(appStatus[i].pin1_replaced); p.writeInt32(appStatus[i].pin1); p.writeInt32(appStatus[i].pin2); appendPrintBuf("%s[app_type=%d,app_state=%d,perso_substate=%d,\ aid_ptr=%s,app_label_ptr=%s,pin1_replaced=%d,pin1=%d,pin2=%d],", printBuf, appStatus[i].app_type, appStatus[i].app_state, appStatus[i].perso_substate, appStatus[i].aid_ptr, appStatus[i].app_label_ptr, appStatus[i].pin1_replaced, appStatus[i].pin1, appStatus[i].pin2); } closeResponse; } static void responseSimStatusV5(Parcel &p, void *response) { RIL_CardStatus_v5 *p_cur = ((RIL_CardStatus_v5 *) response); p.writeInt32(p_cur->card_state); p.writeInt32(p_cur->universal_pin_state); p.writeInt32(p_cur->gsm_umts_subscription_app_index); p.writeInt32(p_cur->cdma_subscription_app_index); sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications); } static void responseSimStatusV6(Parcel &p, void *response) { RIL_CardStatus_v6 *p_cur = ((RIL_CardStatus_v6 *) response); p.writeInt32(p_cur->card_state); p.writeInt32(p_cur->universal_pin_state); p.writeInt32(p_cur->gsm_umts_subscription_app_index); p.writeInt32(p_cur->cdma_subscription_app_index); p.writeInt32(p_cur->ims_subscription_app_index); sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications); } static int responseSimStatus(Parcel &p, void *response, size_t responselen) { int i; if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) { if (responselen == sizeof (RIL_CardStatus_v6)) { responseSimStatusV6(p, response); } else if (responselen == sizeof (RIL_CardStatus_v5)) { responseSimStatusV5(p, response); } else { RLOGE("responseSimStatus: A RilCardStatus_v6 or _v5 expected\n"); return RIL_ERRNO_INVALID_RESPONSE; } } else { // RIL version >= 13 if (responselen % sizeof(RIL_CardStatus_v6) != 0) { RLOGE("Data structure expected is RIL_CardStatus_v6"); if (!isDebuggable()) { return RIL_ERRNO_INVALID_RESPONSE; } else { assert(0); } } responseSimStatusV6(p, response); } return 0; } static int responseGsmBrSmsCnf(Parcel &p, void *response, size_t responselen) { int num = responselen / sizeof(RIL_GSM_BroadcastSmsConfigInfo *); p.writeInt32(num); startResponse; RIL_GSM_BroadcastSmsConfigInfo **p_cur = (RIL_GSM_BroadcastSmsConfigInfo **) response; for (int i = 0; i < num; i++) { p.writeInt32(p_cur[i]->fromServiceId); p.writeInt32(p_cur[i]->toServiceId); p.writeInt32(p_cur[i]->fromCodeScheme); p.writeInt32(p_cur[i]->toCodeScheme); p.writeInt32(p_cur[i]->selected); appendPrintBuf("%s [%d: fromServiceId=%d, toServiceId=%d, \ fromCodeScheme=%d, toCodeScheme=%d, selected =%d]", printBuf, i, p_cur[i]->fromServiceId, p_cur[i]->toServiceId, p_cur[i]->fromCodeScheme, p_cur[i]->toCodeScheme, p_cur[i]->selected); } closeResponse; return 0; } static int responseCdmaBrSmsCnf(Parcel &p, void *response, size_t responselen) { RIL_CDMA_BroadcastSmsConfigInfo **p_cur = (RIL_CDMA_BroadcastSmsConfigInfo **) response; int num = responselen / sizeof (RIL_CDMA_BroadcastSmsConfigInfo *); p.writeInt32(num); startResponse; for (int i = 0 ; i < num ; i++ ) { p.writeInt32(p_cur[i]->service_category); p.writeInt32(p_cur[i]->language); p.writeInt32(p_cur[i]->selected); appendPrintBuf("%s [%d: srvice_category=%d, language =%d, \ selected =%d], ", printBuf, i, p_cur[i]->service_category, p_cur[i]->language, p_cur[i]->selected); } closeResponse; return 0; } static int responseCdmaSms(Parcel &p, void *response, size_t responselen) { int num; int digitCount; int digitLimit; uint8_t uct; void* dest; RLOGD("Inside responseCdmaSms"); if (response == NULL && responselen != 0) { RLOGE("invalid response: NULL"); return RIL_ERRNO_INVALID_RESPONSE; } if (responselen != sizeof(RIL_CDMA_SMS_Message)) { RLOGE("invalid response length was %d expected %d", (int)responselen, (int)sizeof(RIL_CDMA_SMS_Message)); return RIL_ERRNO_INVALID_RESPONSE; } RIL_CDMA_SMS_Message *p_cur = (RIL_CDMA_SMS_Message *) response; p.writeInt32(p_cur->uTeleserviceID); p.write(&(p_cur->bIsServicePresent),sizeof(uct)); p.writeInt32(p_cur->uServicecategory); p.writeInt32(p_cur->sAddress.digit_mode); p.writeInt32(p_cur->sAddress.number_mode); p.writeInt32(p_cur->sAddress.number_type); p.writeInt32(p_cur->sAddress.number_plan); p.write(&(p_cur->sAddress.number_of_digits), sizeof(uct)); digitLimit= MIN((p_cur->sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX); for(digitCount =0 ; digitCount < digitLimit; digitCount ++) { p.write(&(p_cur->sAddress.digits[digitCount]),sizeof(uct)); } p.writeInt32(p_cur->sSubAddress.subaddressType); p.write(&(p_cur->sSubAddress.odd),sizeof(uct)); p.write(&(p_cur->sSubAddress.number_of_digits),sizeof(uct)); digitLimit= MIN((p_cur->sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX); for(digitCount =0 ; digitCount < digitLimit; digitCount ++) { p.write(&(p_cur->sSubAddress.digits[digitCount]),sizeof(uct)); } digitLimit= MIN((p_cur->uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX); p.writeInt32(p_cur->uBearerDataLen); for(digitCount =0 ; digitCount < digitLimit; digitCount ++) { p.write(&(p_cur->aBearerData[digitCount]), sizeof(uct)); } startResponse; appendPrintBuf("%suTeleserviceID=%d, bIsServicePresent=%d, uServicecategory=%d, \ sAddress.digit_mode=%d, sAddress.number_mode=%d, sAddress.number_type=%d, ", printBuf, p_cur->uTeleserviceID,p_cur->bIsServicePresent,p_cur->uServicecategory, p_cur->sAddress.digit_mode, p_cur->sAddress.number_mode,p_cur->sAddress.number_type); closeResponse; return 0; } static int responseDcRtInfo(Parcel &p, void *response, size_t responselen) { int num = responselen / sizeof(RIL_DcRtInfo); if ((responselen % sizeof(RIL_DcRtInfo) != 0) || (num != 1)) { RLOGE("responseDcRtInfo: invalid response length %d expected multiple of %d", (int)responselen, (int)sizeof(RIL_DcRtInfo)); return RIL_ERRNO_INVALID_RESPONSE; } startResponse; RIL_DcRtInfo *pDcRtInfo = (RIL_DcRtInfo *)response; p.writeInt64(pDcRtInfo->time); p.writeInt32(pDcRtInfo->powerState); appendPrintBuf("%s[time=%d,powerState=%d]", printBuf, pDcRtInfo->time, pDcRtInfo->powerState); closeResponse; return 0; } static int responseLceStatus(Parcel &p, void *response, size_t responselen) { if (response == NULL || responselen != sizeof(RIL_LceStatusInfo)) { if (response == NULL) { RLOGE("invalid response: NULL"); } else { RLOGE("responseLceStatus: invalid response length %d expecting len: d%", sizeof(RIL_LceStatusInfo), responselen); } return RIL_ERRNO_INVALID_RESPONSE; } RIL_LceStatusInfo *p_cur = (RIL_LceStatusInfo *)response; p.write((void *)p_cur, 1); // p_cur->lce_status takes one byte. p.writeInt32(p_cur->actual_interval_ms); startResponse; appendPrintBuf("LCE Status: %d, actual_interval_ms: %d", p_cur->lce_status, p_cur->actual_interval_ms); closeResponse; return 0; } static int responseLceData(Parcel &p, void *response, size_t responselen) { if (response == NULL || responselen != sizeof(RIL_LceDataInfo)) { if (response == NULL) { RLOGE("invalid response: NULL"); } else { RLOGE("responseLceData: invalid response length %d expecting len: d%", sizeof(RIL_LceDataInfo), responselen); } return RIL_ERRNO_INVALID_RESPONSE; } RIL_LceDataInfo *p_cur = (RIL_LceDataInfo *)response; p.writeInt32(p_cur->last_hop_capacity_kbps); /* p_cur->confidence_level and p_cur->lce_suspended take 1 byte each.*/ p.write((void *)&(p_cur->confidence_level), 1); p.write((void *)&(p_cur->lce_suspended), 1); startResponse; appendPrintBuf("LCE info received: capacity %d confidence level %d \ and suspended %d", p_cur->last_hop_capacity_kbps, p_cur->confidence_level, p_cur->lce_suspended); closeResponse; return 0; } static int responseActivityData(Parcel &p, void *response, size_t responselen) { if (response == NULL || responselen != sizeof(RIL_ActivityStatsInfo)) { if (response == NULL) { RLOGE("invalid response: NULL"); } else { RLOGE("responseActivityData: invalid response length %d expecting len: d%", sizeof(RIL_ActivityStatsInfo), responselen); } return RIL_ERRNO_INVALID_RESPONSE; } RIL_ActivityStatsInfo *p_cur = (RIL_ActivityStatsInfo *)response; p.writeInt32(p_cur->sleep_mode_time_ms); p.writeInt32(p_cur->idle_mode_time_ms); for(int i = 0; i < RIL_NUM_TX_POWER_LEVELS; i++) { p.writeInt32(p_cur->tx_mode_time_ms[i]); } p.writeInt32(p_cur->rx_mode_time_ms); startResponse; appendPrintBuf("Modem activity info received: sleep_mode_time_ms %d idle_mode_time_ms %d \ tx_mode_time_ms %d %d %d %d %d and rx_mode_time_ms %d", p_cur->sleep_mode_time_ms, p_cur->idle_mode_time_ms, p_cur->tx_mode_time_ms[0], p_cur->tx_mode_time_ms[1], p_cur->tx_mode_time_ms[2], p_cur->tx_mode_time_ms[3], p_cur->tx_mode_time_ms[4], p_cur->rx_mode_time_ms); closeResponse; return 0; } /** * A write on the wakeup fd is done just to pop us out of select() * We empty the buffer here and then ril_event will reset the timers on the * way back down */ static void processWakeupCallback(int fd, short flags, void *param) { char buff[16]; int ret; RLOGV("processWakeupCallback"); /* empty our wakeup socket out */ do { ret = read(s_fdWakeupRead, &buff, sizeof(buff)); } while (ret > 0 || (ret < 0 && errno == EINTR)); } static void onCommandsSocketClosed(RIL_SOCKET_ID socket_id) { int ret; RequestInfo *p_cur; /* Hook for current context pendingRequestsMutextHook refer to &s_pendingRequestsMutex */ pthread_mutex_t * pendingRequestsMutexHook = &s_pendingRequestsMutex; /* pendingRequestsHook refer to &s_pendingRequests */ RequestInfo ** pendingRequestsHook = &s_pendingRequests; #if (SIM_COUNT >= 2) if (socket_id == RIL_SOCKET_2) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2; pendingRequestsHook = &s_pendingRequests_socket2; } #if (SIM_COUNT >= 3) else if (socket_id == RIL_SOCKET_3) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3; pendingRequestsHook = &s_pendingRequests_socket3; } #endif #if (SIM_COUNT >= 4) else if (socket_id == RIL_SOCKET_4) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4; pendingRequestsHook = &s_pendingRequests_socket4; } #endif #endif /* mark pending requests as "cancelled" so we dont report responses */ ret = pthread_mutex_lock(pendingRequestsMutexHook); assert (ret == 0); p_cur = *pendingRequestsHook; for (p_cur = *pendingRequestsHook ; p_cur != NULL ; p_cur = p_cur->p_next ) { p_cur->cancelled = 1; } ret = pthread_mutex_unlock(pendingRequestsMutexHook); assert (ret == 0); } static void processCommandsCallback(int fd, short flags, void *param) { RecordStream *p_rs; void *p_record; size_t recordlen; int ret; SocketListenParam *p_info = (SocketListenParam *)param; assert(fd == p_info->fdCommand); p_rs = p_info->p_rs; for (;;) { /* loop until EAGAIN/EINTR, end of stream, or other error */ ret = record_stream_get_next(p_rs, &p_record, &recordlen); if (ret == 0 && p_record == NULL) { /* end-of-stream */ break; } else if (ret < 0) { break; } else if (ret == 0) { /* && p_record != NULL */ processCommandBuffer(p_record, recordlen, p_info->socket_id); } } if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) { /* fatal error or end-of-stream */ if (ret != 0) { RLOGE("error on reading command socket errno:%d\n", errno); } else { RLOGW("EOS. Closing command socket."); } close(fd); p_info->fdCommand = -1; ril_event_del(p_info->commands_event); record_stream_free(p_rs); /* start listening for new connections again */ rilEventAddWakeup(&s_listen_event); onCommandsSocketClosed(p_info->socket_id); } } static void onNewCommandConnect(RIL_SOCKET_ID socket_id) { // Inform we are connected and the ril version int rilVer = s_callbacks.version; RIL_UNSOL_RESPONSE(RIL_UNSOL_RIL_CONNECTED, &rilVer, sizeof(rilVer), socket_id); // implicit radio state changed RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED, NULL, 0, socket_id); // Send last NITZ time data, in case it was missed if (s_lastNITZTimeData != NULL) { sendResponseRaw(s_lastNITZTimeData, s_lastNITZTimeDataSize, socket_id); free(s_lastNITZTimeData); s_lastNITZTimeData = NULL; } // Get version string if (s_callbacks.getVersion != NULL) { const char *version; version = s_callbacks.getVersion(); RLOGI("RIL Daemon version: %s\n", version); property_set(PROPERTY_RIL_IMPL, version); } else { RLOGI("RIL Daemon version: unavailable\n"); property_set(PROPERTY_RIL_IMPL, "unavailable"); } } static void listenCallback (int fd, short flags, void *param) { int ret; int err; int is_phone_socket; int fdCommand = -1; char* processName; RecordStream *p_rs; MySocketListenParam* listenParam; RilSocket *sapSocket = NULL; socketClient *sClient = NULL; SocketListenParam *p_info = (SocketListenParam *)param; if(RIL_SAP_SOCKET == p_info->type) { listenParam = (MySocketListenParam *)param; sapSocket = listenParam->socket; } struct sockaddr_un peeraddr; socklen_t socklen = sizeof (peeraddr); struct ucred creds; socklen_t szCreds = sizeof(creds); struct passwd *pwd = NULL; if(NULL == sapSocket) { assert (*p_info->fdCommand < 0); assert (fd == *p_info->fdListen); processName = PHONE_PROCESS; } else { assert (sapSocket->commandFd < 0); assert (fd == sapSocket->listenFd); processName = BLUETOOTH_PROCESS; } fdCommand = accept(fd, (sockaddr *) &peeraddr, &socklen); if (fdCommand < 0 ) { RLOGE("Error on accept() errno:%d", errno); /* start listening for new connections again */ if(NULL == sapSocket) { rilEventAddWakeup(p_info->listen_event); } else { rilEventAddWakeup(sapSocket->getListenEvent()); } return; } /* check the credential of the other side and only accept socket from * phone process */ errno = 0; is_phone_socket = 0; err = getsockopt(fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds); if (err == 0 && szCreds > 0) { errno = 0; pwd = getpwuid(creds.uid); if (pwd != NULL) { if (strcmp(pwd->pw_name, processName) == 0) { is_phone_socket = 1; } else { RLOGE("RILD can't accept socket from process %s", pwd->pw_name); } } else { RLOGE("Error on getpwuid() errno: %d", errno); } } else { RLOGD("Error on getsockopt() errno: %d", errno); } if (!is_phone_socket) { RLOGE("RILD must accept socket from %s", processName); close(fdCommand); fdCommand = -1; if(NULL == sapSocket) { onCommandsSocketClosed(p_info->socket_id); /* start listening for new connections again */ rilEventAddWakeup(p_info->listen_event); } else { sapSocket->onCommandsSocketClosed(); /* start listening for new connections again */ rilEventAddWakeup(sapSocket->getListenEvent()); } return; } ret = fcntl(fdCommand, F_SETFL, O_NONBLOCK); if (ret < 0) { RLOGE ("Error setting O_NONBLOCK errno:%d", errno); } if(NULL == sapSocket) { RLOGI("libril: new connection to %s", rilSocketIdToString(p_info->socket_id)); p_info->fdCommand = fdCommand; p_rs = record_stream_new(p_info->fdCommand, MAX_COMMAND_BYTES); p_info->p_rs = p_rs; ril_event_set (p_info->commands_event, p_info->fdCommand, 1, p_info->processCommandsCallback, p_info); rilEventAddWakeup (p_info->commands_event); onNewCommandConnect(p_info->socket_id); } else { RLOGI("libril: new connection"); sapSocket->setCommandFd(fdCommand); p_rs = record_stream_new(sapSocket->getCommandFd(), MAX_COMMAND_BYTES); sClient = new socketClient(sapSocket,p_rs); ril_event_set (sapSocket->getCallbackEvent(), sapSocket->getCommandFd(), 1, sapSocket->getCommandCb(), sClient); rilEventAddWakeup(sapSocket->getCallbackEvent()); sapSocket->onNewCommandConnect(); } } static void freeDebugCallbackArgs(int number, char **args) { for (int i = 0; i < number; i++) { if (args[i] != NULL) { free(args[i]); } } free(args); } static void debugCallback (int fd, short flags, void *param) { int acceptFD, option; struct sockaddr_un peeraddr; socklen_t socklen = sizeof (peeraddr); int data; unsigned int qxdm_data[6]; const char *deactData[1] = {"1"}; char *actData[1]; RIL_Dial dialData; int hangupData[1] = {1}; int number; char **args; RIL_SOCKET_ID socket_id = RIL_SOCKET_1; int sim_id = 0; RLOGI("debugCallback for socket %s", rilSocketIdToString(socket_id)); acceptFD = accept (fd, (sockaddr *) &peeraddr, &socklen); if (acceptFD < 0) { RLOGE ("error accepting on debug port: %d\n", errno); return; } if (recv(acceptFD, &number, sizeof(int), 0) != sizeof(int)) { RLOGE ("error reading on socket: number of Args: \n"); close(acceptFD); return; } if (number < 0) { RLOGE ("Invalid number of arguments: \n"); close(acceptFD); return; } args = (char **) calloc(number, sizeof(char*)); if (args == NULL) { RLOGE("Memory allocation failed for debug args"); close(acceptFD); return; } for (int i = 0; i < number; i++) { int len; if (recv(acceptFD, &len, sizeof(int), 0) != sizeof(int)) { RLOGE ("error reading on socket: Len of Args: \n"); freeDebugCallbackArgs(i, args); close(acceptFD); return; } if (len == INT_MAX || len < 0) { RLOGE("Invalid value of len: \n"); freeDebugCallbackArgs(i, args); close(acceptFD); return; } // +1 for null-term args[i] = (char *) calloc(len + 1, sizeof(char)); if (args[i] == NULL) { RLOGE("Memory allocation failed for debug args"); freeDebugCallbackArgs(i, args); close(acceptFD); return; } if (recv(acceptFD, args[i], sizeof(char) * len, 0) != (int)sizeof(char) * len) { RLOGE ("error reading on socket: Args[%d] \n", i); freeDebugCallbackArgs(i, args); close(acceptFD); return; } char * buf = args[i]; buf[len] = 0; if ((i+1) == number) { /* The last argument should be sim id 0(SIM1)~3(SIM4) */ sim_id = atoi(args[i]); switch (sim_id) { case 0: socket_id = RIL_SOCKET_1; break; #if (SIM_COUNT >= 2) case 1: socket_id = RIL_SOCKET_2; break; #endif #if (SIM_COUNT >= 3) case 2: socket_id = RIL_SOCKET_3; break; #endif #if (SIM_COUNT >= 4) case 3: socket_id = RIL_SOCKET_4; break; #endif default: socket_id = RIL_SOCKET_1; break; } } } switch (atoi(args[0])) { case 0: RLOGI ("Connection on debug port: issuing reset."); issueLocalRequest(RIL_REQUEST_RESET_RADIO, NULL, 0, socket_id); break; case 1: RLOGI ("Connection on debug port: issuing radio power off."); data = 0; issueLocalRequest(RIL_REQUEST_RADIO_POWER, &data, sizeof(int), socket_id); // Close the socket if (socket_id == RIL_SOCKET_1 && s_ril_param_socket.fdCommand > 0) { close(s_ril_param_socket.fdCommand); s_ril_param_socket.fdCommand = -1; } #if (SIM_COUNT == 2) else if (socket_id == RIL_SOCKET_2 && s_ril_param_socket2.fdCommand > 0) { close(s_ril_param_socket2.fdCommand); s_ril_param_socket2.fdCommand = -1; } #endif break; case 2: RLOGI ("Debug port: issuing unsolicited voice network change."); RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, NULL, 0, socket_id); break; case 3: RLOGI ("Debug port: QXDM log enable."); qxdm_data[0] = 65536; // head.func_tag qxdm_data[1] = 16; // head.len qxdm_data[2] = 1; // mode: 1 for 'start logging' qxdm_data[3] = 32; // log_file_size: 32megabytes qxdm_data[4] = 0; // log_mask qxdm_data[5] = 8; // log_max_fileindex issueLocalRequest(RIL_REQUEST_OEM_HOOK_RAW, qxdm_data, 6 * sizeof(int), socket_id); break; case 4: RLOGI ("Debug port: QXDM log disable."); qxdm_data[0] = 65536; qxdm_data[1] = 16; qxdm_data[2] = 0; // mode: 0 for 'stop logging' qxdm_data[3] = 32; qxdm_data[4] = 0; qxdm_data[5] = 8; issueLocalRequest(RIL_REQUEST_OEM_HOOK_RAW, qxdm_data, 6 * sizeof(int), socket_id); break; case 5: RLOGI("Debug port: Radio On"); data = 1; issueLocalRequest(RIL_REQUEST_RADIO_POWER, &data, sizeof(int), socket_id); sleep(2); // Set network selection automatic. issueLocalRequest(RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, NULL, 0, socket_id); break; case 6: RLOGI("Debug port: Setup Data Call, Apn :%s\n", args[1]); actData[0] = args[1]; issueLocalRequest(RIL_REQUEST_SETUP_DATA_CALL, &actData, sizeof(actData), socket_id); break; case 7: RLOGI("Debug port: Deactivate Data Call"); issueLocalRequest(RIL_REQUEST_DEACTIVATE_DATA_CALL, &deactData, sizeof(deactData), socket_id); break; case 8: RLOGI("Debug port: Dial Call"); dialData.clir = 0; dialData.address = args[1]; issueLocalRequest(RIL_REQUEST_DIAL, &dialData, sizeof(dialData), socket_id); break; case 9: RLOGI("Debug port: Answer Call"); issueLocalRequest(RIL_REQUEST_ANSWER, NULL, 0, socket_id); break; case 10: RLOGI("Debug port: End Call"); issueLocalRequest(RIL_REQUEST_HANGUP, &hangupData, sizeof(hangupData), socket_id); break; default: RLOGE ("Invalid request"); break; } freeDebugCallbackArgs(number, args); close(acceptFD); } static void userTimerCallback (int fd, short flags, void *param) { UserCallbackInfo *p_info; p_info = (UserCallbackInfo *)param; p_info->p_callback(p_info->userParam); // FIXME generalize this...there should be a cancel mechanism if (s_last_wake_timeout_info != NULL && s_last_wake_timeout_info == p_info) { s_last_wake_timeout_info = NULL; } free(p_info); } static void * eventLoop(void *param) { int ret; int filedes[2]; ril_event_init(); pthread_mutex_lock(&s_startupMutex); s_started = 1; pthread_cond_broadcast(&s_startupCond); pthread_mutex_unlock(&s_startupMutex); ret = pipe(filedes); if (ret < 0) { RLOGE("Error in pipe() errno:%d", errno); return NULL; } s_fdWakeupRead = filedes[0]; s_fdWakeupWrite = filedes[1]; fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK); ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true, processWakeupCallback, NULL); rilEventAddWakeup (&s_wakeupfd_event); // Only returns on error ril_event_loop(); RLOGE ("error in event_loop_base errno:%d", errno); // kill self to restart on error kill(0, SIGKILL); return NULL; } extern "C" void RIL_startEventLoop(void) { /* spin up eventLoop thread and wait for it to get started */ s_started = 0; pthread_mutex_lock(&s_startupMutex); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); int result = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL); if (result != 0) { RLOGE("Failed to create dispatch thread: %s", strerror(result)); goto done; } while (s_started == 0) { pthread_cond_wait(&s_startupCond, &s_startupMutex); } done: pthread_mutex_unlock(&s_startupMutex); } // Used for testing purpose only. extern "C" void RIL_setcallbacks (const RIL_RadioFunctions *callbacks) { memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions)); } static void startListen(RIL_SOCKET_ID socket_id, SocketListenParam* socket_listen_p) { int fdListen = -1; int ret; char socket_name[10]; memset(socket_name, 0, sizeof(char)*10); switch(socket_id) { case RIL_SOCKET_1: strncpy(socket_name, RIL_getRilSocketName(), 9); break; #if (SIM_COUNT >= 2) case RIL_SOCKET_2: strncpy(socket_name, SOCKET2_NAME_RIL, 9); break; #endif #if (SIM_COUNT >= 3) case RIL_SOCKET_3: strncpy(socket_name, SOCKET3_NAME_RIL, 9); break; #endif #if (SIM_COUNT >= 4) case RIL_SOCKET_4: strncpy(socket_name, SOCKET4_NAME_RIL, 9); break; #endif default: RLOGE("Socket id is wrong!!"); return; } RLOGI("Start to listen %s", rilSocketIdToString(socket_id)); fdListen = android_get_control_socket(socket_name); if (fdListen < 0) { RLOGE("Failed to get socket %s", socket_name); exit(-1); } ret = listen(fdListen, 4); if (ret < 0) { RLOGE("Failed to listen on control socket '%d': %s", fdListen, strerror(errno)); exit(-1); } socket_listen_p->fdListen = fdListen; /* note: non-persistent so we can accept only one connection at a time */ ril_event_set (socket_listen_p->listen_event, fdListen, false, listenCallback, socket_listen_p); rilEventAddWakeup (socket_listen_p->listen_event); } extern "C" void RIL_register (const RIL_RadioFunctions *callbacks) { int ret; int flags; RLOGI("SIM_COUNT: %d", SIM_COUNT); if (callbacks == NULL) { RLOGE("RIL_register: RIL_RadioFunctions * null"); return; } if (callbacks->version < RIL_VERSION_MIN) { RLOGE("RIL_register: version %d is to old, min version is %d", callbacks->version, RIL_VERSION_MIN); return; } RLOGE("RIL_register: RIL version %d", callbacks->version); if (s_registerCalled > 0) { RLOGE("RIL_register has been called more than once. " "Subsequent call ignored"); return; } memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions)); /* Initialize socket1 parameters */ s_ril_param_socket = { RIL_SOCKET_1, /* socket_id */ -1, /* fdListen */ -1, /* fdCommand */ PHONE_PROCESS, /* processName */ &s_commands_event, /* commands_event */ &s_listen_event, /* listen_event */ processCommandsCallback, /* processCommandsCallback */ NULL /* p_rs */ }; #if (SIM_COUNT >= 2) s_ril_param_socket2 = { RIL_SOCKET_2, /* socket_id */ -1, /* fdListen */ -1, /* fdCommand */ PHONE_PROCESS, /* processName */ &s_commands_event_socket2, /* commands_event */ &s_listen_event_socket2, /* listen_event */ processCommandsCallback, /* processCommandsCallback */ NULL /* p_rs */ }; #endif #if (SIM_COUNT >= 3) s_ril_param_socket3 = { RIL_SOCKET_3, /* socket_id */ -1, /* fdListen */ -1, /* fdCommand */ PHONE_PROCESS, /* processName */ &s_commands_event_socket3, /* commands_event */ &s_listen_event_socket3, /* listen_event */ processCommandsCallback, /* processCommandsCallback */ NULL /* p_rs */ }; #endif #if (SIM_COUNT >= 4) s_ril_param_socket4 = { RIL_SOCKET_4, /* socket_id */ -1, /* fdListen */ -1, /* fdCommand */ PHONE_PROCESS, /* processName */ &s_commands_event_socket4, /* commands_event */ &s_listen_event_socket4, /* listen_event */ processCommandsCallback, /* processCommandsCallback */ NULL /* p_rs */ }; #endif s_registerCalled = 1; RLOGI("s_registerCalled flag set, %d", s_started); // Little self-check for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) { assert(i == s_commands[i].requestNumber); } for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) { assert(i + RIL_UNSOL_RESPONSE_BASE == s_unsolResponses[i].requestNumber); } // New rild impl calls RIL_startEventLoop() first // old standalone impl wants it here. if (s_started == 0) { RIL_startEventLoop(); } // start listen socket1 startListen(RIL_SOCKET_1, &s_ril_param_socket); #if (SIM_COUNT >= 2) // start listen socket2 startListen(RIL_SOCKET_2, &s_ril_param_socket2); #endif /* (SIM_COUNT == 2) */ #if (SIM_COUNT >= 3) // start listen socket3 startListen(RIL_SOCKET_3, &s_ril_param_socket3); #endif /* (SIM_COUNT == 3) */ #if (SIM_COUNT >= 4) // start listen socket4 startListen(RIL_SOCKET_4, &s_ril_param_socket4); #endif /* (SIM_COUNT == 4) */ #if 1 // start debug interface socket char *inst = NULL; if (strlen(RIL_getRilSocketName()) >= strlen(SOCKET_NAME_RIL)) { inst = RIL_getRilSocketName() + strlen(SOCKET_NAME_RIL); } char rildebug[MAX_DEBUG_SOCKET_NAME_LENGTH] = SOCKET_NAME_RIL_DEBUG; if (inst != NULL) { strlcat(rildebug, inst, MAX_DEBUG_SOCKET_NAME_LENGTH); } s_fdDebug = android_get_control_socket(rildebug); if (s_fdDebug < 0) { RLOGE("Failed to get socket : %s errno:%d", rildebug, errno); exit(-1); } ret = listen(s_fdDebug, 4); if (ret < 0) { RLOGE("Failed to listen on ril debug socket '%d': %s", s_fdDebug, strerror(errno)); exit(-1); } ril_event_set (&s_debug_event, s_fdDebug, true, debugCallback, NULL); rilEventAddWakeup (&s_debug_event); #endif } extern "C" void RIL_register_socket (RIL_RadioFunctions *(*Init)(const struct RIL_Env *, int, char **),RIL_SOCKET_TYPE socketType, int argc, char **argv) { RIL_RadioFunctions* UimFuncs = NULL; if(Init) { UimFuncs = Init(&RilSapSocket::uimRilEnv, argc, argv); switch(socketType) { case RIL_SAP_SOCKET: RilSapSocket::initSapSocket("sap_uim_socket1", UimFuncs); #if (SIM_COUNT >= 2) RilSapSocket::initSapSocket("sap_uim_socket2", UimFuncs); #endif #if (SIM_COUNT >= 3) RilSapSocket::initSapSocket("sap_uim_socket3", UimFuncs); #endif #if (SIM_COUNT >= 4) RilSapSocket::initSapSocket("sap_uim_socket4", UimFuncs); #endif } } } // Check and remove RequestInfo if its a response and not just ack sent back static int checkAndDequeueRequestInfoIfAck(struct RequestInfo *pRI, bool isAck) { int ret = 0; /* Hook for current context pendingRequestsMutextHook refer to &s_pendingRequestsMutex */ pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex; /* pendingRequestsHook refer to &s_pendingRequests */ RequestInfo ** pendingRequestsHook = &s_pendingRequests; if (pRI == NULL) { return 0; } #if (SIM_COUNT >= 2) if (pRI->socket_id == RIL_SOCKET_2) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2; pendingRequestsHook = &s_pendingRequests_socket2; } #if (SIM_COUNT >= 3) if (pRI->socket_id == RIL_SOCKET_3) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3; pendingRequestsHook = &s_pendingRequests_socket3; } #endif #if (SIM_COUNT >= 4) if (pRI->socket_id == RIL_SOCKET_4) { pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4; pendingRequestsHook = &s_pendingRequests_socket4; } #endif #endif pthread_mutex_lock(pendingRequestsMutexHook); for(RequestInfo **ppCur = pendingRequestsHook ; *ppCur != NULL ; ppCur = &((*ppCur)->p_next) ) { if (pRI == *ppCur) { ret = 1; if (isAck) { // Async ack if (pRI->wasAckSent == 1) { RLOGD("Ack was already sent for %s", requestToString(pRI->pCI->requestNumber)); } else { pRI->wasAckSent = 1; } } else { *ppCur = (*ppCur)->p_next; } break; } } pthread_mutex_unlock(pendingRequestsMutexHook); return ret; } static int findFd(int socket_id) { int fd = s_ril_param_socket.fdCommand; #if (SIM_COUNT >= 2) if (socket_id == RIL_SOCKET_2) { fd = s_ril_param_socket2.fdCommand; } #if (SIM_COUNT >= 3) if (socket_id == RIL_SOCKET_3) { fd = s_ril_param_socket3.fdCommand; } #endif #if (SIM_COUNT >= 4) if (socket_id == RIL_SOCKET_4) { fd = s_ril_param_socket4.fdCommand; } #endif #endif return fd; } extern "C" void RIL_onRequestAck(RIL_Token t) { RequestInfo *pRI; int ret, fd; size_t errorOffset; RIL_SOCKET_ID socket_id = RIL_SOCKET_1; pRI = (RequestInfo *)t; if (!checkAndDequeueRequestInfoIfAck(pRI, true)) { RLOGE ("RIL_onRequestAck: invalid RIL_Token"); return; } socket_id = pRI->socket_id; fd = findFd(socket_id); #if VDBG RLOGD("Request Ack, %s", rilSocketIdToString(socket_id)); #endif appendPrintBuf("Ack [%04d]< %s", pRI->token, requestToString(pRI->pCI->requestNumber)); if (pRI->cancelled == 0) { Parcel p; p.writeInt32 (RESPONSE_SOLICITED_ACK); p.writeInt32 (pRI->token); if (fd < 0) { RLOGD ("RIL onRequestComplete: Command channel closed"); } sendResponse(p, socket_id); } } extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) { RequestInfo *pRI; int ret; int fd; size_t errorOffset; RIL_SOCKET_ID socket_id = RIL_SOCKET_1; pRI = (RequestInfo *)t; if (!checkAndDequeueRequestInfoIfAck(pRI, false)) { RLOGE ("RIL_onRequestComplete: invalid RIL_Token"); return; } socket_id = pRI->socket_id; fd = findFd(socket_id); #if VDBG RLOGD("RequestComplete, %s", rilSocketIdToString(socket_id)); #endif if (pRI->local > 0) { // Locally issued command...void only! // response does not go back up the command socket RLOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber)); goto done; } appendPrintBuf("[%04d]< %s", pRI->token, requestToString(pRI->pCI->requestNumber)); if (pRI->cancelled == 0) { Parcel p; if (s_callbacks.version >= 13 && pRI->wasAckSent == 1) { // If ack was already sent, then this call is an asynchronous response. So we need to // send id indicating that we expect an ack from RIL.java as we acquire wakelock here. p.writeInt32 (RESPONSE_SOLICITED_ACK_EXP); grabPartialWakeLock(); } else { p.writeInt32 (RESPONSE_SOLICITED); } p.writeInt32 (pRI->token); errorOffset = p.dataPosition(); p.writeInt32 (e); if (response != NULL) { // there is a response payload, no matter success or not. ret = pRI->pCI->responseFunction(p, response, responselen); /* if an error occurred, rewind and mark it */ if (ret != 0) { RLOGE ("responseFunction error, ret %d", ret); p.setDataPosition(errorOffset); p.writeInt32 (ret); } } if (e != RIL_E_SUCCESS) { appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e)); } if (fd < 0) { RLOGD ("RIL onRequestComplete: Command channel closed"); } sendResponse(p, socket_id); } done: free(pRI); } static void grabPartialWakeLock() { if (s_callbacks.version >= 13) { int ret; ret = pthread_mutex_lock(&s_wakeLockCountMutex); assert(ret == 0); acquire_wake_lock(PARTIAL_WAKE_LOCK, ANDROID_WAKE_LOCK_NAME); UserCallbackInfo *p_info = internalRequestTimedCallback(wakeTimeoutCallback, NULL, &TIMEVAL_WAKE_TIMEOUT); if (p_info == NULL) { release_wake_lock(ANDROID_WAKE_LOCK_NAME); } else { s_wakelock_count++; if (s_last_wake_timeout_info != NULL) { s_last_wake_timeout_info->userParam = (void *)1; } s_last_wake_timeout_info = p_info; } ret = pthread_mutex_unlock(&s_wakeLockCountMutex); assert(ret == 0); } else { acquire_wake_lock(PARTIAL_WAKE_LOCK, ANDROID_WAKE_LOCK_NAME); } } static void releaseWakeLock() { if (s_callbacks.version >= 13) { int ret; ret = pthread_mutex_lock(&s_wakeLockCountMutex); assert(ret == 0); if (s_wakelock_count > 1) { s_wakelock_count--; } else { s_wakelock_count = 0; release_wake_lock(ANDROID_WAKE_LOCK_NAME); if (s_last_wake_timeout_info != NULL) { s_last_wake_timeout_info->userParam = (void *)1; } } ret = pthread_mutex_unlock(&s_wakeLockCountMutex); assert(ret == 0); } else { release_wake_lock(ANDROID_WAKE_LOCK_NAME); } } /** * Timer callback to put us back to sleep before the default timeout */ static void wakeTimeoutCallback (void *param) { // We're using "param != NULL" as a cancellation mechanism if (s_callbacks.version >= 13) { if (param == NULL) { int ret; ret = pthread_mutex_lock(&s_wakeLockCountMutex); assert(ret == 0); s_wakelock_count = 0; release_wake_lock(ANDROID_WAKE_LOCK_NAME); ret = pthread_mutex_unlock(&s_wakeLockCountMutex); assert(ret == 0); } } else { if (param == NULL) { releaseWakeLock(); } } } static int decodeVoiceRadioTechnology (RIL_RadioState radioState) { switch (radioState) { case RADIO_STATE_SIM_NOT_READY: case RADIO_STATE_SIM_LOCKED_OR_ABSENT: case RADIO_STATE_SIM_READY: return RADIO_TECH_UMTS; case RADIO_STATE_RUIM_NOT_READY: case RADIO_STATE_RUIM_READY: case RADIO_STATE_RUIM_LOCKED_OR_ABSENT: case RADIO_STATE_NV_NOT_READY: case RADIO_STATE_NV_READY: return RADIO_TECH_1xRTT; default: RLOGD("decodeVoiceRadioTechnology: Invoked with incorrect RadioState"); return -1; } } static int decodeCdmaSubscriptionSource (RIL_RadioState radioState) { switch (radioState) { case RADIO_STATE_SIM_NOT_READY: case RADIO_STATE_SIM_LOCKED_OR_ABSENT: case RADIO_STATE_SIM_READY: case RADIO_STATE_RUIM_NOT_READY: case RADIO_STATE_RUIM_READY: case RADIO_STATE_RUIM_LOCKED_OR_ABSENT: return CDMA_SUBSCRIPTION_SOURCE_RUIM_SIM; case RADIO_STATE_NV_NOT_READY: case RADIO_STATE_NV_READY: return CDMA_SUBSCRIPTION_SOURCE_NV; default: RLOGD("decodeCdmaSubscriptionSource: Invoked with incorrect RadioState"); return -1; } } static int decodeSimStatus (RIL_RadioState radioState) { switch (radioState) { case RADIO_STATE_SIM_NOT_READY: case RADIO_STATE_RUIM_NOT_READY: case RADIO_STATE_NV_NOT_READY: case RADIO_STATE_NV_READY: return -1; case RADIO_STATE_SIM_LOCKED_OR_ABSENT: case RADIO_STATE_SIM_READY: case RADIO_STATE_RUIM_READY: case RADIO_STATE_RUIM_LOCKED_OR_ABSENT: return radioState; default: RLOGD("decodeSimStatus: Invoked with incorrect RadioState"); return -1; } } static bool is3gpp2(int radioTech) { switch (radioTech) { case RADIO_TECH_IS95A: case RADIO_TECH_IS95B: case RADIO_TECH_1xRTT: case RADIO_TECH_EVDO_0: case RADIO_TECH_EVDO_A: case RADIO_TECH_EVDO_B: case RADIO_TECH_EHRPD: return true; default: return false; } } /* If RIL sends SIM states or RUIM states, store the voice radio * technology and subscription source information so that they can be * returned when telephony framework requests them */ static RIL_RadioState processRadioState(RIL_RadioState newRadioState, RIL_SOCKET_ID socket_id) { if((newRadioState > RADIO_STATE_UNAVAILABLE) && (newRadioState < RADIO_STATE_ON)) { int newVoiceRadioTech; int newCdmaSubscriptionSource; int newSimStatus; /* This is old RIL. Decode Subscription source and Voice Radio Technology from Radio State and send change notifications if there has been a change */ newVoiceRadioTech = decodeVoiceRadioTechnology(newRadioState); if(newVoiceRadioTech != voiceRadioTech) { voiceRadioTech = newVoiceRadioTech; RIL_UNSOL_RESPONSE(RIL_UNSOL_VOICE_RADIO_TECH_CHANGED, &voiceRadioTech, sizeof(voiceRadioTech), socket_id); } if(is3gpp2(newVoiceRadioTech)) { newCdmaSubscriptionSource = decodeCdmaSubscriptionSource(newRadioState); if(newCdmaSubscriptionSource != cdmaSubscriptionSource) { cdmaSubscriptionSource = newCdmaSubscriptionSource; RIL_UNSOL_RESPONSE(RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, &cdmaSubscriptionSource, sizeof(cdmaSubscriptionSource), socket_id); } } newSimStatus = decodeSimStatus(newRadioState); if(newSimStatus != simRuimStatus) { simRuimStatus = newSimStatus; RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0, socket_id); } /* Send RADIO_ON to telephony */ newRadioState = RADIO_STATE_ON; } return newRadioState; } #if defined(ANDROID_MULTI_SIM) extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data, size_t datalen, RIL_SOCKET_ID socket_id) #else extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data, size_t datalen) #endif { int unsolResponseIndex; int ret; int64_t timeReceived = 0; bool shouldScheduleTimeout = false; RIL_RadioState newState; RIL_SOCKET_ID soc_id = RIL_SOCKET_1; #if defined(ANDROID_MULTI_SIM) soc_id = socket_id; #endif if (s_registerCalled == 0) { // Ignore RIL_onUnsolicitedResponse before RIL_register RLOGW("RIL_onUnsolicitedResponse called before RIL_register"); return; } unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE; if ((unsolResponseIndex < 0) || (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) { RLOGE("unsupported unsolicited response code %d", unsolResponse); return; } // Grab a wake lock if needed for this reponse, // as we exit we'll either release it immediately // or set a timer to release it later. switch (s_unsolResponses[unsolResponseIndex].wakeType) { case WAKE_PARTIAL: grabPartialWakeLock(); shouldScheduleTimeout = true; break; case DONT_WAKE: default: // No wake lock is grabed so don't set timeout shouldScheduleTimeout = false; break; } // Mark the time this was received, doing this // after grabing the wakelock incase getting // the elapsedRealTime might cause us to goto // sleep. if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) { timeReceived = elapsedRealtime(); } appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse)); Parcel p; if (s_callbacks.version >= 13 && s_unsolResponses[unsolResponseIndex].wakeType == WAKE_PARTIAL) { p.writeInt32 (RESPONSE_UNSOLICITED_ACK_EXP); } else { p.writeInt32 (RESPONSE_UNSOLICITED); } p.writeInt32 (unsolResponse); ret = s_unsolResponses[unsolResponseIndex] .responseFunction(p, const_cast<void*>(data), datalen); if (ret != 0) { // Problem with the response. Don't continue; goto error_exit; } // some things get more payload switch(unsolResponse) { case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED: newState = processRadioState(CALL_ONSTATEREQUEST(soc_id), soc_id); p.writeInt32(newState); appendPrintBuf("%s {%s}", printBuf, radioStateToString(CALL_ONSTATEREQUEST(soc_id))); break; case RIL_UNSOL_NITZ_TIME_RECEIVED: // Store the time that this was received so the // handler of this message can account for // the time it takes to arrive and process. In // particular the system has been known to sleep // before this message can be processed. p.writeInt64(timeReceived); break; } if (s_callbacks.version < 13) { if (shouldScheduleTimeout) { UserCallbackInfo *p_info = internalRequestTimedCallback(wakeTimeoutCallback, NULL, &TIMEVAL_WAKE_TIMEOUT); if (p_info == NULL) { goto error_exit; } else { // Cancel the previous request if (s_last_wake_timeout_info != NULL) { s_last_wake_timeout_info->userParam = (void *)1; } s_last_wake_timeout_info = p_info; } } } #if VDBG RLOGI("%s UNSOLICITED: %s length:%d", rilSocketIdToString(soc_id), requestToString(unsolResponse), p.dataSize()); #endif ret = sendResponse(p, soc_id); if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) { // Unfortunately, NITZ time is not poll/update like everything // else in the system. So, if the upstream client isn't connected, // keep a copy of the last NITZ response (with receive time noted // above) around so we can deliver it when it is connected if (s_lastNITZTimeData != NULL) { free (s_lastNITZTimeData); s_lastNITZTimeData = NULL; } s_lastNITZTimeData = calloc(p.dataSize(), 1); if (s_lastNITZTimeData == NULL) { RLOGE("Memory allocation failed in RIL_onUnsolicitedResponse"); goto error_exit; } s_lastNITZTimeDataSize = p.dataSize(); memcpy(s_lastNITZTimeData, p.data(), p.dataSize()); } // Normal exit return; error_exit: if (shouldScheduleTimeout) { releaseWakeLock(); } } /** FIXME generalize this if you track UserCAllbackInfo, clear it when the callback occurs */ static UserCallbackInfo * internalRequestTimedCallback (RIL_TimedCallback callback, void *param, const struct timeval *relativeTime) { struct timeval myRelativeTime; UserCallbackInfo *p_info; p_info = (UserCallbackInfo *) calloc(1, sizeof(UserCallbackInfo)); if (p_info == NULL) { RLOGE("Memory allocation failed in internalRequestTimedCallback"); return p_info; } p_info->p_callback = callback; p_info->userParam = param; if (relativeTime == NULL) { /* treat null parameter as a 0 relative time */ memset (&myRelativeTime, 0, sizeof(myRelativeTime)); } else { /* FIXME I think event_add's tv param is really const anyway */ memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime)); } ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info); ril_timer_add(&(p_info->event), &myRelativeTime); triggerEvLoop(); return p_info; } extern "C" void RIL_requestTimedCallback (RIL_TimedCallback callback, void *param, const struct timeval *relativeTime) { internalRequestTimedCallback (callback, param, relativeTime); } const char * failCauseToString(RIL_Errno e) { switch(e) { case RIL_E_SUCCESS: return "E_SUCCESS"; case RIL_E_RADIO_NOT_AVAILABLE: return "E_RADIO_NOT_AVAILABLE"; case RIL_E_GENERIC_FAILURE: return "E_GENERIC_FAILURE"; case RIL_E_PASSWORD_INCORRECT: return "E_PASSWORD_INCORRECT"; case RIL_E_SIM_PIN2: return "E_SIM_PIN2"; case RIL_E_SIM_PUK2: return "E_SIM_PUK2"; case RIL_E_REQUEST_NOT_SUPPORTED: return "E_REQUEST_NOT_SUPPORTED"; case RIL_E_CANCELLED: return "E_CANCELLED"; case RIL_E_OP_NOT_ALLOWED_DURING_VOICE_CALL: return "E_OP_NOT_ALLOWED_DURING_VOICE_CALL"; case RIL_E_OP_NOT_ALLOWED_BEFORE_REG_TO_NW: return "E_OP_NOT_ALLOWED_BEFORE_REG_TO_NW"; case RIL_E_SMS_SEND_FAIL_RETRY: return "E_SMS_SEND_FAIL_RETRY"; case RIL_E_SIM_ABSENT:return "E_SIM_ABSENT"; case RIL_E_ILLEGAL_SIM_OR_ME:return "E_ILLEGAL_SIM_OR_ME"; #ifdef FEATURE_MULTIMODE_ANDROID case RIL_E_SUBSCRIPTION_NOT_AVAILABLE:return "E_SUBSCRIPTION_NOT_AVAILABLE"; case RIL_E_MODE_NOT_SUPPORTED:return "E_MODE_NOT_SUPPORTED"; #endif case RIL_E_FDN_CHECK_FAILURE: return "E_FDN_CHECK_FAILURE"; case RIL_E_MISSING_RESOURCE: return "E_MISSING_RESOURCE"; case RIL_E_NO_SUCH_ELEMENT: return "E_NO_SUCH_ELEMENT"; case RIL_E_DIAL_MODIFIED_TO_USSD: return "E_DIAL_MODIFIED_TO_USSD"; case RIL_E_DIAL_MODIFIED_TO_SS: return "E_DIAL_MODIFIED_TO_SS"; case RIL_E_DIAL_MODIFIED_TO_DIAL: return "E_DIAL_MODIFIED_TO_DIAL"; case RIL_E_USSD_MODIFIED_TO_DIAL: return "E_USSD_MODIFIED_TO_DIAL"; case RIL_E_USSD_MODIFIED_TO_SS: return "E_USSD_MODIFIED_TO_SS"; case RIL_E_USSD_MODIFIED_TO_USSD: return "E_USSD_MODIFIED_TO_USSD"; case RIL_E_SS_MODIFIED_TO_DIAL: return "E_SS_MODIFIED_TO_DIAL"; case RIL_E_SS_MODIFIED_TO_USSD: return "E_SS_MODIFIED_TO_USSD"; case RIL_E_SUBSCRIPTION_NOT_SUPPORTED: return "E_SUBSCRIPTION_NOT_SUPPORTED"; case RIL_E_SS_MODIFIED_TO_SS: return "E_SS_MODIFIED_TO_SS"; case RIL_E_LCE_NOT_SUPPORTED: return "E_LCE_NOT_SUPPORTED"; case RIL_E_NO_MEMORY: return "E_NO_MEMORY"; case RIL_E_INTERNAL_ERR: return "E_INTERNAL_ERR"; case RIL_E_SYSTEM_ERR: return "E_SYSTEM_ERR"; case RIL_E_MODEM_ERR: return "E_MODEM_ERR"; case RIL_E_INVALID_STATE: return "E_INVALID_STATE"; case RIL_E_NO_RESOURCES: return "E_NO_RESOURCES"; case RIL_E_SIM_ERR: return "E_SIM_ERR"; case RIL_E_INVALID_ARGUMENTS: return "E_INVALID_ARGUMENTS"; case RIL_E_INVALID_SIM_STATE: return "E_INVALID_SIM_STATE"; case RIL_E_INVALID_MODEM_STATE: return "E_INVALID_MODEM_STATE"; case RIL_E_INVALID_CALL_ID: return "E_INVALID_CALL_ID"; case RIL_E_NO_SMS_TO_ACK: return "E_NO_SMS_TO_ACK"; case RIL_E_NETWORK_ERR: return "E_NETWORK_ERR"; case RIL_E_REQUEST_RATE_LIMITED: return "E_REQUEST_RATE_LIMITED"; case RIL_E_SIM_BUSY: return "E_SIM_BUSY"; case RIL_E_SIM_FULL: return "E_SIM_FULL"; case RIL_E_NETWORK_REJECT: return "E_NETWORK_REJECT"; case RIL_E_OPERATION_NOT_ALLOWED: return "E_OPERATION_NOT_ALLOWED"; case RIL_E_EMPTY_RECORD: "E_EMPTY_RECORD"; case RIL_E_INVALID_SMS_FORMAT: return "E_INVALID_SMS_FORMAT"; case RIL_E_ENCODING_ERR: return "E_ENCODING_ERR"; case RIL_E_INVALID_SMSC_ADDRESS: return "E_INVALID_SMSC_ADDRESS"; case RIL_E_NO_SUCH_ENTRY: return "E_NO_SUCH_ENTRY"; case RIL_E_NETWORK_NOT_READY: return "E_NETWORK_NOT_READY"; case RIL_E_NOT_PROVISIONED: return "E_NOT_PROVISIONED"; case RIL_E_NO_SUBSCRIPTION: return "E_NO_SUBSCRIPTION"; case RIL_E_NO_NETWORK_FOUND: return "E_NO_NETWORK_FOUND"; case RIL_E_DEVICE_IN_USE: return "E_DEVICE_IN_USE"; case RIL_E_ABORTED: return "E_ABORTED"; case RIL_E_OEM_ERROR_1: return "E_OEM_ERROR_1"; case RIL_E_OEM_ERROR_2: return "E_OEM_ERROR_2"; case RIL_E_OEM_ERROR_3: return "E_OEM_ERROR_3"; case RIL_E_OEM_ERROR_4: return "E_OEM_ERROR_4"; case RIL_E_OEM_ERROR_5: return "E_OEM_ERROR_5"; case RIL_E_OEM_ERROR_6: return "E_OEM_ERROR_6"; case RIL_E_OEM_ERROR_7: return "E_OEM_ERROR_7"; case RIL_E_OEM_ERROR_8: return "E_OEM_ERROR_8"; case RIL_E_OEM_ERROR_9: return "E_OEM_ERROR_9"; case RIL_E_OEM_ERROR_10: return "E_OEM_ERROR_10"; case RIL_E_OEM_ERROR_11: return "E_OEM_ERROR_11"; case RIL_E_OEM_ERROR_12: return "E_OEM_ERROR_12"; case RIL_E_OEM_ERROR_13: return "E_OEM_ERROR_13"; case RIL_E_OEM_ERROR_14: return "E_OEM_ERROR_14"; case RIL_E_OEM_ERROR_15: return "E_OEM_ERROR_15"; case RIL_E_OEM_ERROR_16: return "E_OEM_ERROR_16"; case RIL_E_OEM_ERROR_17: return "E_OEM_ERROR_17"; case RIL_E_OEM_ERROR_18: return "E_OEM_ERROR_18"; case RIL_E_OEM_ERROR_19: return "E_OEM_ERROR_19"; case RIL_E_OEM_ERROR_20: return "E_OEM_ERROR_20"; case RIL_E_OEM_ERROR_21: return "E_OEM_ERROR_21"; case RIL_E_OEM_ERROR_22: return "E_OEM_ERROR_22"; case RIL_E_OEM_ERROR_23: return "E_OEM_ERROR_23"; case RIL_E_OEM_ERROR_24: return "E_OEM_ERROR_24"; case RIL_E_OEM_ERROR_25: return "E_OEM_ERROR_25"; default: return "<unknown error>"; } } const char * radioStateToString(RIL_RadioState s) { switch(s) { case RADIO_STATE_OFF: return "RADIO_OFF"; case RADIO_STATE_UNAVAILABLE: return "RADIO_UNAVAILABLE"; case RADIO_STATE_SIM_NOT_READY: return "RADIO_SIM_NOT_READY"; case RADIO_STATE_SIM_LOCKED_OR_ABSENT: return "RADIO_SIM_LOCKED_OR_ABSENT"; case RADIO_STATE_SIM_READY: return "RADIO_SIM_READY"; case RADIO_STATE_RUIM_NOT_READY:return"RADIO_RUIM_NOT_READY"; case RADIO_STATE_RUIM_READY:return"RADIO_RUIM_READY"; case RADIO_STATE_RUIM_LOCKED_OR_ABSENT:return"RADIO_RUIM_LOCKED_OR_ABSENT"; case RADIO_STATE_NV_NOT_READY:return"RADIO_NV_NOT_READY"; case RADIO_STATE_NV_READY:return"RADIO_NV_READY"; case RADIO_STATE_ON:return"RADIO_ON"; default: return "<unknown state>"; } } const char * callStateToString(RIL_CallState s) { switch(s) { case RIL_CALL_ACTIVE : return "ACTIVE"; case RIL_CALL_HOLDING: return "HOLDING"; case RIL_CALL_DIALING: return "DIALING"; case RIL_CALL_ALERTING: return "ALERTING"; case RIL_CALL_INCOMING: return "INCOMING"; case RIL_CALL_WAITING: return "WAITING"; default: return "<unknown state>"; } } const char * requestToString(int request) { /* cat libs/telephony/ril_commands.h \ | egrep "^ *{RIL_" \ | sed -re 's/\{RIL_([^,]+),[^,]+,([^}]+).+/case RIL_\1: return "\1";/' cat libs/telephony/ril_unsol_commands.h \ | egrep "^ *{RIL_" \ | sed -re 's/\{RIL_([^,]+),([^}]+).+/case RIL_\1: return "\1";/' */ switch(request) { case RIL_REQUEST_GET_SIM_STATUS: return "GET_SIM_STATUS"; case RIL_REQUEST_ENTER_SIM_PIN: return "ENTER_SIM_PIN"; case RIL_REQUEST_ENTER_SIM_PUK: return "ENTER_SIM_PUK"; case RIL_REQUEST_ENTER_SIM_PIN2: return "ENTER_SIM_PIN2"; case RIL_REQUEST_ENTER_SIM_PUK2: return "ENTER_SIM_PUK2"; case RIL_REQUEST_CHANGE_SIM_PIN: return "CHANGE_SIM_PIN"; case RIL_REQUEST_CHANGE_SIM_PIN2: return "CHANGE_SIM_PIN2"; case RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION: return "ENTER_NETWORK_DEPERSONALIZATION"; case RIL_REQUEST_GET_CURRENT_CALLS: return "GET_CURRENT_CALLS"; case RIL_REQUEST_DIAL: return "DIAL"; case RIL_REQUEST_GET_IMSI: return "GET_IMSI"; case RIL_REQUEST_HANGUP: return "HANGUP"; case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND: return "HANGUP_WAITING_OR_BACKGROUND"; case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND: return "HANGUP_FOREGROUND_RESUME_BACKGROUND"; case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE: return "SWITCH_WAITING_OR_HOLDING_AND_ACTIVE"; case RIL_REQUEST_CONFERENCE: return "CONFERENCE"; case RIL_REQUEST_UDUB: return "UDUB"; case RIL_REQUEST_LAST_CALL_FAIL_CAUSE: return "LAST_CALL_FAIL_CAUSE"; case RIL_REQUEST_SIGNAL_STRENGTH: return "SIGNAL_STRENGTH"; case RIL_REQUEST_VOICE_REGISTRATION_STATE: return "VOICE_REGISTRATION_STATE"; case RIL_REQUEST_DATA_REGISTRATION_STATE: return "DATA_REGISTRATION_STATE"; case RIL_REQUEST_OPERATOR: return "OPERATOR"; case RIL_REQUEST_RADIO_POWER: return "RADIO_POWER"; case RIL_REQUEST_DTMF: return "DTMF"; case RIL_REQUEST_SEND_SMS: return "SEND_SMS"; case RIL_REQUEST_SEND_SMS_EXPECT_MORE: return "SEND_SMS_EXPECT_MORE"; case RIL_REQUEST_SETUP_DATA_CALL: return "SETUP_DATA_CALL"; case RIL_REQUEST_SIM_IO: return "SIM_IO"; case RIL_REQUEST_SEND_USSD: return "SEND_USSD"; case RIL_REQUEST_CANCEL_USSD: return "CANCEL_USSD"; case RIL_REQUEST_GET_CLIR: return "GET_CLIR"; case RIL_REQUEST_SET_CLIR: return "SET_CLIR"; case RIL_REQUEST_QUERY_CALL_FORWARD_STATUS: return "QUERY_CALL_FORWARD_STATUS"; case RIL_REQUEST_SET_CALL_FORWARD: return "SET_CALL_FORWARD"; case RIL_REQUEST_QUERY_CALL_WAITING: return "QUERY_CALL_WAITING"; case RIL_REQUEST_SET_CALL_WAITING: return "SET_CALL_WAITING"; case RIL_REQUEST_SMS_ACKNOWLEDGE: return "SMS_ACKNOWLEDGE"; case RIL_REQUEST_GET_IMEI: return "GET_IMEI"; case RIL_REQUEST_GET_IMEISV: return "GET_IMEISV"; case RIL_REQUEST_ANSWER: return "ANSWER"; case RIL_REQUEST_DEACTIVATE_DATA_CALL: return "DEACTIVATE_DATA_CALL"; case RIL_REQUEST_QUERY_FACILITY_LOCK: return "QUERY_FACILITY_LOCK"; case RIL_REQUEST_SET_FACILITY_LOCK: return "SET_FACILITY_LOCK"; case RIL_REQUEST_CHANGE_BARRING_PASSWORD: return "CHANGE_BARRING_PASSWORD"; case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE: return "QUERY_NETWORK_SELECTION_MODE"; case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC: return "SET_NETWORK_SELECTION_AUTOMATIC"; case RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL: return "SET_NETWORK_SELECTION_MANUAL"; case RIL_REQUEST_QUERY_AVAILABLE_NETWORKS : return "QUERY_AVAILABLE_NETWORKS "; case RIL_REQUEST_DTMF_START: return "DTMF_START"; case RIL_REQUEST_DTMF_STOP: return "DTMF_STOP"; case RIL_REQUEST_BASEBAND_VERSION: return "BASEBAND_VERSION"; case RIL_REQUEST_SEPARATE_CONNECTION: return "SEPARATE_CONNECTION"; case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE: return "SET_PREFERRED_NETWORK_TYPE"; case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE: return "GET_PREFERRED_NETWORK_TYPE"; case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS: return "GET_NEIGHBORING_CELL_IDS"; case RIL_REQUEST_SET_MUTE: return "SET_MUTE"; case RIL_REQUEST_GET_MUTE: return "GET_MUTE"; case RIL_REQUEST_QUERY_CLIP: return "QUERY_CLIP"; case RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE: return "LAST_DATA_CALL_FAIL_CAUSE"; case RIL_REQUEST_DATA_CALL_LIST: return "DATA_CALL_LIST"; case RIL_REQUEST_RESET_RADIO: return "RESET_RADIO"; case RIL_REQUEST_OEM_HOOK_RAW: return "OEM_HOOK_RAW"; case RIL_REQUEST_OEM_HOOK_STRINGS: return "OEM_HOOK_STRINGS"; case RIL_REQUEST_SET_BAND_MODE: return "SET_BAND_MODE"; case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE: return "QUERY_AVAILABLE_BAND_MODE"; case RIL_REQUEST_STK_GET_PROFILE: return "STK_GET_PROFILE"; case RIL_REQUEST_STK_SET_PROFILE: return "STK_SET_PROFILE"; case RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND: return "STK_SEND_ENVELOPE_COMMAND"; case RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE: return "STK_SEND_TERMINAL_RESPONSE"; case RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM: return "STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM"; case RIL_REQUEST_SCREEN_STATE: return "SCREEN_STATE"; case RIL_REQUEST_EXPLICIT_CALL_TRANSFER: return "EXPLICIT_CALL_TRANSFER"; case RIL_REQUEST_SET_LOCATION_UPDATES: return "SET_LOCATION_UPDATES"; case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE:return"CDMA_SET_SUBSCRIPTION_SOURCE"; case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE:return"CDMA_SET_ROAMING_PREFERENCE"; case RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE:return"CDMA_QUERY_ROAMING_PREFERENCE"; case RIL_REQUEST_SET_TTY_MODE:return"SET_TTY_MODE"; case RIL_REQUEST_QUERY_TTY_MODE:return"QUERY_TTY_MODE"; case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE:return"CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE"; case RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE:return"CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE"; case RIL_REQUEST_CDMA_FLASH:return"CDMA_FLASH"; case RIL_REQUEST_CDMA_BURST_DTMF:return"CDMA_BURST_DTMF"; case RIL_REQUEST_CDMA_SEND_SMS:return"CDMA_SEND_SMS"; case RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE:return"CDMA_SMS_ACKNOWLEDGE"; case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:return"GSM_GET_BROADCAST_SMS_CONFIG"; case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:return"GSM_SET_BROADCAST_SMS_CONFIG"; case RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG:return "CDMA_GET_BROADCAST_SMS_CONFIG"; case RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG:return "CDMA_SET_BROADCAST_SMS_CONFIG"; case RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION:return "CDMA_SMS_BROADCAST_ACTIVATION"; case RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY: return"CDMA_VALIDATE_AND_WRITE_AKEY"; case RIL_REQUEST_CDMA_SUBSCRIPTION: return"CDMA_SUBSCRIPTION"; case RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM: return "CDMA_WRITE_SMS_TO_RUIM"; case RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM: return "CDMA_DELETE_SMS_ON_RUIM"; case RIL_REQUEST_DEVICE_IDENTITY: return "DEVICE_IDENTITY"; case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE: return "EXIT_EMERGENCY_CALLBACK_MODE"; case RIL_REQUEST_GET_SMSC_ADDRESS: return "GET_SMSC_ADDRESS"; case RIL_REQUEST_SET_SMSC_ADDRESS: return "SET_SMSC_ADDRESS"; case RIL_REQUEST_REPORT_SMS_MEMORY_STATUS: return "REPORT_SMS_MEMORY_STATUS"; case RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING: return "REPORT_STK_SERVICE_IS_RUNNING"; case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE: return "CDMA_GET_SUBSCRIPTION_SOURCE"; case RIL_REQUEST_ISIM_AUTHENTICATION: return "ISIM_AUTHENTICATION"; case RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU: return "RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU"; case RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS: return "RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS"; case RIL_REQUEST_VOICE_RADIO_TECH: return "VOICE_RADIO_TECH"; case RIL_REQUEST_WRITE_SMS_TO_SIM: return "WRITE_SMS_TO_SIM"; case RIL_REQUEST_GET_CELL_INFO_LIST: return"GET_CELL_INFO_LIST"; case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE: return"SET_UNSOL_CELL_INFO_LIST_RATE"; case RIL_REQUEST_SET_INITIAL_ATTACH_APN: return "RIL_REQUEST_SET_INITIAL_ATTACH_APN"; case RIL_REQUEST_IMS_REGISTRATION_STATE: return "IMS_REGISTRATION_STATE"; case RIL_REQUEST_IMS_SEND_SMS: return "IMS_SEND_SMS"; case RIL_REQUEST_SIM_TRANSMIT_APDU_BASIC: return "SIM_TRANSMIT_APDU_BASIC"; case RIL_REQUEST_SIM_OPEN_CHANNEL: return "SIM_OPEN_CHANNEL"; case RIL_REQUEST_SIM_CLOSE_CHANNEL: return "SIM_CLOSE_CHANNEL"; case RIL_REQUEST_SIM_TRANSMIT_APDU_CHANNEL: return "SIM_TRANSMIT_APDU_CHANNEL"; case RIL_REQUEST_GET_RADIO_CAPABILITY: return "RIL_REQUEST_GET_RADIO_CAPABILITY"; case RIL_REQUEST_SET_RADIO_CAPABILITY: return "RIL_REQUEST_SET_RADIO_CAPABILITY"; case RIL_REQUEST_SET_UICC_SUBSCRIPTION: return "SET_UICC_SUBSCRIPTION"; case RIL_REQUEST_ALLOW_DATA: return "ALLOW_DATA"; case RIL_REQUEST_GET_HARDWARE_CONFIG: return "GET_HARDWARE_CONFIG"; case RIL_REQUEST_SIM_AUTHENTICATION: return "SIM_AUTHENTICATION"; case RIL_REQUEST_GET_DC_RT_INFO: return "GET_DC_RT_INFO"; case RIL_REQUEST_SET_DC_RT_INFO_RATE: return "SET_DC_RT_INFO_RATE"; case RIL_REQUEST_SET_DATA_PROFILE: return "SET_DATA_PROFILE"; case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED: return "UNSOL_RESPONSE_RADIO_STATE_CHANGED"; case RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED: return "UNSOL_RESPONSE_CALL_STATE_CHANGED"; case RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED: return "UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED"; case RIL_UNSOL_RESPONSE_NEW_SMS: return "UNSOL_RESPONSE_NEW_SMS"; case RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT: return "UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT"; case RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM: return "UNSOL_RESPONSE_NEW_SMS_ON_SIM"; case RIL_UNSOL_ON_USSD: return "UNSOL_ON_USSD"; case RIL_UNSOL_ON_USSD_REQUEST: return "UNSOL_ON_USSD_REQUEST(obsolete)"; case RIL_UNSOL_NITZ_TIME_RECEIVED: return "UNSOL_NITZ_TIME_RECEIVED"; case RIL_UNSOL_SIGNAL_STRENGTH: return "UNSOL_SIGNAL_STRENGTH"; case RIL_UNSOL_SUPP_SVC_NOTIFICATION: return "UNSOL_SUPP_SVC_NOTIFICATION"; case RIL_UNSOL_STK_SESSION_END: return "UNSOL_STK_SESSION_END"; case RIL_UNSOL_STK_PROACTIVE_COMMAND: return "UNSOL_STK_PROACTIVE_COMMAND"; case RIL_UNSOL_STK_EVENT_NOTIFY: return "UNSOL_STK_EVENT_NOTIFY"; case RIL_UNSOL_STK_CALL_SETUP: return "UNSOL_STK_CALL_SETUP"; case RIL_UNSOL_SIM_SMS_STORAGE_FULL: return "UNSOL_SIM_SMS_STORAGE_FUL"; case RIL_UNSOL_SIM_REFRESH: return "UNSOL_SIM_REFRESH"; case RIL_UNSOL_DATA_CALL_LIST_CHANGED: return "UNSOL_DATA_CALL_LIST_CHANGED"; case RIL_UNSOL_CALL_RING: return "UNSOL_CALL_RING"; case RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED: return "UNSOL_RESPONSE_SIM_STATUS_CHANGED"; case RIL_UNSOL_RESPONSE_CDMA_NEW_SMS: return "UNSOL_NEW_CDMA_SMS"; case RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS: return "UNSOL_NEW_BROADCAST_SMS"; case RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL: return "UNSOL_CDMA_RUIM_SMS_STORAGE_FULL"; case RIL_UNSOL_RESTRICTED_STATE_CHANGED: return "UNSOL_RESTRICTED_STATE_CHANGED"; case RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE: return "UNSOL_ENTER_EMERGENCY_CALLBACK_MODE"; case RIL_UNSOL_CDMA_CALL_WAITING: return "UNSOL_CDMA_CALL_WAITING"; case RIL_UNSOL_CDMA_OTA_PROVISION_STATUS: return "UNSOL_CDMA_OTA_PROVISION_STATUS"; case RIL_UNSOL_CDMA_INFO_REC: return "UNSOL_CDMA_INFO_REC"; case RIL_UNSOL_OEM_HOOK_RAW: return "UNSOL_OEM_HOOK_RAW"; case RIL_UNSOL_RINGBACK_TONE: return "UNSOL_RINGBACK_TONE"; case RIL_UNSOL_RESEND_INCALL_MUTE: return "UNSOL_RESEND_INCALL_MUTE"; case RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED: return "UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED"; case RIL_UNSOL_CDMA_PRL_CHANGED: return "UNSOL_CDMA_PRL_CHANGED"; case RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE: return "UNSOL_EXIT_EMERGENCY_CALLBACK_MODE"; case RIL_UNSOL_RIL_CONNECTED: return "UNSOL_RIL_CONNECTED"; case RIL_UNSOL_VOICE_RADIO_TECH_CHANGED: return "UNSOL_VOICE_RADIO_TECH_CHANGED"; case RIL_UNSOL_CELL_INFO_LIST: return "UNSOL_CELL_INFO_LIST"; case RIL_UNSOL_RESPONSE_IMS_NETWORK_STATE_CHANGED: return "RESPONSE_IMS_NETWORK_STATE_CHANGED"; case RIL_UNSOL_UICC_SUBSCRIPTION_STATUS_CHANGED: return "UNSOL_UICC_SUBSCRIPTION_STATUS_CHANGED"; case RIL_UNSOL_SRVCC_STATE_NOTIFY: return "UNSOL_SRVCC_STATE_NOTIFY"; case RIL_UNSOL_HARDWARE_CONFIG_CHANGED: return "HARDWARE_CONFIG_CHANGED"; case RIL_UNSOL_DC_RT_INFO_CHANGED: return "UNSOL_DC_RT_INFO_CHANGED"; case RIL_REQUEST_SHUTDOWN: return "SHUTDOWN"; case RIL_UNSOL_RADIO_CAPABILITY: return "RIL_UNSOL_RADIO_CAPABILITY"; case RIL_RESPONSE_ACKNOWLEDGEMENT: return "RIL_RESPONSE_ACKNOWLEDGEMENT"; default: return "<unknown request>"; } } const char * rilSocketIdToString(RIL_SOCKET_ID socket_id) { switch(socket_id) { case RIL_SOCKET_1: return "RIL_SOCKET_1"; #if (SIM_COUNT >= 2) case RIL_SOCKET_2: return "RIL_SOCKET_2"; #endif #if (SIM_COUNT >= 3) case RIL_SOCKET_3: return "RIL_SOCKET_3"; #endif #if (SIM_COUNT >= 4) case RIL_SOCKET_4: return "RIL_SOCKET_4"; #endif default: return "not a valid RIL"; } } /* * Returns true for a debuggable build. */ static bool isDebuggable() { char debuggable[PROP_VALUE_MAX]; property_get("ro.debuggable", debuggable, "0"); if (strcmp(debuggable, "1") == 0) { return true; } return false; } } /* namespace android */ void rilEventAddWakeup_helper(struct ril_event *ev) { android::rilEventAddWakeup(ev); } void listenCallback_helper(int fd, short flags, void *param) { android::listenCallback(fd, flags, param); } int blockingWrite_helper(int fd, void *buffer, size_t len) { return android::blockingWrite(fd, buffer, len); }