/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H #define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H #include "utils/Compat.h" namespace android { /* * generates a sine wave at equal steps. * * As most of our functions use sine or cosine at equal steps, * it is very efficient to compute them that way (single multiply and subtract), * rather than invoking the math library sin() or cos() each time. * * SineGen uses Goertzel's Algorithm (as a generator not a filter) * to calculate sine(wstart + n * wstep) or cosine(wstart + n * wstep) * by stepping through 0, 1, ... n. * * e^i(wstart+wstep) = 2cos(wstep) * e^i(wstart) - e^i(wstart-wstep) * * or looking at just the imaginary sine term, as the cosine follows identically: * * sin(wstart+wstep) = 2cos(wstep) * sin(wstart) - sin(wstart-wstep) * * Goertzel's algorithm is more efficient than the angle addition formula, * e^i(wstart+wstep) = e^i(wstart) * e^i(wstep), which takes up to * 4 multiplies and 2 adds (or 3* and 3+) and requires both sine and * cosine generation due to the complex * complex multiply (full rotation). * * See: http://en.wikipedia.org/wiki/Goertzel_algorithm * */ class SineGen { public: SineGen(double wstart, double wstep, bool cosine = false) { if (cosine) { mCurrent = cos(wstart); mPrevious = cos(wstart - wstep); } else { mCurrent = sin(wstart); mPrevious = sin(wstart - wstep); } mTwoCos = 2.*cos(wstep); } SineGen(double expNow, double expPrev, double twoCosStep) { mCurrent = expNow; mPrevious = expPrev; mTwoCos = twoCosStep; } inline double value() const { return mCurrent; } inline void advance() { double tmp = mCurrent; mCurrent = mCurrent*mTwoCos - mPrevious; mPrevious = tmp; } inline double valueAdvance() { double tmp = mCurrent; mCurrent = mCurrent*mTwoCos - mPrevious; mPrevious = tmp; return tmp; } private: double mCurrent; // current value of sine/cosine double mPrevious; // previous value of sine/cosine double mTwoCos; // stepping factor }; /* * generates a series of sine generators, phase offset by fixed steps. * * This is used to generate polyphase sine generators, one per polyphase * in the filter code below. * * The SineGen returned by value() starts at innerStart = outerStart + n*outerStep; * increments by innerStep. * */ class SineGenGen { public: SineGenGen(double outerStart, double outerStep, double innerStep, bool cosine = false) : mSineInnerCur(outerStart, outerStep, cosine), mSineInnerPrev(outerStart-innerStep, outerStep, cosine) { mTwoCos = 2.*cos(innerStep); } inline SineGen value() { return SineGen(mSineInnerCur.value(), mSineInnerPrev.value(), mTwoCos); } inline void advance() { mSineInnerCur.advance(); mSineInnerPrev.advance(); } inline SineGen valueAdvance() { return SineGen(mSineInnerCur.valueAdvance(), mSineInnerPrev.valueAdvance(), mTwoCos); } private: SineGen mSineInnerCur; // generate the inner sine values (stepped by outerStep). SineGen mSineInnerPrev; // generate the inner sine previous values // (behind by innerStep, stepped by outerStep). double mTwoCos; // the inner stepping factor for the returned SineGen. }; static inline double sqr(double x) { return x * x; } /* * rounds a double to the nearest integer for FIR coefficients. * * One variant uses noise shaping, which must keep error history * to work (the err parameter, initialized to 0). * The other variant is a non-noise shaped version for * S32 coefficients (noise shaping doesn't gain much). * * Caution: No bounds saturation is applied, but isn't needed in this case. * * @param x is the value to round. * * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom). * Typically this may be the maximum positive integer+1 (using the fact that double precision * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition). * * @param err is the previous error (actual - rounded) for the previous rounding op. * For 16b coefficients this can improve stopband dB performance by up to 2dB. * * Many variants exist for the noise shaping: http://en.wikipedia.org/wiki/Noise_shaping * */ static inline int64_t toint(double x, int64_t maxval, double& err) { double val = x * maxval; double ival = floor(val + 0.5 + err*0.2); err = val - ival; return static_cast<int64_t>(ival); } static inline int64_t toint(double x, int64_t maxval) { return static_cast<int64_t>(floor(x * maxval + 0.5)); } /* * Modified Bessel function of the first kind * http://en.wikipedia.org/wiki/Bessel_function * * The formulas are taken from Abramowitz and Stegun, * _Handbook of Mathematical Functions_ (links below): * * http://people.math.sfu.ca/~cbm/aands/page_375.htm * http://people.math.sfu.ca/~cbm/aands/page_378.htm * * http://dlmf.nist.gov/10.25 * http://dlmf.nist.gov/10.40 * * Note we assume x is nonnegative (the function is symmetric, * pass in the absolute value as needed). * * Constants are compile time derived with templates I0Term<> and * I0ATerm<> to the precision of the compiler. The series can be expanded * to any precision needed, but currently set around 24b precision. * * We use a bit of template math here, constexpr would probably be * more appropriate for a C++11 compiler. * * For the intermediate range 3.75 < x < 15, we use minimax polynomial fit. * */ template <int N> struct I0Term { static const CONSTEXPR double value = I0Term<N-1>::value / (4. * N * N); }; template <> struct I0Term<0> { static const CONSTEXPR double value = 1.; }; template <int N> struct I0ATerm { static const CONSTEXPR double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N); }; template <> struct I0ATerm<0> { // 1/sqrt(2*PI); static const CONSTEXPR double value = 0.398942280401432677939946059934381868475858631164934657665925; }; #if USE_HORNERS_METHOD /* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ... * using Horner's Method: http://en.wikipedia.org/wiki/Horner's_method * * This has fewer multiplications than Estrin's method below, but has back to back * floating point dependencies. * * On ARM this appears to work slower, so USE_HORNERS_METHOD is not default enabled. */ inline double Poly2(double A, double B, double x) { return A + x * B; } inline double Poly4(double A, double B, double C, double D, double x) { return A + x * (B + x * (C + x * (D))); } inline double Poly7(double A, double B, double C, double D, double E, double F, double G, double x) { return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G)))))); } inline double Poly9(double A, double B, double C, double D, double E, double F, double G, double H, double I, double x) { return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G + x * (H + x * (I)))))))); } #else /* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ... * using Estrin's Method: http://en.wikipedia.org/wiki/Estrin's_scheme * * This is typically faster, perhaps gains about 5-10% overall on ARM processors * over Horner's method above. */ inline double Poly2(double A, double B, double x) { return A + B * x; } inline double Poly3(double A, double B, double C, double x, double x2) { return Poly2(A, B, x) + C * x2; } inline double Poly3(double A, double B, double C, double x) { return Poly2(A, B, x) + C * x * x; } inline double Poly4(double A, double B, double C, double D, double x, double x2) { return Poly2(A, B, x) + Poly2(C, D, x) * x2; // same as poly2(poly2, poly2, x2); } inline double Poly4(double A, double B, double C, double D, double x) { return Poly4(A, B, C, D, x, x * x); } inline double Poly7(double A, double B, double C, double D, double E, double F, double G, double x) { double x2 = x * x; return Poly4(A, B, C, D, x, x2) + Poly3(E, F, G, x, x2) * (x2 * x2); } inline double Poly8(double A, double B, double C, double D, double E, double F, double G, double H, double x, double x2, double x4) { return Poly4(A, B, C, D, x, x2) + Poly4(E, F, G, H, x, x2) * x4; } inline double Poly9(double A, double B, double C, double D, double E, double F, double G, double H, double I, double x) { double x2 = x * x; #if 1 // It does not seem faster to explicitly decompose Poly8 into Poly4, but // could depend on compiler floating point scheduling. double x4 = x2 * x2; return Poly8(A, B, C, D, E, F, G, H, x, x2, x4) + I * (x4 * x4); #else double val = Poly4(A, B, C, D, x, x2); double x4 = x2 * x2; return val + Poly4(E, F, G, H, x, x2) * x4 + I * (x4 * x4); #endif } #endif static inline double I0(double x) { if (x < 3.75) { x *= x; return Poly7(I0Term<0>::value, I0Term<1>::value, I0Term<2>::value, I0Term<3>::value, I0Term<4>::value, I0Term<5>::value, I0Term<6>::value, x); // e < 1.6e-7 } if (1) { /* * Series expansion coefs are easy to calculate, but are expanded around 0, * so error is unequal over the interval 0 < x < 3.75, the error being * significantly better near 0. * * A better solution is to use precise minimax polynomial fits. * * We use a slightly more complicated solution for 3.75 < x < 15, based on * the tables in Blair and Edwards, "Stable Rational Minimax Approximations * to the Modified Bessel Functions I0(x) and I1(x)", Chalk Hill Nuclear Laboratory, * AECL-4928. * * http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/06/178/6178667.pdf * * See Table 11 for 0 < x < 15; e < 10^(-7.13). * * Note: Beta cannot exceed 15 (hence Stopband cannot exceed 144dB = 24b). * * This speeds up overall computation by about 40% over using the else clause below, * which requires sqrt and exp. * */ x *= x; double num = Poly9(-0.13544938430e9, -0.33153754512e8, -0.19406631946e7, -0.48058318783e5, -0.63269783360e3, -0.49520779070e1, -0.24970910370e-1, -0.74741159550e-4, -0.18257612460e-6, x); double y = x - 225.; // reflection around 15 (squared) double den = Poly4(-0.34598737196e8, 0.23852643181e6, -0.70699387620e3, 0.10000000000e1, y); return num / den; #if IO_EXTENDED_BETA /* Table 42 for x > 15; e < 10^(-8.11). * This is used for Beta>15, but is disabled here as * we never use Beta that high. * * NOTE: This should be enabled only for x > 15. */ double y = 1./x; double z = y - (1./15); double num = Poly2(0.415079861746e1, -0.5149092496e1, z); double den = Poly3(0.103150763823e2, -0.14181687413e2, 0.1000000000e1, z); return exp(x) * sqrt(y) * num / den; #endif } else { /* * NOT USED, but reference for large Beta. * * Abramowitz and Stegun asymptotic formula. * works for x > 3.75. */ double y = 1./x; return exp(x) * sqrt(y) * // note: reciprocal squareroot may be easier! // http://en.wikipedia.org/wiki/Fast_inverse_square_root Poly9(I0ATerm<0>::value, I0ATerm<1>::value, I0ATerm<2>::value, I0ATerm<3>::value, I0ATerm<4>::value, I0ATerm<5>::value, I0ATerm<6>::value, I0ATerm<7>::value, I0ATerm<8>::value, y); // (... e) < 1.9e-7 } } /* A speed optimized version of the Modified Bessel I0() which incorporates * the sqrt and numerator multiply and denominator divide into the computation. * This speeds up filter computation by about 10-15%. */ static inline double I0SqrRat(double x2, double num, double den) { if (x2 < (3.75 * 3.75)) { return Poly7(I0Term<0>::value, I0Term<1>::value, I0Term<2>::value, I0Term<3>::value, I0Term<4>::value, I0Term<5>::value, I0Term<6>::value, x2) * num / den; // e < 1.6e-7 } num *= Poly9(-0.13544938430e9, -0.33153754512e8, -0.19406631946e7, -0.48058318783e5, -0.63269783360e3, -0.49520779070e1, -0.24970910370e-1, -0.74741159550e-4, -0.18257612460e-6, x2); // e < 10^(-7.13). double y = x2 - 225.; // reflection around 15 (squared) den *= Poly4(-0.34598737196e8, 0.23852643181e6, -0.70699387620e3, 0.10000000000e1, y); return num / den; } /* * calculates the transition bandwidth for a Kaiser filter * * Formula 3.2.8, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48 * Formula 7.76, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542 * * @param halfNumCoef is half the number of coefficients per filter phase. * * @param stopBandAtten is the stop band attenuation desired. * * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5) */ static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) { return (stopBandAtten - 7.95)/((2.*14.36)*halfNumCoef); } /* * calculates the fir transfer response of the overall polyphase filter at w. * * Calculates the DTFT transfer coefficient H(w) for 0 <= w <= PI, utilizing the * fact that h[n] is symmetric (cosines only, no complex arithmetic). * * We use Goertzel's algorithm to accelerate the computation to essentially * a single multiply and 2 adds per filter coefficient h[]. * * Be careful be careful to consider that h[n] is the overall polyphase filter, * with L phases, so rescaling H(w)/L is probably what you expect for "unity gain", * as you only use one of the polyphases at a time. */ template <typename T> static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) { double accum = static_cast<double>(coef[0])*0.5; // "center coefficient" from first bank coef += halfNumCoef; // skip first filterbank (picked up by the last filterbank). #if SLOW_FIRTRANSFER /* Original code for reference. This is equivalent to the code below, but slower. */ for (int i=1 ; i<=L ; ++i) { for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) { accum += cos(ix*w)*static_cast<double>(*coef++); } } #else /* * Our overall filter is stored striped by polyphases, not a contiguous h[n]. * We could fetch coefficients in a non-contiguous fashion * but that will not scale to vector processing. * * We apply Goertzel's algorithm directly to each polyphase filter bank instead of * using cosine generation/multiplication, thereby saving one multiply per inner loop. * * See: http://en.wikipedia.org/wiki/Goertzel_algorithm * Also: Oppenheim and Schafer, _Discrete Time Signal Processing, 3e_, p. 720. * * We use the basic recursion to incorporate the cosine steps into real sequence x[n]: * s[n] = x[n] + (2cosw)*s[n-1] + s[n-2] * * y[n] = s[n] - e^(iw)s[n-1] * = sum_{k=-\infty}^{n} x[k]e^(-iw(n-k)) * = e^(-iwn) sum_{k=0}^{n} x[k]e^(iwk) * * The summation contains the frequency steps we want multiplied by the source * (similar to a DTFT). * * Using symmetry, and just the real part (be careful, this must happen * after any internal complex multiplications), the polyphase filterbank * transfer function is: * * Hpp[n, w, w_0] = sum_{k=0}^{n} x[k] * cos(wk + w_0) * = Re{ e^(iwn + iw_0) y[n]} * = cos(wn+w_0) * s[n] - cos(w(n+1)+w_0) * s[n-1] * * using the fact that s[n] of real x[n] is real. * */ double dcos = 2. * cos(L*w); int start = ((halfNumCoef)*L + 1); SineGen cc((start - L) * w, w, true); // cosine SineGen cp(start * w, w, true); // cosine for (int i=1 ; i<=L ; ++i) { double sc = 0; double sp = 0; for (int j=0 ; j<halfNumCoef ; ++j) { double tmp = sc; sc = static_cast<double>(*coef++) + dcos*sc - sp; sp = tmp; } // If we are awfully clever, we can apply Goertzel's algorithm // again on the sc and sp sequences returned here. accum += cc.valueAdvance() * sc - cp.valueAdvance() * sp; } #endif return accum*2.; } /* * evaluates the minimum and maximum |H(f)| bound in a band region. * * This is usually done with equally spaced increments in the target band in question. * The passband is often very small, and sampled that way. The stopband is often much * larger. * * We use the fact that the overall polyphase filter has an additional bank at the end * for interpolation; hence it is overspecified for the H(f) computation. Thus the * first polyphase is never actually checked, excepting its first term. * * In this code we use the firTransfer() evaluator above, which uses Goertzel's * algorithm to calculate the transfer function at each point. * * TODO: An alternative with equal spacing is the FFT/DFT. An alternative with unequal * spacing is a chirp transform. * * @param coef is the designed polyphase filter banks * * @param L is the number of phases (for interpolation) * * @param halfNumCoef should be half the number of coefficients for a single * polyphase. * * @param fstart is the normalized frequency start. * * @param fend is the normalized frequency end. * * @param steps is the number of steps to take (sampling) between frequency start and end * * @param firMin returns the minimum transfer |H(f)| found * * @param firMax returns the maximum transfer |H(f)| found * * 0 <= f <= 0.5. * This is used to test passband and stopband performance. */ template <typename T> static void testFir(const T* coef, int L, int halfNumCoef, double fstart, double fend, int steps, double &firMin, double &firMax) { double wstart = fstart*(2.*M_PI); double wend = fend*(2.*M_PI); double wstep = (wend - wstart)/steps; double fmax, fmin; double trf = firTransfer(coef, L, halfNumCoef, wstart); if (trf<0) { trf = -trf; } fmin = fmax = trf; wstart += wstep; for (int i=1; i<steps; ++i) { trf = firTransfer(coef, L, halfNumCoef, wstart); if (trf<0) { trf = -trf; } if (trf>fmax) { fmax = trf; } else if (trf<fmin) { fmin = trf; } wstart += wstep; } // renormalize - this is only needed for integer filter types double norm = 1./((1ULL<<(sizeof(T)*8-1))*L); firMin = fmin * norm; firMax = fmax * norm; } /* * evaluates the |H(f)| lowpass band characteristics. * * This function tests the lowpass characteristics for the overall polyphase filter, * and is used to verify the design. For this case, fp should be set to the * passband normalized frequency from 0 to 0.5 for the overall filter (thus it * is the designed polyphase bank value / L). Likewise for fs. * * @param coef is the designed polyphase filter banks * * @param L is the number of phases (for interpolation) * * @param halfNumCoef should be half the number of coefficients for a single * polyphase. * * @param fp is the passband normalized frequency, 0 < fp < fs < 0.5. * * @param fs is the stopband normalized frequency, 0 < fp < fs < 0.5. * * @param passSteps is the number of passband sampling steps. * * @param stopSteps is the number of stopband sampling steps. * * @param passMin is the minimum value in the passband * * @param passMax is the maximum value in the passband (useful for scaling). This should * be less than 1., to avoid sine wave test overflow. * * @param passRipple is the passband ripple. Typically this should be less than 0.1 for * an audio filter. Generally speaker/headphone device characteristics will dominate * the passband term. * * @param stopMax is the maximum value in the stopband. * * @param stopRipple is the stopband ripple, also known as stopband attenuation. * Typically this should be greater than ~80dB for low quality, and greater than * ~100dB for full 16b quality, otherwise aliasing may become noticeable. * */ template <typename T> static void testFir(const T* coef, int L, int halfNumCoef, double fp, double fs, int passSteps, int stopSteps, double &passMin, double &passMax, double &passRipple, double &stopMax, double &stopRipple) { double fmin, fmax; testFir(coef, L, halfNumCoef, 0., fp, passSteps, fmin, fmax); double d1 = (fmax - fmin)/2.; passMin = fmin; passMax = fmax; passRipple = -20.*log10(1. - d1); // passband ripple testFir(coef, L, halfNumCoef, fs, 0.5, stopSteps, fmin, fmax); // fmin is really not important for the stopband. stopMax = fmax; stopRipple = -20.*log10(fmax); // stopband ripple/attenuation } /* * Calculates the overall polyphase filter based on a windowed sinc function. * * The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1 * taps for the entire kernel. This is then decomposed into L+1 polyphase filterbanks. * The last filterbank is used for interpolation purposes (and is mostly composed * of the first bank shifted by one sample), and is unnecessary if one does * not do interpolation. * * We use the last filterbank for some transfer function calculation purposes, * so it needs to be generated anyways. * * @param coef is the caller allocated space for coefficients. This should be * exactly (L+1)*halfNumCoef in size. * * @param L is the number of phases (for interpolation) * * @param halfNumCoef should be half the number of coefficients for a single * polyphase. * * @param stopBandAtten is the stopband value, should be >50dB. * * @param fcr is cutoff frequency/sampling rate (<0.5). At this point, the energy * should be 6dB less. (fcr is where the amplitude drops by half). Use the * firKaiserTbw() to calculate the transition bandwidth. fcr is the midpoint * between the stop band and the pass band (fstop+fpass)/2. * * @param atten is the attenuation (generally slightly less than 1). */ template <typename T> static inline void firKaiserGen(T* coef, int L, int halfNumCoef, double stopBandAtten, double fcr, double atten) { // // Formula 3.2.5, 3.2.7, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48 // Formula 7.75, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542 // // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf // // Kaiser window and beta parameter // // | 0.1102*(A - 8.7) A > 50 // beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50 // | 0. A < 21 // // with A is the desired stop-band attenuation in dBFS // // 30 dB 2.210 // 40 dB 3.384 // 50 dB 4.538 // 60 dB 5.658 // 70 dB 6.764 // 80 dB 7.865 // 90 dB 8.960 // 100 dB 10.056 const int N = L * halfNumCoef; // non-negative half const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always const double xstep = (2. * M_PI) * fcr / L; const double xfrac = 1. / N; const double yscale = atten * L / (I0(beta) * M_PI); const double sqrbeta = sqr(beta); // We use sine generators, which computes sines on regular step intervals. // This speeds up overall computation about 40% from computing the sine directly. SineGenGen sgg(0., xstep, L*xstep); // generates sine generators (one per polyphase) for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation // computation for a single polyphase of the overall filter. SineGen sg = sgg.valueAdvance(); // current sine generator for "j" inner loop. double err = 0; // for noise shaping on int16_t coefficients (over each polyphase) for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) { double y; if (CC_LIKELY(ix)) { double x = static_cast<double>(ix); // sine generator: sg.valueAdvance() returns sin(ix*xstep); // y = I0(beta * sqrt(1.0 - sqr(x * xfrac))) * yscale * sg.valueAdvance() / x; y = I0SqrRat(sqrbeta * (1.0 - sqr(x * xfrac)), yscale * sg.valueAdvance(), x); } else { y = 2. * atten * fcr; // center of filter, sinc(0) = 1. sg.advance(); } if (is_same<T, int16_t>::value) { // int16_t needs noise shaping *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err)); } else if (is_same<T, int32_t>::value) { *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1))); } else { // assumed float or double *coef++ = static_cast<T>(y); } } } } } // namespace android #endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/