/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "AudioResampler" //#define LOG_NDEBUG 0 #include <stdint.h> #include <stdlib.h> #include <sys/types.h> #include <cutils/log.h> #include <cutils/properties.h> #include <audio_utils/primitives.h> #include "AudioResampler.h" #include "AudioResamplerSinc.h" #include "AudioResamplerCubic.h" #include "AudioResamplerDyn.h" #ifdef __arm__ // bug 13102576 //#define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1 #endif namespace android { // ---------------------------------------------------------------------------- class AudioResamplerOrder1 : public AudioResampler { public: AudioResamplerOrder1(int inChannelCount, int32_t sampleRate) : AudioResampler(inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) { } virtual size_t resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); private: // number of bits used in interpolation multiply - 15 bits avoids overflow static const int kNumInterpBits = 15; // bits to shift the phase fraction down to avoid overflow static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits; void init() {} size_t resampleMono16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); size_t resampleStereo16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement); void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement); #endif // ASM_ARM_RESAMP1 static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) { return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits); } static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) { *frac += inc; *index += (size_t)(*frac >> kNumPhaseBits); *frac &= kPhaseMask; } int mX0L; int mX0R; }; /*static*/ const double AudioResampler::kPhaseMultiplier = 1L << AudioResampler::kNumPhaseBits; bool AudioResampler::qualityIsSupported(src_quality quality) { switch (quality) { case DEFAULT_QUALITY: case LOW_QUALITY: case MED_QUALITY: case HIGH_QUALITY: case VERY_HIGH_QUALITY: case DYN_LOW_QUALITY: case DYN_MED_QUALITY: case DYN_HIGH_QUALITY: return true; default: return false; } } // ---------------------------------------------------------------------------- static pthread_once_t once_control = PTHREAD_ONCE_INIT; static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY; void AudioResampler::init_routine() { char value[PROPERTY_VALUE_MAX]; if (property_get("af.resampler.quality", value, NULL) > 0) { char *endptr; unsigned long l = strtoul(value, &endptr, 0); if (*endptr == '\0') { defaultQuality = (src_quality) l; ALOGD("forcing AudioResampler quality to %d", defaultQuality); if (defaultQuality < DEFAULT_QUALITY || defaultQuality > DYN_HIGH_QUALITY) { defaultQuality = DEFAULT_QUALITY; } } } } uint32_t AudioResampler::qualityMHz(src_quality quality) { switch (quality) { default: case DEFAULT_QUALITY: case LOW_QUALITY: return 3; case MED_QUALITY: return 6; case HIGH_QUALITY: return 20; case VERY_HIGH_QUALITY: return 34; case DYN_LOW_QUALITY: return 4; case DYN_MED_QUALITY: return 6; case DYN_HIGH_QUALITY: return 12; } } static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static uint32_t currentMHz = 0; AudioResampler* AudioResampler::create(audio_format_t format, int inChannelCount, int32_t sampleRate, src_quality quality) { bool atFinalQuality; if (quality == DEFAULT_QUALITY) { // read the resampler default quality property the first time it is needed int ok = pthread_once(&once_control, init_routine); if (ok != 0) { ALOGE("%s pthread_once failed: %d", __func__, ok); } quality = defaultQuality; atFinalQuality = false; } else { atFinalQuality = true; } /* if the caller requests DEFAULT_QUALITY and af.resampler.property * has not been set, the target resampler quality is set to DYN_MED_QUALITY, * and allowed to "throttle" down to DYN_LOW_QUALITY if necessary * due to estimated CPU load of having too many active resamplers * (the code below the if). */ if (quality == DEFAULT_QUALITY) { quality = DYN_MED_QUALITY; } // naive implementation of CPU load throttling doesn't account for whether resampler is active pthread_mutex_lock(&mutex); for (;;) { uint32_t deltaMHz = qualityMHz(quality); uint32_t newMHz = currentMHz + deltaMHz; if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) { ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d", currentMHz, newMHz, deltaMHz, quality); currentMHz = newMHz; break; } // not enough CPU available for proposed quality level, so try next lowest level switch (quality) { default: case LOW_QUALITY: atFinalQuality = true; break; case MED_QUALITY: quality = LOW_QUALITY; break; case HIGH_QUALITY: quality = MED_QUALITY; break; case VERY_HIGH_QUALITY: quality = HIGH_QUALITY; break; case DYN_LOW_QUALITY: atFinalQuality = true; break; case DYN_MED_QUALITY: quality = DYN_LOW_QUALITY; break; case DYN_HIGH_QUALITY: quality = DYN_MED_QUALITY; break; } } pthread_mutex_unlock(&mutex); AudioResampler* resampler; switch (quality) { default: case LOW_QUALITY: ALOGV("Create linear Resampler"); LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); resampler = new AudioResamplerOrder1(inChannelCount, sampleRate); break; case MED_QUALITY: ALOGV("Create cubic Resampler"); LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); resampler = new AudioResamplerCubic(inChannelCount, sampleRate); break; case HIGH_QUALITY: ALOGV("Create HIGH_QUALITY sinc Resampler"); LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); resampler = new AudioResamplerSinc(inChannelCount, sampleRate); break; case VERY_HIGH_QUALITY: ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality); LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); resampler = new AudioResamplerSinc(inChannelCount, sampleRate, quality); break; case DYN_LOW_QUALITY: case DYN_MED_QUALITY: case DYN_HIGH_QUALITY: ALOGV("Create dynamic Resampler = %d", quality); if (format == AUDIO_FORMAT_PCM_FLOAT) { resampler = new AudioResamplerDyn<float, float, float>(inChannelCount, sampleRate, quality); } else { LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); if (quality == DYN_HIGH_QUALITY) { resampler = new AudioResamplerDyn<int32_t, int16_t, int32_t>(inChannelCount, sampleRate, quality); } else { resampler = new AudioResamplerDyn<int16_t, int16_t, int32_t>(inChannelCount, sampleRate, quality); } } break; } // initialize resampler resampler->init(); return resampler; } AudioResampler::AudioResampler(int inChannelCount, int32_t sampleRate, src_quality quality) : mChannelCount(inChannelCount), mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0), mPhaseFraction(0), mQuality(quality) { const int maxChannels = quality < DYN_LOW_QUALITY ? 2 : 8; if (inChannelCount < 1 || inChannelCount > maxChannels) { LOG_ALWAYS_FATAL("Unsupported sample format %d quality %d channels", quality, inChannelCount); } if (sampleRate <= 0) { LOG_ALWAYS_FATAL("Unsupported sample rate %d Hz", sampleRate); } // initialize common members mVolume[0] = mVolume[1] = 0; mBuffer.frameCount = 0; } AudioResampler::~AudioResampler() { pthread_mutex_lock(&mutex); src_quality quality = getQuality(); uint32_t deltaMHz = qualityMHz(quality); int32_t newMHz = currentMHz - deltaMHz; ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d", currentMHz, newMHz, deltaMHz, quality); LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz); currentMHz = newMHz; pthread_mutex_unlock(&mutex); } void AudioResampler::setSampleRate(int32_t inSampleRate) { mInSampleRate = inSampleRate; mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate); } void AudioResampler::setVolume(float left, float right) { // TODO: Implement anti-zipper filter // convert to U4.12 for internal integer use (round down) // integer volume values are clamped to 0 to UNITY_GAIN. mVolume[0] = u4_12_from_float(clampFloatVol(left)); mVolume[1] = u4_12_from_float(clampFloatVol(right)); } void AudioResampler::reset() { mInputIndex = 0; mPhaseFraction = 0; mBuffer.frameCount = 0; } // ---------------------------------------------------------------------------- size_t AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { // should never happen, but we overflow if it does // ALOG_ASSERT(outFrameCount < 32767); // select the appropriate resampler switch (mChannelCount) { case 1: return resampleMono16(out, outFrameCount, provider); case 2: return resampleStereo16(out, outFrameCount, provider); default: LOG_ALWAYS_FATAL("invalid channel count: %d", mChannelCount); return 0; } } size_t AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { int32_t vl = mVolume[0]; int32_t vr = mVolume[1]; size_t inputIndex = mInputIndex; uint32_t phaseFraction = mPhaseFraction; uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * 2; size_t inFrameCount = getInFrameCountRequired(outFrameCount); // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", // outFrameCount, inputIndex, phaseFraction, phaseIncrement); while (outputIndex < outputSampleCount) { // buffer is empty, fetch a new one while (mBuffer.frameCount == 0) { mBuffer.frameCount = inFrameCount; provider->getNextBuffer(&mBuffer); if (mBuffer.raw == NULL) { goto resampleStereo16_exit; } // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); if (mBuffer.frameCount > inputIndex) break; inputIndex -= mBuffer.frameCount; mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; provider->releaseBuffer(&mBuffer); // mBuffer.frameCount == 0 now so we reload a new buffer } int16_t *in = mBuffer.i16; // handle boundary case while (inputIndex == 0) { // ALOGE("boundary case"); out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction); out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction); Advance(&inputIndex, &phaseFraction, phaseIncrement); if (outputIndex == outputSampleCount) { break; } } // process input samples // ALOGE("general case"); #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 if (inputIndex + 2 < mBuffer.frameCount) { int32_t* maxOutPt; int32_t maxInIdx; maxOutPt = out + (outputSampleCount - 2); // 2 because 2 frames per loop maxInIdx = mBuffer.frameCount - 2; AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, phaseFraction, phaseIncrement); } #endif // ASM_ARM_RESAMP1 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { out[outputIndex++] += vl * Interp(in[inputIndex*2-2], in[inputIndex*2], phaseFraction); out[outputIndex++] += vr * Interp(in[inputIndex*2-1], in[inputIndex*2+1], phaseFraction); Advance(&inputIndex, &phaseFraction, phaseIncrement); } // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); // if done with buffer, save samples if (inputIndex >= mBuffer.frameCount) { inputIndex -= mBuffer.frameCount; // ALOGE("buffer done, new input index %d", inputIndex); mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; provider->releaseBuffer(&mBuffer); // verify that the releaseBuffer resets the buffer frameCount // ALOG_ASSERT(mBuffer.frameCount == 0); } } // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); resampleStereo16_exit: // save state mInputIndex = inputIndex; mPhaseFraction = phaseFraction; return outputIndex / 2 /* channels for stereo */; } size_t AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { int32_t vl = mVolume[0]; int32_t vr = mVolume[1]; size_t inputIndex = mInputIndex; uint32_t phaseFraction = mPhaseFraction; uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * 2; size_t inFrameCount = getInFrameCountRequired(outFrameCount); // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", // outFrameCount, inputIndex, phaseFraction, phaseIncrement); while (outputIndex < outputSampleCount) { // buffer is empty, fetch a new one while (mBuffer.frameCount == 0) { mBuffer.frameCount = inFrameCount; provider->getNextBuffer(&mBuffer); if (mBuffer.raw == NULL) { mInputIndex = inputIndex; mPhaseFraction = phaseFraction; goto resampleMono16_exit; } // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); if (mBuffer.frameCount > inputIndex) break; inputIndex -= mBuffer.frameCount; mX0L = mBuffer.i16[mBuffer.frameCount-1]; provider->releaseBuffer(&mBuffer); // mBuffer.frameCount == 0 now so we reload a new buffer } int16_t *in = mBuffer.i16; // handle boundary case while (inputIndex == 0) { // ALOGE("boundary case"); int32_t sample = Interp(mX0L, in[0], phaseFraction); out[outputIndex++] += vl * sample; out[outputIndex++] += vr * sample; Advance(&inputIndex, &phaseFraction, phaseIncrement); if (outputIndex == outputSampleCount) { break; } } // process input samples // ALOGE("general case"); #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 if (inputIndex + 2 < mBuffer.frameCount) { int32_t* maxOutPt; int32_t maxInIdx; maxOutPt = out + (outputSampleCount - 2); maxInIdx = (int32_t)mBuffer.frameCount - 2; AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, phaseFraction, phaseIncrement); } #endif // ASM_ARM_RESAMP1 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { int32_t sample = Interp(in[inputIndex-1], in[inputIndex], phaseFraction); out[outputIndex++] += vl * sample; out[outputIndex++] += vr * sample; Advance(&inputIndex, &phaseFraction, phaseIncrement); } // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); // if done with buffer, save samples if (inputIndex >= mBuffer.frameCount) { inputIndex -= mBuffer.frameCount; // ALOGE("buffer done, new input index %d", inputIndex); mX0L = mBuffer.i16[mBuffer.frameCount-1]; provider->releaseBuffer(&mBuffer); // verify that the releaseBuffer resets the buffer frameCount // ALOG_ASSERT(mBuffer.frameCount == 0); } } // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); resampleMono16_exit: // save state mInputIndex = inputIndex; mPhaseFraction = phaseFraction; return outputIndex; } #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 /******************************************************************* * * AsmMono16Loop * asm optimized monotonic loop version; one loop is 2 frames * Input: * in : pointer on input samples * maxOutPt : pointer on first not filled * maxInIdx : index on first not used * outputIndex : pointer on current output index * out : pointer on output buffer * inputIndex : pointer on current input index * vl, vr : left and right gain * phaseFraction : pointer on current phase fraction * phaseIncrement * Ouput: * outputIndex : * out : updated buffer * inputIndex : index of next to use * phaseFraction : phase fraction for next interpolation * *******************************************************************/ __attribute__((noinline)) void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement) { (void)maxOutPt; // remove unused parameter warnings (void)maxInIdx; (void)outputIndex; (void)out; (void)inputIndex; (void)vl; (void)vr; (void)phaseFraction; (void)phaseIncrement; (void)in; #define MO_PARAM5 "36" // offset of parameter 5 (outputIndex) asm( "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n" // get parameters " ldr r6, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction " ldr r6, [r6]\n" // phaseFraction " ldr r7, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex " ldr r7, [r7]\n" // inputIndex " ldr r8, [sp, #" MO_PARAM5 " + 4]\n" // out " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex " ldr r0, [r0]\n" // outputIndex " add r8, r8, r0, asl #2\n" // curOut " ldr r9, [sp, #" MO_PARAM5 " + 24]\n" // phaseIncrement " ldr r10, [sp, #" MO_PARAM5 " + 12]\n" // vl " ldr r11, [sp, #" MO_PARAM5 " + 16]\n" // vr // r0 pin, x0, Samp // r1 in // r2 maxOutPt // r3 maxInIdx // r4 x1, i1, i3, Out1 // r5 out0 // r6 frac // r7 inputIndex // r8 curOut // r9 inc // r10 vl // r11 vr // r12 // r13 sp // r14 // the following loop works on 2 frames "1:\n" " cmp r8, r2\n" // curOut - maxCurOut " bcs 2f\n" #define MO_ONE_FRAME \ " add r0, r1, r7, asl #1\n" /* in + inputIndex */\ " ldrsh r4, [r0]\n" /* in[inputIndex] */\ " ldr r5, [r8]\n" /* out[outputIndex] */\ " ldrsh r0, [r0, #-2]\n" /* in[inputIndex-1] */\ " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\ " sub r4, r4, r0\n" /* in[inputIndex] - in[inputIndex-1] */\ " mov r4, r4, lsl #2\n" /* <<2 */\ " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\ " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\ " add r0, r0, r4\n" /* x0 - (..) */\ " mla r5, r0, r10, r5\n" /* vl*interp + out[] */\ " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\ " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\ " mla r4, r0, r11, r4\n" /* vr*interp + out[] */\ " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */\ " str r4, [r8], #4\n" /* out[outputIndex++] = ... */ MO_ONE_FRAME // frame 1 MO_ONE_FRAME // frame 2 " cmp r7, r3\n" // inputIndex - maxInIdx " bcc 1b\n" "2:\n" " bic r6, r6, #0xC0000000\n" // phaseFraction & ... // save modified values " ldr r0, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction " str r6, [r0]\n" // phaseFraction " ldr r0, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex " str r7, [r0]\n" // inputIndex " ldr r0, [sp, #" MO_PARAM5 " + 4]\n" // out " sub r8, r0\n" // curOut - out " asr r8, #2\n" // new outputIndex " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex " str r8, [r0]\n" // save outputIndex " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n" ); } /******************************************************************* * * AsmStereo16Loop * asm optimized stereo loop version; one loop is 2 frames * Input: * in : pointer on input samples * maxOutPt : pointer on first not filled * maxInIdx : index on first not used * outputIndex : pointer on current output index * out : pointer on output buffer * inputIndex : pointer on current input index * vl, vr : left and right gain * phaseFraction : pointer on current phase fraction * phaseIncrement * Ouput: * outputIndex : * out : updated buffer * inputIndex : index of next to use * phaseFraction : phase fraction for next interpolation * *******************************************************************/ __attribute__((noinline)) void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement) { (void)maxOutPt; // remove unused parameter warnings (void)maxInIdx; (void)outputIndex; (void)out; (void)inputIndex; (void)vl; (void)vr; (void)phaseFraction; (void)phaseIncrement; (void)in; #define ST_PARAM5 "40" // offset of parameter 5 (outputIndex) asm( "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n" // get parameters " ldr r6, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction " ldr r6, [r6]\n" // phaseFraction " ldr r7, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex " ldr r7, [r7]\n" // inputIndex " ldr r8, [sp, #" ST_PARAM5 " + 4]\n" // out " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex " ldr r0, [r0]\n" // outputIndex " add r8, r8, r0, asl #2\n" // curOut " ldr r9, [sp, #" ST_PARAM5 " + 24]\n" // phaseIncrement " ldr r10, [sp, #" ST_PARAM5 " + 12]\n" // vl " ldr r11, [sp, #" ST_PARAM5 " + 16]\n" // vr // r0 pin, x0, Samp // r1 in // r2 maxOutPt // r3 maxInIdx // r4 x1, i1, i3, out1 // r5 out0 // r6 frac // r7 inputIndex // r8 curOut // r9 inc // r10 vl // r11 vr // r12 temporary // r13 sp // r14 "3:\n" " cmp r8, r2\n" // curOut - maxCurOut " bcs 4f\n" #define ST_ONE_FRAME \ " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\ \ " add r0, r1, r7, asl #2\n" /* in + 2*inputIndex */\ \ " ldrsh r4, [r0]\n" /* in[2*inputIndex] */\ " ldr r5, [r8]\n" /* out[outputIndex] */\ " ldrsh r12, [r0, #-4]\n" /* in[2*inputIndex-2] */\ " sub r4, r4, r12\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\ " mov r4, r4, lsl #2\n" /* <<2 */\ " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\ " add r12, r12, r4\n" /* x0 - (..) */\ " mla r5, r12, r10, r5\n" /* vl*interp + out[] */\ " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\ " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\ \ " ldrsh r12, [r0, #+2]\n" /* in[2*inputIndex+1] */\ " ldrsh r0, [r0, #-2]\n" /* in[2*inputIndex-1] */\ " sub r12, r12, r0\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\ " mov r12, r12, lsl #2\n" /* <<2 */\ " smulwt r12, r12, r6\n" /* (x1-x0)*.. */\ " add r12, r0, r12\n" /* x0 - (..) */\ " mla r4, r12, r11, r4\n" /* vr*interp + out[] */\ " str r4, [r8], #4\n" /* out[outputIndex++] = ... */\ \ " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\ " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */ ST_ONE_FRAME // frame 1 ST_ONE_FRAME // frame 1 " cmp r7, r3\n" // inputIndex - maxInIdx " bcc 3b\n" "4:\n" " bic r6, r6, #0xC0000000\n" // phaseFraction & ... // save modified values " ldr r0, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction " str r6, [r0]\n" // phaseFraction " ldr r0, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex " str r7, [r0]\n" // inputIndex " ldr r0, [sp, #" ST_PARAM5 " + 4]\n" // out " sub r8, r0\n" // curOut - out " asr r8, #2\n" // new outputIndex " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex " str r8, [r0]\n" // save outputIndex " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n" ); } #endif // ASM_ARM_RESAMP1 // ---------------------------------------------------------------------------- } // namespace android