/* * Wi-Fi Protected Setup - Enrollee * Copyright (c) 2008, Jouni Malinen <j@w1.fi> * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "crypto/crypto.h" #include "crypto/sha256.h" #include "crypto/random.h" #include "wps_i.h" #include "wps_dev_attr.h" static int wps_build_wps_state(struct wps_data *wps, struct wpabuf *msg) { u8 state; if (wps->wps->ap) state = wps->wps->wps_state; else state = WPS_STATE_NOT_CONFIGURED; wpa_printf(MSG_DEBUG, "WPS: * Wi-Fi Protected Setup State (%d)", state); wpabuf_put_be16(msg, ATTR_WPS_STATE); wpabuf_put_be16(msg, 1); wpabuf_put_u8(msg, state); return 0; } static int wps_build_e_hash(struct wps_data *wps, struct wpabuf *msg) { u8 *hash; const u8 *addr[4]; size_t len[4]; if (random_get_bytes(wps->snonce, 2 * WPS_SECRET_NONCE_LEN) < 0) return -1; wpa_hexdump(MSG_DEBUG, "WPS: E-S1", wps->snonce, WPS_SECRET_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPS: E-S2", wps->snonce + WPS_SECRET_NONCE_LEN, WPS_SECRET_NONCE_LEN); if (wps->dh_pubkey_e == NULL || wps->dh_pubkey_r == NULL) { wpa_printf(MSG_DEBUG, "WPS: DH public keys not available for " "E-Hash derivation"); return -1; } wpa_printf(MSG_DEBUG, "WPS: * E-Hash1"); wpabuf_put_be16(msg, ATTR_E_HASH1); wpabuf_put_be16(msg, SHA256_MAC_LEN); hash = wpabuf_put(msg, SHA256_MAC_LEN); /* E-Hash1 = HMAC_AuthKey(E-S1 || PSK1 || PK_E || PK_R) */ addr[0] = wps->snonce; len[0] = WPS_SECRET_NONCE_LEN; addr[1] = wps->psk1; len[1] = WPS_PSK_LEN; addr[2] = wpabuf_head(wps->dh_pubkey_e); len[2] = wpabuf_len(wps->dh_pubkey_e); addr[3] = wpabuf_head(wps->dh_pubkey_r); len[3] = wpabuf_len(wps->dh_pubkey_r); hmac_sha256_vector(wps->authkey, WPS_AUTHKEY_LEN, 4, addr, len, hash); wpa_hexdump(MSG_DEBUG, "WPS: E-Hash1", hash, SHA256_MAC_LEN); wpa_printf(MSG_DEBUG, "WPS: * E-Hash2"); wpabuf_put_be16(msg, ATTR_E_HASH2); wpabuf_put_be16(msg, SHA256_MAC_LEN); hash = wpabuf_put(msg, SHA256_MAC_LEN); /* E-Hash2 = HMAC_AuthKey(E-S2 || PSK2 || PK_E || PK_R) */ addr[0] = wps->snonce + WPS_SECRET_NONCE_LEN; addr[1] = wps->psk2; hmac_sha256_vector(wps->authkey, WPS_AUTHKEY_LEN, 4, addr, len, hash); wpa_hexdump(MSG_DEBUG, "WPS: E-Hash2", hash, SHA256_MAC_LEN); return 0; } static int wps_build_e_snonce1(struct wps_data *wps, struct wpabuf *msg) { wpa_printf(MSG_DEBUG, "WPS: * E-SNonce1"); wpabuf_put_be16(msg, ATTR_E_SNONCE1); wpabuf_put_be16(msg, WPS_SECRET_NONCE_LEN); wpabuf_put_data(msg, wps->snonce, WPS_SECRET_NONCE_LEN); return 0; } static int wps_build_e_snonce2(struct wps_data *wps, struct wpabuf *msg) { wpa_printf(MSG_DEBUG, "WPS: * E-SNonce2"); wpabuf_put_be16(msg, ATTR_E_SNONCE2); wpabuf_put_be16(msg, WPS_SECRET_NONCE_LEN); wpabuf_put_data(msg, wps->snonce + WPS_SECRET_NONCE_LEN, WPS_SECRET_NONCE_LEN); return 0; } static struct wpabuf * wps_build_m1(struct wps_data *wps) { struct wpabuf *msg; u16 config_methods; if (random_get_bytes(wps->nonce_e, WPS_NONCE_LEN) < 0) return NULL; wpa_hexdump(MSG_DEBUG, "WPS: Enrollee Nonce", wps->nonce_e, WPS_NONCE_LEN); wpa_printf(MSG_DEBUG, "WPS: Building Message M1"); msg = wpabuf_alloc(1000); if (msg == NULL) return NULL; config_methods = wps->wps->config_methods; if (wps->wps->ap && !wps->pbc_in_m1 && (wps->dev_password_len != 0 || (config_methods & WPS_CONFIG_DISPLAY))) { /* * These are the methods that the AP supports as an Enrollee * for adding external Registrars, so remove PushButton. * * As a workaround for Windows 7 mechanism for probing WPS * capabilities from M1, leave PushButton option if no PIN * method is available or if WPS configuration enables PBC * workaround. */ config_methods &= ~WPS_CONFIG_PUSHBUTTON; config_methods &= ~(WPS_CONFIG_VIRT_PUSHBUTTON | WPS_CONFIG_PHY_PUSHBUTTON); } if (wps_build_version(msg) || wps_build_msg_type(msg, WPS_M1) || wps_build_uuid_e(msg, wps->uuid_e) || wps_build_mac_addr(msg, wps->mac_addr_e) || wps_build_enrollee_nonce(wps, msg) || wps_build_public_key(wps, msg) || wps_build_auth_type_flags(wps, msg) || wps_build_encr_type_flags(wps, msg) || wps_build_conn_type_flags(wps, msg) || wps_build_config_methods(msg, config_methods) || wps_build_wps_state(wps, msg) || wps_build_device_attrs(&wps->wps->dev, msg) || wps_build_rf_bands(&wps->wps->dev, msg, wps->wps->rf_band_cb(wps->wps->cb_ctx)) || wps_build_assoc_state(wps, msg) || wps_build_dev_password_id(msg, wps->dev_pw_id) || wps_build_config_error(msg, WPS_CFG_NO_ERROR) || wps_build_os_version(&wps->wps->dev, msg) || wps_build_wfa_ext(msg, 0, NULL, 0) || wps_build_vendor_ext_m1(&wps->wps->dev, msg)) { wpabuf_free(msg); return NULL; } wps->state = RECV_M2; return msg; } static struct wpabuf * wps_build_m3(struct wps_data *wps) { struct wpabuf *msg; wpa_printf(MSG_DEBUG, "WPS: Building Message M3"); if (wps->dev_password == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Device Password available"); return NULL; } wps_derive_psk(wps, wps->dev_password, wps->dev_password_len); if (wps->wps->ap && random_pool_ready() != 1) { wpa_printf(MSG_INFO, "WPS: Not enough entropy in random pool to proceed - do not allow AP PIN to be used"); return NULL; } msg = wpabuf_alloc(1000); if (msg == NULL) return NULL; if (wps_build_version(msg) || wps_build_msg_type(msg, WPS_M3) || wps_build_registrar_nonce(wps, msg) || wps_build_e_hash(wps, msg) || wps_build_wfa_ext(msg, 0, NULL, 0) || wps_build_authenticator(wps, msg)) { wpabuf_free(msg); return NULL; } wps->state = RECV_M4; return msg; } static struct wpabuf * wps_build_m5(struct wps_data *wps) { struct wpabuf *msg, *plain; wpa_printf(MSG_DEBUG, "WPS: Building Message M5"); plain = wpabuf_alloc(200); if (plain == NULL) return NULL; msg = wpabuf_alloc(1000); if (msg == NULL) { wpabuf_free(plain); return NULL; } if (wps_build_version(msg) || wps_build_msg_type(msg, WPS_M5) || wps_build_registrar_nonce(wps, msg) || wps_build_e_snonce1(wps, plain) || wps_build_key_wrap_auth(wps, plain) || wps_build_encr_settings(wps, msg, plain) || wps_build_wfa_ext(msg, 0, NULL, 0) || wps_build_authenticator(wps, msg)) { wpabuf_free(plain); wpabuf_free(msg); return NULL; } wpabuf_free(plain); wps->state = RECV_M6; return msg; } static int wps_build_cred_ssid(struct wps_data *wps, struct wpabuf *msg) { wpa_printf(MSG_DEBUG, "WPS: * SSID"); wpabuf_put_be16(msg, ATTR_SSID); wpabuf_put_be16(msg, wps->wps->ssid_len); wpabuf_put_data(msg, wps->wps->ssid, wps->wps->ssid_len); return 0; } static int wps_build_cred_auth_type(struct wps_data *wps, struct wpabuf *msg) { u16 auth_type = wps->wps->ap_auth_type; /* * Work around issues with Windows 7 WPS implementation not liking * multiple Authentication Type bits in M7 AP Settings attribute by * showing only the most secure option from current configuration. */ if (auth_type & WPS_AUTH_WPA2PSK) auth_type = WPS_AUTH_WPA2PSK; else if (auth_type & WPS_AUTH_WPAPSK) auth_type = WPS_AUTH_WPAPSK; else if (auth_type & WPS_AUTH_OPEN) auth_type = WPS_AUTH_OPEN; wpa_printf(MSG_DEBUG, "WPS: * Authentication Type (0x%x)", auth_type); wpabuf_put_be16(msg, ATTR_AUTH_TYPE); wpabuf_put_be16(msg, 2); wpabuf_put_be16(msg, auth_type); return 0; } static int wps_build_cred_encr_type(struct wps_data *wps, struct wpabuf *msg) { u16 encr_type = wps->wps->ap_encr_type; /* * Work around issues with Windows 7 WPS implementation not liking * multiple Encryption Type bits in M7 AP Settings attribute by * showing only the most secure option from current configuration. */ if (wps->wps->ap_auth_type & (WPS_AUTH_WPA2PSK | WPS_AUTH_WPAPSK)) { if (encr_type & WPS_ENCR_AES) encr_type = WPS_ENCR_AES; else if (encr_type & WPS_ENCR_TKIP) encr_type = WPS_ENCR_TKIP; } wpa_printf(MSG_DEBUG, "WPS: * Encryption Type (0x%x)", encr_type); wpabuf_put_be16(msg, ATTR_ENCR_TYPE); wpabuf_put_be16(msg, 2); wpabuf_put_be16(msg, encr_type); return 0; } static int wps_build_cred_network_key(struct wps_data *wps, struct wpabuf *msg) { if ((wps->wps->ap_auth_type & (WPS_AUTH_WPAPSK | WPS_AUTH_WPA2PSK)) && wps->wps->network_key_len == 0) { char hex[65]; u8 psk[32]; /* Generate a random per-device PSK */ if (random_pool_ready() != 1 || random_get_bytes(psk, sizeof(psk)) < 0) { wpa_printf(MSG_INFO, "WPS: Could not generate random PSK"); return -1; } wpa_hexdump_key(MSG_DEBUG, "WPS: Generated per-device PSK", psk, sizeof(psk)); wpa_printf(MSG_DEBUG, "WPS: * Network Key (len=%u)", (unsigned int) wps->new_psk_len * 2); wpa_snprintf_hex(hex, sizeof(hex), psk, sizeof(psk)); wpabuf_put_be16(msg, ATTR_NETWORK_KEY); wpabuf_put_be16(msg, sizeof(psk) * 2); wpabuf_put_data(msg, hex, sizeof(psk) * 2); if (wps->wps->registrar) { wps_cb_new_psk(wps->wps->registrar, wps->peer_dev.mac_addr, wps->p2p_dev_addr, psk, sizeof(psk)); } return 0; } wpa_printf(MSG_DEBUG, "WPS: * Network Key (len=%u)", (unsigned int) wps->wps->network_key_len); wpabuf_put_be16(msg, ATTR_NETWORK_KEY); wpabuf_put_be16(msg, wps->wps->network_key_len); wpabuf_put_data(msg, wps->wps->network_key, wps->wps->network_key_len); return 0; } static int wps_build_cred_mac_addr(struct wps_data *wps, struct wpabuf *msg) { wpa_printf(MSG_DEBUG, "WPS: * MAC Address (AP BSSID)"); wpabuf_put_be16(msg, ATTR_MAC_ADDR); wpabuf_put_be16(msg, ETH_ALEN); wpabuf_put_data(msg, wps->wps->dev.mac_addr, ETH_ALEN); return 0; } static int wps_build_ap_settings(struct wps_data *wps, struct wpabuf *plain) { const u8 *start, *end; int ret; if (wps->wps->ap_settings) { wpa_printf(MSG_DEBUG, "WPS: * AP Settings (pre-configured)"); wpabuf_put_data(plain, wps->wps->ap_settings, wps->wps->ap_settings_len); return 0; } wpa_printf(MSG_DEBUG, "WPS: * AP Settings based on current configuration"); start = wpabuf_put(plain, 0); ret = wps_build_cred_ssid(wps, plain) || wps_build_cred_mac_addr(wps, plain) || wps_build_cred_auth_type(wps, plain) || wps_build_cred_encr_type(wps, plain) || wps_build_cred_network_key(wps, plain); end = wpabuf_put(plain, 0); wpa_hexdump_key(MSG_DEBUG, "WPS: Plaintext AP Settings", start, end - start); return ret; } static struct wpabuf * wps_build_m7(struct wps_data *wps) { struct wpabuf *msg, *plain; wpa_printf(MSG_DEBUG, "WPS: Building Message M7"); plain = wpabuf_alloc(500 + wps->wps->ap_settings_len); if (plain == NULL) return NULL; msg = wpabuf_alloc(1000 + wps->wps->ap_settings_len); if (msg == NULL) { wpabuf_free(plain); return NULL; } if (wps_build_version(msg) || wps_build_msg_type(msg, WPS_M7) || wps_build_registrar_nonce(wps, msg) || wps_build_e_snonce2(wps, plain) || (wps->wps->ap && wps_build_ap_settings(wps, plain)) || wps_build_key_wrap_auth(wps, plain) || wps_build_encr_settings(wps, msg, plain) || wps_build_wfa_ext(msg, 0, NULL, 0) || wps_build_authenticator(wps, msg)) { wpabuf_free(plain); wpabuf_free(msg); return NULL; } wpabuf_free(plain); if (wps->wps->ap && wps->wps->registrar) { /* * If the Registrar is only learning our current configuration, * it may not continue protocol run to successful completion. * Store information here to make sure it remains available. */ wps_device_store(wps->wps->registrar, &wps->peer_dev, wps->uuid_r); } wps->state = RECV_M8; return msg; } static struct wpabuf * wps_build_wsc_done(struct wps_data *wps) { struct wpabuf *msg; wpa_printf(MSG_DEBUG, "WPS: Building Message WSC_Done"); msg = wpabuf_alloc(1000); if (msg == NULL) return NULL; if (wps_build_version(msg) || wps_build_msg_type(msg, WPS_WSC_DONE) || wps_build_enrollee_nonce(wps, msg) || wps_build_registrar_nonce(wps, msg) || wps_build_wfa_ext(msg, 0, NULL, 0)) { wpabuf_free(msg); return NULL; } if (wps->wps->ap) wps->state = RECV_ACK; else { wps_success_event(wps->wps, wps->peer_dev.mac_addr); wps->state = WPS_FINISHED; } return msg; } struct wpabuf * wps_enrollee_get_msg(struct wps_data *wps, enum wsc_op_code *op_code) { struct wpabuf *msg; switch (wps->state) { case SEND_M1: msg = wps_build_m1(wps); *op_code = WSC_MSG; break; case SEND_M3: msg = wps_build_m3(wps); *op_code = WSC_MSG; break; case SEND_M5: msg = wps_build_m5(wps); *op_code = WSC_MSG; break; case SEND_M7: msg = wps_build_m7(wps); *op_code = WSC_MSG; break; case RECEIVED_M2D: if (wps->wps->ap) { msg = wps_build_wsc_nack(wps); *op_code = WSC_NACK; break; } msg = wps_build_wsc_ack(wps); *op_code = WSC_ACK; if (msg) { /* Another M2/M2D may be received */ wps->state = RECV_M2; } break; case SEND_WSC_NACK: msg = wps_build_wsc_nack(wps); *op_code = WSC_NACK; break; case WPS_MSG_DONE: msg = wps_build_wsc_done(wps); *op_code = WSC_Done; break; default: wpa_printf(MSG_DEBUG, "WPS: Unsupported state %d for building " "a message", wps->state); msg = NULL; break; } if (*op_code == WSC_MSG && msg) { /* Save a copy of the last message for Authenticator derivation */ wpabuf_free(wps->last_msg); wps->last_msg = wpabuf_dup(msg); } return msg; } static int wps_process_registrar_nonce(struct wps_data *wps, const u8 *r_nonce) { if (r_nonce == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Registrar Nonce received"); return -1; } os_memcpy(wps->nonce_r, r_nonce, WPS_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPS: Registrar Nonce", wps->nonce_r, WPS_NONCE_LEN); return 0; } static int wps_process_enrollee_nonce(struct wps_data *wps, const u8 *e_nonce) { if (e_nonce == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Enrollee Nonce received"); return -1; } if (os_memcmp(wps->nonce_e, e_nonce, WPS_NONCE_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: Invalid Enrollee Nonce received"); return -1; } return 0; } static int wps_process_uuid_r(struct wps_data *wps, const u8 *uuid_r) { if (uuid_r == NULL) { wpa_printf(MSG_DEBUG, "WPS: No UUID-R received"); return -1; } os_memcpy(wps->uuid_r, uuid_r, WPS_UUID_LEN); wpa_hexdump(MSG_DEBUG, "WPS: UUID-R", wps->uuid_r, WPS_UUID_LEN); return 0; } static int wps_process_pubkey(struct wps_data *wps, const u8 *pk, size_t pk_len) { if (pk == NULL || pk_len == 0) { wpa_printf(MSG_DEBUG, "WPS: No Public Key received"); return -1; } if (wps->peer_pubkey_hash_set) { u8 hash[WPS_HASH_LEN]; sha256_vector(1, &pk, &pk_len, hash); if (os_memcmp_const(hash, wps->peer_pubkey_hash, WPS_OOB_PUBKEY_HASH_LEN) != 0) { wpa_printf(MSG_ERROR, "WPS: Public Key hash mismatch"); wpa_hexdump(MSG_DEBUG, "WPS: Received public key", pk, pk_len); wpa_hexdump(MSG_DEBUG, "WPS: Calculated public key " "hash", hash, WPS_OOB_PUBKEY_HASH_LEN); wpa_hexdump(MSG_DEBUG, "WPS: Expected public key hash", wps->peer_pubkey_hash, WPS_OOB_PUBKEY_HASH_LEN); wps->config_error = WPS_CFG_PUBLIC_KEY_HASH_MISMATCH; return -1; } } wpabuf_free(wps->dh_pubkey_r); wps->dh_pubkey_r = wpabuf_alloc_copy(pk, pk_len); if (wps->dh_pubkey_r == NULL) return -1; if (wps_derive_keys(wps) < 0) return -1; return 0; } static int wps_process_r_hash1(struct wps_data *wps, const u8 *r_hash1) { if (r_hash1 == NULL) { wpa_printf(MSG_DEBUG, "WPS: No R-Hash1 received"); return -1; } os_memcpy(wps->peer_hash1, r_hash1, WPS_HASH_LEN); wpa_hexdump(MSG_DEBUG, "WPS: R-Hash1", wps->peer_hash1, WPS_HASH_LEN); return 0; } static int wps_process_r_hash2(struct wps_data *wps, const u8 *r_hash2) { if (r_hash2 == NULL) { wpa_printf(MSG_DEBUG, "WPS: No R-Hash2 received"); return -1; } os_memcpy(wps->peer_hash2, r_hash2, WPS_HASH_LEN); wpa_hexdump(MSG_DEBUG, "WPS: R-Hash2", wps->peer_hash2, WPS_HASH_LEN); return 0; } static int wps_process_r_snonce1(struct wps_data *wps, const u8 *r_snonce1) { u8 hash[SHA256_MAC_LEN]; const u8 *addr[4]; size_t len[4]; if (r_snonce1 == NULL) { wpa_printf(MSG_DEBUG, "WPS: No R-SNonce1 received"); return -1; } wpa_hexdump_key(MSG_DEBUG, "WPS: R-SNonce1", r_snonce1, WPS_SECRET_NONCE_LEN); /* R-Hash1 = HMAC_AuthKey(R-S1 || PSK1 || PK_E || PK_R) */ addr[0] = r_snonce1; len[0] = WPS_SECRET_NONCE_LEN; addr[1] = wps->psk1; len[1] = WPS_PSK_LEN; addr[2] = wpabuf_head(wps->dh_pubkey_e); len[2] = wpabuf_len(wps->dh_pubkey_e); addr[3] = wpabuf_head(wps->dh_pubkey_r); len[3] = wpabuf_len(wps->dh_pubkey_r); hmac_sha256_vector(wps->authkey, WPS_AUTHKEY_LEN, 4, addr, len, hash); if (os_memcmp_const(wps->peer_hash1, hash, WPS_HASH_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: R-Hash1 derived from R-S1 does " "not match with the pre-committed value"); wps->config_error = WPS_CFG_DEV_PASSWORD_AUTH_FAILURE; wps_pwd_auth_fail_event(wps->wps, 1, 1, wps->peer_dev.mac_addr); return -1; } wpa_printf(MSG_DEBUG, "WPS: Registrar proved knowledge of the first " "half of the device password"); return 0; } static int wps_process_r_snonce2(struct wps_data *wps, const u8 *r_snonce2) { u8 hash[SHA256_MAC_LEN]; const u8 *addr[4]; size_t len[4]; if (r_snonce2 == NULL) { wpa_printf(MSG_DEBUG, "WPS: No R-SNonce2 received"); return -1; } wpa_hexdump_key(MSG_DEBUG, "WPS: R-SNonce2", r_snonce2, WPS_SECRET_NONCE_LEN); /* R-Hash2 = HMAC_AuthKey(R-S2 || PSK2 || PK_E || PK_R) */ addr[0] = r_snonce2; len[0] = WPS_SECRET_NONCE_LEN; addr[1] = wps->psk2; len[1] = WPS_PSK_LEN; addr[2] = wpabuf_head(wps->dh_pubkey_e); len[2] = wpabuf_len(wps->dh_pubkey_e); addr[3] = wpabuf_head(wps->dh_pubkey_r); len[3] = wpabuf_len(wps->dh_pubkey_r); hmac_sha256_vector(wps->authkey, WPS_AUTHKEY_LEN, 4, addr, len, hash); if (os_memcmp_const(wps->peer_hash2, hash, WPS_HASH_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: R-Hash2 derived from R-S2 does " "not match with the pre-committed value"); wps->config_error = WPS_CFG_DEV_PASSWORD_AUTH_FAILURE; wps_pwd_auth_fail_event(wps->wps, 1, 2, wps->peer_dev.mac_addr); return -1; } wpa_printf(MSG_DEBUG, "WPS: Registrar proved knowledge of the second " "half of the device password"); return 0; } static int wps_process_cred_e(struct wps_data *wps, const u8 *cred, size_t cred_len, int wps2) { struct wps_parse_attr attr; struct wpabuf msg; int ret = 0; wpa_printf(MSG_DEBUG, "WPS: Received Credential"); os_memset(&wps->cred, 0, sizeof(wps->cred)); wpabuf_set(&msg, cred, cred_len); if (wps_parse_msg(&msg, &attr) < 0 || wps_process_cred(&attr, &wps->cred)) return -1; if (os_memcmp(wps->cred.mac_addr, wps->wps->dev.mac_addr, ETH_ALEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: MAC Address in the Credential (" MACSTR ") does not match with own address (" MACSTR ")", MAC2STR(wps->cred.mac_addr), MAC2STR(wps->wps->dev.mac_addr)); /* * In theory, this could be consider fatal error, but there are * number of deployed implementations using other address here * due to unclarity in the specification. For interoperability * reasons, allow this to be processed since we do not really * use the MAC Address information for anything. */ #ifdef CONFIG_WPS_STRICT if (wps2) { wpa_printf(MSG_INFO, "WPS: Do not accept incorrect " "MAC Address in AP Settings"); return -1; } #endif /* CONFIG_WPS_STRICT */ } if (!(wps->cred.encr_type & (WPS_ENCR_NONE | WPS_ENCR_TKIP | WPS_ENCR_AES))) { if (wps->cred.encr_type & WPS_ENCR_WEP) { wpa_printf(MSG_INFO, "WPS: Reject Credential " "due to WEP configuration"); wps->error_indication = WPS_EI_SECURITY_WEP_PROHIBITED; return -2; } wpa_printf(MSG_INFO, "WPS: Reject Credential due to " "invalid encr_type 0x%x", wps->cred.encr_type); return -1; } if (wps->wps->cred_cb) { wps->cred.cred_attr = cred - 4; wps->cred.cred_attr_len = cred_len + 4; ret = wps->wps->cred_cb(wps->wps->cb_ctx, &wps->cred); wps->cred.cred_attr = NULL; wps->cred.cred_attr_len = 0; } return ret; } static int wps_process_creds(struct wps_data *wps, const u8 *cred[], u16 cred_len[], unsigned int num_cred, int wps2) { size_t i; int ok = 0; if (wps->wps->ap) return 0; if (num_cred == 0) { wpa_printf(MSG_DEBUG, "WPS: No Credential attributes " "received"); return -1; } for (i = 0; i < num_cred; i++) { int res; res = wps_process_cred_e(wps, cred[i], cred_len[i], wps2); if (res == 0) ok++; else if (res == -2) wpa_printf(MSG_DEBUG, "WPS: WEP credential skipped"); else return -1; } if (ok == 0) { wpa_printf(MSG_DEBUG, "WPS: No valid Credential attribute " "received"); return -1; } return 0; } static int wps_process_ap_settings_e(struct wps_data *wps, struct wps_parse_attr *attr, struct wpabuf *attrs, int wps2) { struct wps_credential cred; int ret = 0; if (!wps->wps->ap) return 0; if (wps_process_ap_settings(attr, &cred) < 0) return -1; wpa_printf(MSG_INFO, "WPS: Received new AP configuration from " "Registrar"); if (os_memcmp(cred.mac_addr, wps->wps->dev.mac_addr, ETH_ALEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: MAC Address in the AP Settings (" MACSTR ") does not match with own address (" MACSTR ")", MAC2STR(cred.mac_addr), MAC2STR(wps->wps->dev.mac_addr)); /* * In theory, this could be consider fatal error, but there are * number of deployed implementations using other address here * due to unclarity in the specification. For interoperability * reasons, allow this to be processed since we do not really * use the MAC Address information for anything. */ #ifdef CONFIG_WPS_STRICT if (wps2) { wpa_printf(MSG_INFO, "WPS: Do not accept incorrect " "MAC Address in AP Settings"); return -1; } #endif /* CONFIG_WPS_STRICT */ } if (!(cred.encr_type & (WPS_ENCR_NONE | WPS_ENCR_TKIP | WPS_ENCR_AES))) { if (cred.encr_type & WPS_ENCR_WEP) { wpa_printf(MSG_INFO, "WPS: Reject new AP settings " "due to WEP configuration"); wps->error_indication = WPS_EI_SECURITY_WEP_PROHIBITED; return -1; } wpa_printf(MSG_INFO, "WPS: Reject new AP settings due to " "invalid encr_type 0x%x", cred.encr_type); return -1; } #ifdef CONFIG_WPS_STRICT if (wps2) { if ((cred.encr_type & (WPS_ENCR_TKIP | WPS_ENCR_AES)) == WPS_ENCR_TKIP || (cred.auth_type & (WPS_AUTH_WPAPSK | WPS_AUTH_WPA2PSK)) == WPS_AUTH_WPAPSK) { wpa_printf(MSG_INFO, "WPS-STRICT: Invalid WSC 2.0 " "AP Settings: WPA-Personal/TKIP only"); wps->error_indication = WPS_EI_SECURITY_TKIP_ONLY_PROHIBITED; return -1; } } #endif /* CONFIG_WPS_STRICT */ if ((cred.encr_type & (WPS_ENCR_TKIP | WPS_ENCR_AES)) == WPS_ENCR_TKIP) { wpa_printf(MSG_DEBUG, "WPS: Upgrade encr_type TKIP -> " "TKIP+AES"); cred.encr_type |= WPS_ENCR_AES; } if ((cred.auth_type & (WPS_AUTH_WPAPSK | WPS_AUTH_WPA2PSK)) == WPS_AUTH_WPAPSK) { wpa_printf(MSG_DEBUG, "WPS: Upgrade auth_type WPAPSK -> " "WPAPSK+WPA2PSK"); cred.auth_type |= WPS_AUTH_WPA2PSK; } if (wps->wps->cred_cb) { cred.cred_attr = wpabuf_head(attrs); cred.cred_attr_len = wpabuf_len(attrs); ret = wps->wps->cred_cb(wps->wps->cb_ctx, &cred); } return ret; } static int wps_process_dev_pw_id(struct wps_data *wps, const u8 *dev_pw_id) { u16 id; if (dev_pw_id == NULL) { wpa_printf(MSG_DEBUG, "WPS: Device Password ID"); return -1; } id = WPA_GET_BE16(dev_pw_id); if (wps->dev_pw_id == id) { wpa_printf(MSG_DEBUG, "WPS: Device Password ID %u", id); return 0; } #ifdef CONFIG_P2P if ((id == DEV_PW_DEFAULT && wps->dev_pw_id == DEV_PW_REGISTRAR_SPECIFIED) || (id == DEV_PW_REGISTRAR_SPECIFIED && wps->dev_pw_id == DEV_PW_DEFAULT)) { /* * Common P2P use cases indicate whether the PIN is from the * client or GO using Device Password Id in M1/M2 in a way that * does not look fully compliant with WSC specification. Anyway, * this is deployed and needs to be allowed, so ignore changes * between Registrar-Specified and Default PIN. */ wpa_printf(MSG_DEBUG, "WPS: Allow PIN Device Password ID " "change"); return 0; } #endif /* CONFIG_P2P */ wpa_printf(MSG_DEBUG, "WPS: Registrar trying to change Device Password " "ID from %u to %u", wps->dev_pw_id, id); if (wps->dev_pw_id == DEV_PW_PUSHBUTTON && id == DEV_PW_DEFAULT) { wpa_printf(MSG_DEBUG, "WPS: Workaround - ignore PBC-to-PIN change"); return 0; } if (wps->alt_dev_password && wps->alt_dev_pw_id == id) { wpa_printf(MSG_DEBUG, "WPS: Found a matching Device Password"); bin_clear_free(wps->dev_password, wps->dev_password_len); wps->dev_pw_id = wps->alt_dev_pw_id; wps->dev_password = wps->alt_dev_password; wps->dev_password_len = wps->alt_dev_password_len; wps->alt_dev_password = NULL; wps->alt_dev_password_len = 0; return 0; } return -1; } static enum wps_process_res wps_process_m2(struct wps_data *wps, const struct wpabuf *msg, struct wps_parse_attr *attr) { wpa_printf(MSG_DEBUG, "WPS: Received M2"); if (wps->state != RECV_M2) { wpa_printf(MSG_DEBUG, "WPS: Unexpected state (%d) for " "receiving M2", wps->state); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_process_registrar_nonce(wps, attr->registrar_nonce) || wps_process_enrollee_nonce(wps, attr->enrollee_nonce) || wps_process_uuid_r(wps, attr->uuid_r) || wps_process_dev_pw_id(wps, attr->dev_password_id)) { wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } /* * Stop here on an AP as an Enrollee if AP Setup is locked unless the * special locked mode is used to allow protocol run up to M7 in order * to support external Registrars that only learn the current AP * configuration without changing it. */ if (wps->wps->ap && ((wps->wps->ap_setup_locked && wps->wps->ap_setup_locked != 2) || wps->dev_password == NULL)) { wpa_printf(MSG_DEBUG, "WPS: AP Setup is locked - refuse " "registration of a new Registrar"); wps->config_error = WPS_CFG_SETUP_LOCKED; wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_process_pubkey(wps, attr->public_key, attr->public_key_len) || wps_process_authenticator(wps, attr->authenticator, msg) || wps_process_device_attrs(&wps->peer_dev, attr)) { wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } #ifdef CONFIG_WPS_NFC if (wps->peer_pubkey_hash_set) { struct wpabuf *decrypted; struct wps_parse_attr eattr; decrypted = wps_decrypt_encr_settings(wps, attr->encr_settings, attr->encr_settings_len); if (decrypted == NULL) { wpa_printf(MSG_DEBUG, "WPS: Failed to decrypt " "Encrypted Settings attribute"); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpa_printf(MSG_DEBUG, "WPS: Processing decrypted Encrypted " "Settings attribute"); if (wps_parse_msg(decrypted, &eattr) < 0 || wps_process_key_wrap_auth(wps, decrypted, eattr.key_wrap_auth) || wps_process_creds(wps, eattr.cred, eattr.cred_len, eattr.num_cred, attr->version2 != NULL)) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpabuf_free(decrypted); wps->state = WPS_MSG_DONE; return WPS_CONTINUE; } #endif /* CONFIG_WPS_NFC */ wps->state = SEND_M3; return WPS_CONTINUE; } static enum wps_process_res wps_process_m2d(struct wps_data *wps, struct wps_parse_attr *attr) { wpa_printf(MSG_DEBUG, "WPS: Received M2D"); if (wps->state != RECV_M2) { wpa_printf(MSG_DEBUG, "WPS: Unexpected state (%d) for " "receiving M2D", wps->state); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpa_hexdump_ascii(MSG_DEBUG, "WPS: Manufacturer", attr->manufacturer, attr->manufacturer_len); wpa_hexdump_ascii(MSG_DEBUG, "WPS: Model Name", attr->model_name, attr->model_name_len); wpa_hexdump_ascii(MSG_DEBUG, "WPS: Model Number", attr->model_number, attr->model_number_len); wpa_hexdump_ascii(MSG_DEBUG, "WPS: Serial Number", attr->serial_number, attr->serial_number_len); wpa_hexdump_ascii(MSG_DEBUG, "WPS: Device Name", attr->dev_name, attr->dev_name_len); if (wps->wps->event_cb) { union wps_event_data data; struct wps_event_m2d *m2d = &data.m2d; os_memset(&data, 0, sizeof(data)); if (attr->config_methods) m2d->config_methods = WPA_GET_BE16(attr->config_methods); m2d->manufacturer = attr->manufacturer; m2d->manufacturer_len = attr->manufacturer_len; m2d->model_name = attr->model_name; m2d->model_name_len = attr->model_name_len; m2d->model_number = attr->model_number; m2d->model_number_len = attr->model_number_len; m2d->serial_number = attr->serial_number; m2d->serial_number_len = attr->serial_number_len; m2d->dev_name = attr->dev_name; m2d->dev_name_len = attr->dev_name_len; m2d->primary_dev_type = attr->primary_dev_type; if (attr->config_error) m2d->config_error = WPA_GET_BE16(attr->config_error); if (attr->dev_password_id) m2d->dev_password_id = WPA_GET_BE16(attr->dev_password_id); wps->wps->event_cb(wps->wps->cb_ctx, WPS_EV_M2D, &data); } wps->state = RECEIVED_M2D; return WPS_CONTINUE; } static enum wps_process_res wps_process_m4(struct wps_data *wps, const struct wpabuf *msg, struct wps_parse_attr *attr) { struct wpabuf *decrypted; struct wps_parse_attr eattr; wpa_printf(MSG_DEBUG, "WPS: Received M4"); if (wps->state != RECV_M4) { wpa_printf(MSG_DEBUG, "WPS: Unexpected state (%d) for " "receiving M4", wps->state); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_process_enrollee_nonce(wps, attr->enrollee_nonce) || wps_process_authenticator(wps, attr->authenticator, msg) || wps_process_r_hash1(wps, attr->r_hash1) || wps_process_r_hash2(wps, attr->r_hash2)) { wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } decrypted = wps_decrypt_encr_settings(wps, attr->encr_settings, attr->encr_settings_len); if (decrypted == NULL) { wpa_printf(MSG_DEBUG, "WPS: Failed to decrypted Encrypted " "Settings attribute"); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_validate_m4_encr(decrypted, attr->version2 != NULL) < 0) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpa_printf(MSG_DEBUG, "WPS: Processing decrypted Encrypted Settings " "attribute"); if (wps_parse_msg(decrypted, &eattr) < 0 || wps_process_key_wrap_auth(wps, decrypted, eattr.key_wrap_auth) || wps_process_r_snonce1(wps, eattr.r_snonce1)) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpabuf_free(decrypted); wps->state = SEND_M5; return WPS_CONTINUE; } static enum wps_process_res wps_process_m6(struct wps_data *wps, const struct wpabuf *msg, struct wps_parse_attr *attr) { struct wpabuf *decrypted; struct wps_parse_attr eattr; wpa_printf(MSG_DEBUG, "WPS: Received M6"); if (wps->state != RECV_M6) { wpa_printf(MSG_DEBUG, "WPS: Unexpected state (%d) for " "receiving M6", wps->state); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_process_enrollee_nonce(wps, attr->enrollee_nonce) || wps_process_authenticator(wps, attr->authenticator, msg)) { wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } decrypted = wps_decrypt_encr_settings(wps, attr->encr_settings, attr->encr_settings_len); if (decrypted == NULL) { wpa_printf(MSG_DEBUG, "WPS: Failed to decrypted Encrypted " "Settings attribute"); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_validate_m6_encr(decrypted, attr->version2 != NULL) < 0) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpa_printf(MSG_DEBUG, "WPS: Processing decrypted Encrypted Settings " "attribute"); if (wps_parse_msg(decrypted, &eattr) < 0 || wps_process_key_wrap_auth(wps, decrypted, eattr.key_wrap_auth) || wps_process_r_snonce2(wps, eattr.r_snonce2)) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpabuf_free(decrypted); if (wps->wps->ap) wps->wps->event_cb(wps->wps->cb_ctx, WPS_EV_AP_PIN_SUCCESS, NULL); wps->state = SEND_M7; return WPS_CONTINUE; } static enum wps_process_res wps_process_m8(struct wps_data *wps, const struct wpabuf *msg, struct wps_parse_attr *attr) { struct wpabuf *decrypted; struct wps_parse_attr eattr; wpa_printf(MSG_DEBUG, "WPS: Received M8"); if (wps->state != RECV_M8) { wpa_printf(MSG_DEBUG, "WPS: Unexpected state (%d) for " "receiving M8", wps->state); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_process_enrollee_nonce(wps, attr->enrollee_nonce) || wps_process_authenticator(wps, attr->authenticator, msg)) { wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps->wps->ap && wps->wps->ap_setup_locked) { /* * Stop here if special ap_setup_locked == 2 mode allowed the * protocol to continue beyond M2. This allows ER to learn the * current AP settings without changing them. */ wpa_printf(MSG_DEBUG, "WPS: AP Setup is locked - refuse " "registration of a new Registrar"); wps->config_error = WPS_CFG_SETUP_LOCKED; wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } decrypted = wps_decrypt_encr_settings(wps, attr->encr_settings, attr->encr_settings_len); if (decrypted == NULL) { wpa_printf(MSG_DEBUG, "WPS: Failed to decrypted Encrypted " "Settings attribute"); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } if (wps_validate_m8_encr(decrypted, wps->wps->ap, attr->version2 != NULL) < 0) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpa_printf(MSG_DEBUG, "WPS: Processing decrypted Encrypted Settings " "attribute"); if (wps_parse_msg(decrypted, &eattr) < 0 || wps_process_key_wrap_auth(wps, decrypted, eattr.key_wrap_auth) || wps_process_creds(wps, eattr.cred, eattr.cred_len, eattr.num_cred, attr->version2 != NULL) || wps_process_ap_settings_e(wps, &eattr, decrypted, attr->version2 != NULL)) { wpabuf_free(decrypted); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } wpabuf_free(decrypted); wps->state = WPS_MSG_DONE; return WPS_CONTINUE; } static enum wps_process_res wps_process_wsc_msg(struct wps_data *wps, const struct wpabuf *msg) { struct wps_parse_attr attr; enum wps_process_res ret = WPS_CONTINUE; wpa_printf(MSG_DEBUG, "WPS: Received WSC_MSG"); if (wps_parse_msg(msg, &attr) < 0) return WPS_FAILURE; if (attr.enrollee_nonce == NULL || os_memcmp(wps->nonce_e, attr.enrollee_nonce, WPS_NONCE_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: Mismatch in enrollee nonce"); return WPS_FAILURE; } if (attr.msg_type == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Message Type attribute"); wps->state = SEND_WSC_NACK; return WPS_CONTINUE; } switch (*attr.msg_type) { case WPS_M2: if (wps_validate_m2(msg) < 0) return WPS_FAILURE; ret = wps_process_m2(wps, msg, &attr); break; case WPS_M2D: if (wps_validate_m2d(msg) < 0) return WPS_FAILURE; ret = wps_process_m2d(wps, &attr); break; case WPS_M4: if (wps_validate_m4(msg) < 0) return WPS_FAILURE; ret = wps_process_m4(wps, msg, &attr); if (ret == WPS_FAILURE || wps->state == SEND_WSC_NACK) wps_fail_event(wps->wps, WPS_M4, wps->config_error, wps->error_indication, wps->peer_dev.mac_addr); break; case WPS_M6: if (wps_validate_m6(msg) < 0) return WPS_FAILURE; ret = wps_process_m6(wps, msg, &attr); if (ret == WPS_FAILURE || wps->state == SEND_WSC_NACK) wps_fail_event(wps->wps, WPS_M6, wps->config_error, wps->error_indication, wps->peer_dev.mac_addr); break; case WPS_M8: if (wps_validate_m8(msg) < 0) return WPS_FAILURE; ret = wps_process_m8(wps, msg, &attr); if (ret == WPS_FAILURE || wps->state == SEND_WSC_NACK) wps_fail_event(wps->wps, WPS_M8, wps->config_error, wps->error_indication, wps->peer_dev.mac_addr); break; default: wpa_printf(MSG_DEBUG, "WPS: Unsupported Message Type %d", *attr.msg_type); return WPS_FAILURE; } /* * Save a copy of the last message for Authenticator derivation if we * are continuing. However, skip M2D since it is not authenticated and * neither is the ACK/NACK response frame. This allows the possibly * following M2 to be processed correctly by using the previously sent * M1 in Authenticator derivation. */ if (ret == WPS_CONTINUE && *attr.msg_type != WPS_M2D) { /* Save a copy of the last message for Authenticator derivation */ wpabuf_free(wps->last_msg); wps->last_msg = wpabuf_dup(msg); } return ret; } static enum wps_process_res wps_process_wsc_ack(struct wps_data *wps, const struct wpabuf *msg) { struct wps_parse_attr attr; wpa_printf(MSG_DEBUG, "WPS: Received WSC_ACK"); if (wps_parse_msg(msg, &attr) < 0) return WPS_FAILURE; if (attr.msg_type == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Message Type attribute"); return WPS_FAILURE; } if (*attr.msg_type != WPS_WSC_ACK) { wpa_printf(MSG_DEBUG, "WPS: Invalid Message Type %d", *attr.msg_type); return WPS_FAILURE; } if (attr.registrar_nonce == NULL || os_memcmp(wps->nonce_r, attr.registrar_nonce, WPS_NONCE_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: Mismatch in registrar nonce"); return WPS_FAILURE; } if (attr.enrollee_nonce == NULL || os_memcmp(wps->nonce_e, attr.enrollee_nonce, WPS_NONCE_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: Mismatch in enrollee nonce"); return WPS_FAILURE; } if (wps->state == RECV_ACK && wps->wps->ap) { wpa_printf(MSG_DEBUG, "WPS: External Registrar registration " "completed successfully"); wps_success_event(wps->wps, wps->peer_dev.mac_addr); wps->state = WPS_FINISHED; return WPS_DONE; } return WPS_FAILURE; } static enum wps_process_res wps_process_wsc_nack(struct wps_data *wps, const struct wpabuf *msg) { struct wps_parse_attr attr; u16 config_error; wpa_printf(MSG_DEBUG, "WPS: Received WSC_NACK"); if (wps_parse_msg(msg, &attr) < 0) return WPS_FAILURE; if (attr.msg_type == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Message Type attribute"); return WPS_FAILURE; } if (*attr.msg_type != WPS_WSC_NACK) { wpa_printf(MSG_DEBUG, "WPS: Invalid Message Type %d", *attr.msg_type); return WPS_FAILURE; } if (attr.registrar_nonce == NULL || os_memcmp(wps->nonce_r, attr.registrar_nonce, WPS_NONCE_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: Mismatch in registrar nonce"); wpa_hexdump(MSG_DEBUG, "WPS: Received Registrar Nonce", attr.registrar_nonce, WPS_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPS: Expected Registrar Nonce", wps->nonce_r, WPS_NONCE_LEN); return WPS_FAILURE; } if (attr.enrollee_nonce == NULL || os_memcmp(wps->nonce_e, attr.enrollee_nonce, WPS_NONCE_LEN) != 0) { wpa_printf(MSG_DEBUG, "WPS: Mismatch in enrollee nonce"); wpa_hexdump(MSG_DEBUG, "WPS: Received Enrollee Nonce", attr.enrollee_nonce, WPS_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPS: Expected Enrollee Nonce", wps->nonce_e, WPS_NONCE_LEN); return WPS_FAILURE; } if (attr.config_error == NULL) { wpa_printf(MSG_DEBUG, "WPS: No Configuration Error attribute " "in WSC_NACK"); return WPS_FAILURE; } config_error = WPA_GET_BE16(attr.config_error); wpa_printf(MSG_DEBUG, "WPS: Registrar terminated negotiation with " "Configuration Error %d", config_error); switch (wps->state) { case RECV_M4: wps_fail_event(wps->wps, WPS_M3, config_error, wps->error_indication, wps->peer_dev.mac_addr); break; case RECV_M6: wps_fail_event(wps->wps, WPS_M5, config_error, wps->error_indication, wps->peer_dev.mac_addr); break; case RECV_M8: wps_fail_event(wps->wps, WPS_M7, config_error, wps->error_indication, wps->peer_dev.mac_addr); break; default: break; } /* Followed by NACK if Enrollee is Supplicant or EAP-Failure if * Enrollee is Authenticator */ wps->state = SEND_WSC_NACK; return WPS_FAILURE; } enum wps_process_res wps_enrollee_process_msg(struct wps_data *wps, enum wsc_op_code op_code, const struct wpabuf *msg) { wpa_printf(MSG_DEBUG, "WPS: Processing received message (len=%lu " "op_code=%d)", (unsigned long) wpabuf_len(msg), op_code); if (op_code == WSC_UPnP) { /* Determine the OpCode based on message type attribute */ struct wps_parse_attr attr; if (wps_parse_msg(msg, &attr) == 0 && attr.msg_type) { if (*attr.msg_type == WPS_WSC_ACK) op_code = WSC_ACK; else if (*attr.msg_type == WPS_WSC_NACK) op_code = WSC_NACK; } } switch (op_code) { case WSC_MSG: case WSC_UPnP: return wps_process_wsc_msg(wps, msg); case WSC_ACK: if (wps_validate_wsc_ack(msg) < 0) return WPS_FAILURE; return wps_process_wsc_ack(wps, msg); case WSC_NACK: if (wps_validate_wsc_nack(msg) < 0) return WPS_FAILURE; return wps_process_wsc_nack(wps, msg); default: wpa_printf(MSG_DEBUG, "WPS: Unsupported op_code %d", op_code); return WPS_FAILURE; } }