/*--------------------------------------------------------------------*/ /*--- Format-neutral storage of and querying of info acquired from ---*/ /*--- ELF/XCOFF stabs/dwarf1/dwarf2/dwarf3 debug info. ---*/ /*--- storage.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2015 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* This file manages the data structures built by the debuginfo system. These are: the top level SegInfo list. For each SegInfo, there are tables for address-to-symbol mappings, address-to-src-file/line mappings, and address-to-CFI-info mappings. */ #include "pub_core_basics.h" #include "pub_core_options.h" /* VG_(clo_verbosity) */ #include "pub_core_debuginfo.h" #include "pub_core_debuglog.h" #include "pub_core_libcassert.h" #include "pub_core_libcbase.h" #include "pub_core_libcprint.h" #include "pub_core_xarray.h" #include "pub_core_oset.h" #include "pub_core_deduppoolalloc.h" #include "priv_misc.h" /* dinfo_zalloc/free/strdup */ #include "priv_image.h" #include "priv_d3basics.h" /* ML_(pp_GX) */ #include "priv_tytypes.h" #include "priv_storage.h" /* self */ /*------------------------------------------------------------*/ /*--- Misc (printing, errors) ---*/ /*------------------------------------------------------------*/ /* Show a non-fatal debug info reading error. Use VG_(core_panic) for fatal errors. 'serious' errors are shown regardless of the verbosity setting. */ void ML_(symerr) ( const DebugInfo* di, Bool serious, const HChar* msg ) { /* XML mode hides everything :-( */ if (VG_(clo_xml)) return; if (serious) { VG_(message)(Vg_DebugMsg, "WARNING: Serious error when " "reading debug info\n"); if (True || VG_(clo_verbosity) < 2) { /* Need to show what the file name is, at verbosity levels 2 or below, since that won't already have been shown */ VG_(message)(Vg_DebugMsg, "When reading debug info from %s:\n", (di && di->fsm.filename) ? di->fsm.filename : "???"); } VG_(message)(Vg_DebugMsg, "%s\n", msg); } else { /* !serious */ if (VG_(clo_verbosity) >= 2) VG_(message)(Vg_DebugMsg, "%s\n", msg); } } /* Print a symbol. */ void ML_(ppSym) ( Int idx, const DiSym* sym ) { const HChar** sec_names = sym->sec_names; vg_assert(sym->pri_name); if (sec_names) vg_assert(sec_names); VG_(printf)( "%5d: %c%c %#8lx .. %#8lx (%u) %s%s", idx, sym->isText ? 'T' : '-', sym->isIFunc ? 'I' : '-', sym->avmas.main, sym->avmas.main + sym->size - 1, sym->size, sym->pri_name, sec_names ? " " : "" ); if (sec_names) { while (*sec_names) { VG_(printf)("%s%s", *sec_names, *(sec_names+1) ? " " : ""); sec_names++; } } VG_(printf)("\n"); } /* Print a call-frame-info summary. */ void ML_(ppDiCfSI) ( const XArray* /* of CfiExpr */ exprs, Addr base, UInt len, const DiCfSI_m* si_m ) { # define SHOW_HOW(_how, _off) \ do { \ if (_how == CFIR_UNKNOWN) { \ VG_(printf)("Unknown"); \ } else \ if (_how == CFIR_SAME) { \ VG_(printf)("Same"); \ } else \ if (_how == CFIR_CFAREL) { \ VG_(printf)("cfa+%d", _off); \ } else \ if (_how == CFIR_MEMCFAREL) { \ VG_(printf)("*(cfa+%d)", _off); \ } else \ if (_how == CFIR_EXPR) { \ VG_(printf)("{"); \ ML_(ppCfiExpr)(exprs, _off); \ VG_(printf)("}"); \ } else { \ vg_assert(0+0); \ } \ } while (0) if (base != 0 || len != 0) VG_(printf)("[%#lx .. %#lx]: ", base, base + len - 1); else VG_(printf)("[]: "); switch (si_m->cfa_how) { case CFIC_IA_SPREL: VG_(printf)("let cfa=oldSP+%d", si_m->cfa_off); break; case CFIC_IA_BPREL: VG_(printf)("let cfa=oldBP+%d", si_m->cfa_off); break; case CFIC_ARM_R13REL: VG_(printf)("let cfa=oldR13+%d", si_m->cfa_off); break; case CFIC_ARM_R12REL: VG_(printf)("let cfa=oldR12+%d", si_m->cfa_off); break; case CFIC_ARM_R11REL: VG_(printf)("let cfa=oldR11+%d", si_m->cfa_off); break; case CFIR_SAME: VG_(printf)("let cfa=Same"); break; case CFIC_ARM_R7REL: VG_(printf)("let cfa=oldR7+%d", si_m->cfa_off); break; case CFIC_ARM64_SPREL: VG_(printf)("let cfa=oldSP+%d", si_m->cfa_off); break; case CFIC_ARM64_X29REL: VG_(printf)("let cfa=oldX29+%d", si_m->cfa_off); break; case CFIC_EXPR: VG_(printf)("let cfa={"); ML_(ppCfiExpr)(exprs, si_m->cfa_off); VG_(printf)("}"); break; default: vg_assert(0); } VG_(printf)(" in RA="); SHOW_HOW(si_m->ra_how, si_m->ra_off); # if defined(VGA_x86) || defined(VGA_amd64) VG_(printf)(" SP="); SHOW_HOW(si_m->sp_how, si_m->sp_off); VG_(printf)(" BP="); SHOW_HOW(si_m->bp_how, si_m->bp_off); # elif defined(VGA_arm) VG_(printf)(" R14="); SHOW_HOW(si_m->r14_how, si_m->r14_off); VG_(printf)(" R13="); SHOW_HOW(si_m->r13_how, si_m->r13_off); VG_(printf)(" R12="); SHOW_HOW(si_m->r12_how, si_m->r12_off); VG_(printf)(" R11="); SHOW_HOW(si_m->r11_how, si_m->r11_off); VG_(printf)(" R7="); SHOW_HOW(si_m->r7_how, si_m->r7_off); # elif defined(VGA_ppc32) || defined(VGA_ppc64be) || defined(VGA_ppc64le) # elif defined(VGA_s390x) || defined(VGA_mips32) || defined(VGA_mips64) VG_(printf)(" SP="); SHOW_HOW(si_m->sp_how, si_m->sp_off); VG_(printf)(" FP="); SHOW_HOW(si_m->fp_how, si_m->fp_off); # elif defined(VGA_arm64) VG_(printf)(" SP="); SHOW_HOW(si_m->sp_how, si_m->sp_off); VG_(printf)(" X30="); SHOW_HOW(si_m->x30_how, si_m->x30_off); VG_(printf)(" X29="); SHOW_HOW(si_m->x29_how, si_m->x29_off); # elif defined(VGA_tilegx) VG_(printf)(" SP="); SHOW_HOW(si_m->sp_how, si_m->sp_off); VG_(printf)(" FP="); SHOW_HOW(si_m->fp_how, si_m->fp_off); # else # error "Unknown arch" # endif VG_(printf)("\n"); # undef SHOW_HOW } /*------------------------------------------------------------*/ /*--- Adding stuff ---*/ /*------------------------------------------------------------*/ /* Add a str to the string table, including terminating zero, and return pointer to the string in vg_strtab. Unless it's been seen recently, in which case we find the old pointer and return that. This avoids the most egregious duplications. JSGF: changed from returning an index to a pointer, and changed to a chunking memory allocator rather than reallocating, so the pointers are stable. */ const HChar* ML_(addStr) ( DebugInfo* di, const HChar* str, Int len ) { if (len == -1) { len = VG_(strlen)(str); } else { vg_assert(len >= 0); } if (UNLIKELY(di->strpool == NULL)) di->strpool = VG_(newDedupPA)(SEGINFO_STRPOOLSIZE, 1, ML_(dinfo_zalloc), "di.storage.addStr.1", ML_(dinfo_free)); return VG_(allocEltDedupPA) (di->strpool, len+1, str); } UInt ML_(addFnDn) (struct _DebugInfo* di, const HChar* filename, const HChar* dirname) { FnDn fndn; UInt fndn_ix; if (UNLIKELY(di->fndnpool == NULL)) di->fndnpool = VG_(newDedupPA)(500, vg_alignof(FnDn), ML_(dinfo_zalloc), "di.storage.addFnDn.1", ML_(dinfo_free)); fndn.filename = ML_(addStr)(di, filename, -1); fndn.dirname = dirname ? ML_(addStr)(di, dirname, -1) : NULL; fndn_ix = VG_(allocFixedEltDedupPA) (di->fndnpool, sizeof(FnDn), &fndn); return fndn_ix; } const HChar* ML_(fndn_ix2filename) (const DebugInfo* di, UInt fndn_ix) { FnDn *fndn; if (fndn_ix == 0) return "???"; else { fndn = VG_(indexEltNumber) (di->fndnpool, fndn_ix); return fndn->filename; } } const HChar* ML_(fndn_ix2dirname) (const DebugInfo* di, UInt fndn_ix) { FnDn *fndn; if (fndn_ix == 0) return ""; else { fndn = VG_(indexEltNumber) (di->fndnpool, fndn_ix); if (fndn->dirname) return fndn->dirname; else return ""; } } /* Add a string to the string table of a DebugInfo, by copying the string from the given DiCursor. Measures the length of the string itself. */ const HChar* ML_(addStrFromCursor)( DebugInfo* di, DiCursor c ) { /* This is a less-than-stellar implementation, but it should work. */ vg_assert(ML_(cur_is_valid)(c)); HChar* str = ML_(cur_read_strdup)(c, "di.addStrFromCursor.1"); const HChar* res = ML_(addStr)(di, str, -1); ML_(dinfo_free)(str); return res; } /* Add a symbol to the symbol table, by copying *sym. 'sym' may only have one name, so there's no complexities to do with deep vs shallow copying of the sec_name array. This is checked. */ void ML_(addSym) ( struct _DebugInfo* di, DiSym* sym ) { UInt new_sz, i; DiSym* new_tab; vg_assert(sym->pri_name != NULL); vg_assert(sym->sec_names == NULL); /* Ignore zero-sized syms. */ if (sym->size == 0) return; if (di->symtab_used == di->symtab_size) { new_sz = 2 * di->symtab_size; if (new_sz == 0) new_sz = 500; new_tab = ML_(dinfo_zalloc)( "di.storage.addSym.1", new_sz * sizeof(DiSym) ); if (di->symtab != NULL) { for (i = 0; i < di->symtab_used; i++) new_tab[i] = di->symtab[i]; ML_(dinfo_free)(di->symtab); } di->symtab = new_tab; di->symtab_size = new_sz; } di->symtab[di->symtab_used++] = *sym; vg_assert(di->symtab_used <= di->symtab_size); } UInt ML_(fndn_ix) (const DebugInfo* di, Word locno) { UInt fndn_ix; switch(di->sizeof_fndn_ix) { case 1: fndn_ix = ((UChar*) di->loctab_fndn_ix)[locno]; break; case 2: fndn_ix = ((UShort*) di->loctab_fndn_ix)[locno]; break; case 4: fndn_ix = ((UInt*) di->loctab_fndn_ix)[locno]; break; default: vg_assert(0); } return fndn_ix; } static inline void set_fndn_ix (struct _DebugInfo* di, Word locno, UInt fndn_ix) { Word i; switch(di->sizeof_fndn_ix) { case 1: if (LIKELY (fndn_ix <= 255)) { ((UChar*) di->loctab_fndn_ix)[locno] = fndn_ix; return; } { UChar* old = (UChar*) di->loctab_fndn_ix; UShort* new = ML_(dinfo_zalloc)( "di.storage.sfix.1", di->loctab_size * 2 ); for (i = 0; i < di->loctab_used; i++) new[i] = old[i]; ML_(dinfo_free)(old); di->sizeof_fndn_ix = 2; di->loctab_fndn_ix = new; } // Fallthrough case 2: if (LIKELY (fndn_ix <= 65535)) { ((UShort*) di->loctab_fndn_ix)[locno] = fndn_ix; return; } { UShort* old = (UShort*) di->loctab_fndn_ix; UInt* new = ML_(dinfo_zalloc)( "di.storage.sfix.2", di->loctab_size * 4 ); for (i = 0; i < di->loctab_used; i++) new[i] = old[i]; ML_(dinfo_free)(old); di->sizeof_fndn_ix = 4; di->loctab_fndn_ix = new; } // Fallthrough case 4: ((UInt*) di->loctab_fndn_ix)[locno] = fndn_ix; return; default: vg_assert(0); } } /* Add a location to the location table. */ static void addLoc ( struct _DebugInfo* di, DiLoc* loc, UInt fndn_ix ) { /* Zero-sized locs should have been ignored earlier */ vg_assert(loc->size > 0); if (di->loctab_used == di->loctab_size) { UInt new_sz; DiLoc* new_loctab; void* new_loctab_fndn_ix; new_sz = 2 * di->loctab_size; if (new_sz == 0) new_sz = 500; new_loctab = ML_(dinfo_zalloc)( "di.storage.addLoc.1", new_sz * sizeof(DiLoc) ); if (di->sizeof_fndn_ix == 0) di->sizeof_fndn_ix = 1; // To start with. new_loctab_fndn_ix = ML_(dinfo_zalloc)( "di.storage.addLoc.2", new_sz * di->sizeof_fndn_ix ); if (di->loctab != NULL) { VG_(memcpy)(new_loctab, di->loctab, di->loctab_used * sizeof(DiLoc)); VG_(memcpy)(new_loctab_fndn_ix, di->loctab_fndn_ix, di->loctab_used * di->sizeof_fndn_ix); ML_(dinfo_free)(di->loctab); ML_(dinfo_free)(di->loctab_fndn_ix); } di->loctab = new_loctab; di->loctab_fndn_ix = new_loctab_fndn_ix; di->loctab_size = new_sz; } di->loctab[di->loctab_used] = *loc; set_fndn_ix (di, di->loctab_used, fndn_ix); di->loctab_used++; vg_assert(di->loctab_used <= di->loctab_size); } /* Resize the LocTab (line number table) to save memory, by removing (and, potentially, allowing m_mallocfree to unmap) any unused space at the end of the table. */ static void shrinkLocTab ( struct _DebugInfo* di ) { UWord new_sz = di->loctab_used; if (new_sz == di->loctab_size) return; vg_assert(new_sz < di->loctab_size); ML_(dinfo_shrink_block)( di->loctab, new_sz * sizeof(DiLoc)); ML_(dinfo_shrink_block)( di->loctab_fndn_ix, new_sz * di->sizeof_fndn_ix); di->loctab_size = new_sz; } /* Top-level place to call to add a source-location mapping entry. */ void ML_(addLineInfo) ( struct _DebugInfo* di, UInt fndn_ix, Addr this, Addr next, Int lineno, Int entry /* only needed for debug printing */ ) { static const Bool debug = False; DiLoc loc; UWord size = next - this; /* Ignore zero-sized locs */ if (this == next) return; if (debug) { FnDn *fndn = VG_(indexEltNumber) (di->fndnpool, fndn_ix); VG_(printf)( " src ix %u %s %s line %d %#lx-%#lx\n", fndn_ix, fndn->dirname ? fndn->dirname : "(unknown)", fndn->filename, lineno, this, next ); } /* Maximum sanity checking. Some versions of GNU as do a shabby * job with stabs entries; if anything looks suspicious, revert to * a size of 1. This should catch the instruction of interest * (since if using asm-level debug info, one instruction will * correspond to one line, unlike with C-level debug info where * multiple instructions can map to the one line), but avoid * catching any other instructions bogusly. */ if (this > next) { if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_DebugMsg, "warning: line info addresses out of order " "at entry %d: 0x%lx 0x%lx\n", entry, this, next); } size = 1; } if (size > MAX_LOC_SIZE) { if (0) VG_(message)(Vg_DebugMsg, "warning: line info address range too large " "at entry %d: %lu\n", entry, size); size = 1; } /* At this point, we know that the original value for |size|, viz |next - this|, will only still be used in the case where |this| <u |next|, so it can't have underflowed. Considering that and the three checks that follow it, the following must hold. */ vg_assert(size >= 1); vg_assert(size <= MAX_LOC_SIZE); /* Rule out ones which are completely outside the r-x mapped area. See "Comment_Regarding_Text_Range_Checks" elsewhere in this file for background and rationale. */ vg_assert(di->fsm.have_rx_map && di->fsm.have_rw_map); if (ML_(find_rx_mapping)(di, this, this + size - 1) == NULL) { if (0) VG_(message)(Vg_DebugMsg, "warning: ignoring line info entry falling " "outside current DebugInfo: %#lx %#lx %#lx %#lx\n", di->text_avma, di->text_avma + di->text_size, this, this + size - 1); return; } if (lineno < 0) { static Bool complained = False; if (!complained) { complained = True; VG_(message)(Vg_UserMsg, "warning: ignoring line info entry with " "negative line number (%d)\n", lineno); VG_(message)(Vg_UserMsg, "(Nb: this message is only shown once)\n"); } return; } if (lineno > MAX_LINENO) { static Bool complained = False; if (!complained) { complained = True; VG_(message)(Vg_UserMsg, "warning: ignoring line info entry with " "huge line number (%d)\n", lineno); VG_(message)(Vg_UserMsg, " Can't handle line numbers " "greater than %d, sorry\n", MAX_LINENO); VG_(message)(Vg_UserMsg, "(Nb: this message is only shown once)\n"); } return; } loc.addr = this; loc.size = (UShort)size; loc.lineno = lineno; if (0) VG_(message)(Vg_DebugMsg, "addLoc: addr %#lx, size %lu, line %d, fndn_ix %u\n", this,size,lineno,fndn_ix); addLoc ( di, &loc, fndn_ix ); } /* Add an inlined call info to the inlined call table. */ static void addInl ( struct _DebugInfo* di, DiInlLoc* inl ) { UInt new_sz, i; DiInlLoc* new_tab; /* empty inl should have been ignored earlier */ vg_assert(inl->addr_lo < inl->addr_hi); if (di->inltab_used == di->inltab_size) { new_sz = 2 * di->inltab_size; if (new_sz == 0) new_sz = 500; new_tab = ML_(dinfo_zalloc)( "di.storage.addInl.1", new_sz * sizeof(DiInlLoc) ); if (di->inltab != NULL) { for (i = 0; i < di->inltab_used; i++) new_tab[i] = di->inltab[i]; ML_(dinfo_free)(di->inltab); } di->inltab = new_tab; di->inltab_size = new_sz; } di->inltab[di->inltab_used] = *inl; if (inl->addr_hi - inl->addr_lo > di->maxinl_codesz) di->maxinl_codesz = inl->addr_hi - inl->addr_lo; di->inltab_used++; vg_assert(di->inltab_used <= di->inltab_size); } /* Resize the InlTab (inlined call table) to save memory, by removing (and, potentially, allowing m_mallocfree to unmap) any unused space at the end of the table. */ static void shrinkInlTab ( struct _DebugInfo* di ) { UWord new_sz = di->inltab_used; if (new_sz == di->inltab_size) return; vg_assert(new_sz < di->inltab_size); ML_(dinfo_shrink_block)( di->inltab, new_sz * sizeof(DiInlLoc)); di->inltab_size = new_sz; } /* Top-level place to call to add a addr-to-inlined fn info. */ void ML_(addInlInfo) ( struct _DebugInfo* di, Addr addr_lo, Addr addr_hi, const HChar* inlinedfn, UInt fndn_ix, Int lineno, UShort level) { DiInlLoc inl; /* Similar paranoia as in ML_(addLineInfo). Unclear if needed. */ if (addr_lo >= addr_hi) { if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_DebugMsg, "warning: inlined info addresses out of order " "at: 0x%lx 0x%lx\n", addr_lo, addr_hi); } addr_hi = addr_lo + 1; } vg_assert(lineno >= 0); if (lineno > MAX_LINENO) { static Bool complained = False; if (!complained) { complained = True; VG_(message)(Vg_UserMsg, "warning: ignoring inlined call info entry with " "huge line number (%d)\n", lineno); VG_(message)(Vg_UserMsg, " Can't handle line numbers " "greater than %d, sorry\n", MAX_LINENO); VG_(message)(Vg_UserMsg, "(Nb: this message is only shown once)\n"); } return; } // code resulting from inlining of inlinedfn: inl.addr_lo = addr_lo; inl.addr_hi = addr_hi; inl.inlinedfn = inlinedfn; // caller: inl.fndn_ix = fndn_ix; inl.lineno = lineno; inl.level = level; if (0) VG_(message) (Vg_DebugMsg, "addInlInfo: fn %s inlined as addr_lo %#lx,addr_hi %#lx," "caller fndn_ix %u %s:%d\n", inlinedfn, addr_lo, addr_hi, fndn_ix, ML_(fndn_ix2filename) (di, fndn_ix), lineno); addInl ( di, &inl ); } DiCfSI_m* ML_(get_cfsi_m) (const DebugInfo* di, UInt pos) { UInt cfsi_m_ix; vg_assert(pos >= 0 && pos < di->cfsi_used); switch (di->sizeof_cfsi_m_ix) { case 1: cfsi_m_ix = ((UChar*) di->cfsi_m_ix)[pos]; break; case 2: cfsi_m_ix = ((UShort*) di->cfsi_m_ix)[pos]; break; case 4: cfsi_m_ix = ((UInt*) di->cfsi_m_ix)[pos]; break; default: vg_assert(0); } if (cfsi_m_ix == 0) return NULL; // cfi hole else return VG_(indexEltNumber) (di->cfsi_m_pool, cfsi_m_ix); } /* Top-level place to call to add a CFI summary record. The supplied DiCfSI_m is copied. */ void ML_(addDiCfSI) ( struct _DebugInfo* di, Addr base, UInt len, DiCfSI_m* cfsi_m ) { static const Bool debug = False; UInt new_sz; DiCfSI* new_tab; SSizeT delta; DebugInfoMapping* map; DebugInfoMapping* map2; if (debug) { VG_(printf)("adding DiCfSI: "); ML_(ppDiCfSI)(di->cfsi_exprs, base, len, cfsi_m); } /* sanity */ vg_assert(len > 0); /* Issue a warning if LEN is unexpectedly large (exceeds 5 million). The implication is you have a single procedure with more than 5 million bytes of code. Which is pretty unlikely. Either that, or the debuginfo reader is somehow broken. 5 million is of course arbitrary; but it's big enough to be bigger than the size of any plausible piece of code that would fall within a single procedure. But occasionally it does happen (c.f. BZ #339542). */ if (len >= 5000000) VG_(message)(Vg_DebugMsg, "warning: DiCfSI %#lx .. %#lx is huge; length = %u (%s)\n", base, base + len - 1, len, di->soname); vg_assert(di->fsm.have_rx_map && di->fsm.have_rw_map); /* Find mapping where at least one end of the CFSI falls into. */ map = ML_(find_rx_mapping)(di, base, base); map2 = ML_(find_rx_mapping)(di, base + len - 1, base + len - 1); if (map == NULL) map = map2; else if (map2 == NULL) map2 = map; /* Rule out ones which are completely outside the r-x mapped area (or which span across different areas). See "Comment_Regarding_Text_Range_Checks" elsewhere in this file for background and rationale. */ if (map == NULL || map != map2) { static Int complaints = 10; if (VG_(clo_trace_cfi) || complaints > 0) { complaints--; if (VG_(clo_verbosity) > 1) { VG_(message)( Vg_DebugMsg, "warning: DiCfSI %#lx .. %#lx outside mapped rx segments (%s)\n", base, base + len - 1, di->soname ); } if (VG_(clo_trace_cfi)) ML_(ppDiCfSI)(di->cfsi_exprs, base, len, cfsi_m); } return; } /* Now we know the range is at least partially inside the r-x mapped area. That implies that at least one of the ends of the range falls inside the area. If necessary, clip it so it is completely within the area. If we don't do this, check_CFSI_related_invariants() in debuginfo.c (invariant #2) will fail. See "Comment_on_IMPORTANT_CFSI_REPRESENTATIONAL_INVARIANTS" in priv_storage.h for background. */ if (base < map->avma) { /* Lower end is outside the mapped area. Hence upper end must be inside it. */ if (0) VG_(printf)("XXX truncate lower\n"); vg_assert(base + len - 1 >= map->avma); delta = (SSizeT)(map->avma - base); vg_assert(delta > 0); vg_assert(delta < (SSizeT)len); base += delta; len -= delta; } else if (base + len - 1 > map->avma + map->size - 1) { /* Upper end is outside the mapped area. Hence lower end must be inside it. */ if (0) VG_(printf)("XXX truncate upper\n"); vg_assert(base <= map->avma + map->size - 1); delta = (SSizeT)( (base + len - 1) - (map->avma + map->size - 1) ); vg_assert(delta > 0); vg_assert(delta < (SSizeT)len); len -= delta; } /* Final checks */ /* Because: either cfsi was entirely inside the range, in which case we asserted that len > 0 at the start, OR it fell partially inside the range, in which case we reduced it by some size (delta) which is < its original size. */ vg_assert(len > 0); /* Similar logic applies for the next two assertions. */ vg_assert(base >= map->avma); vg_assert(base + len - 1 <= map->avma + map->size - 1); if (di->cfsi_used == di->cfsi_size) { new_sz = 2 * di->cfsi_size; if (new_sz == 0) new_sz = 20; new_tab = ML_(dinfo_zalloc)( "di.storage.addDiCfSI.1", new_sz * sizeof(DiCfSI) ); if (di->cfsi_rd != NULL) { VG_(memcpy)(new_tab, di->cfsi_rd, di->cfsi_used * sizeof(DiCfSI)); ML_(dinfo_free)(di->cfsi_rd); } di->cfsi_rd = new_tab; di->cfsi_size = new_sz; if (di->cfsi_m_pool == NULL) di->cfsi_m_pool = VG_(newDedupPA)(1000 * sizeof(DiCfSI_m), vg_alignof(DiCfSI_m), ML_(dinfo_zalloc), "di.storage.DiCfSI_m_pool", ML_(dinfo_free)); } di->cfsi_rd[di->cfsi_used].base = base; di->cfsi_rd[di->cfsi_used].len = len; di->cfsi_rd[di->cfsi_used].cfsi_m_ix = VG_(allocFixedEltDedupPA)(di->cfsi_m_pool, sizeof(DiCfSI_m), cfsi_m); di->cfsi_used++; vg_assert(di->cfsi_used <= di->cfsi_size); } Int ML_(CfiExpr_Undef)( XArray* dst ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Undef; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Deref)( XArray* dst, Int ixAddr ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Deref; e.Cex.Deref.ixAddr = ixAddr; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Const)( XArray* dst, UWord con ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Const; e.Cex.Const.con = con; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Unop)( XArray* dst, CfiUnop op, Int ix ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Unop; e.Cex.Unop.op = op; e.Cex.Unop.ix = ix; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Binop)( XArray* dst, CfiBinop op, Int ixL, Int ixR ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Binop; e.Cex.Binop.op = op; e.Cex.Binop.ixL = ixL; e.Cex.Binop.ixR = ixR; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_CfiReg)( XArray* dst, CfiReg reg ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_CfiReg; e.Cex.CfiReg.reg = reg; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_DwReg)( XArray* dst, Int reg ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_DwReg; e.Cex.DwReg.reg = reg; return (Int)VG_(addToXA)( dst, &e ); } static void ppCfiUnop ( CfiUnop op ) { switch (op) { case Cunop_Abs: VG_(printf)("abs"); break; case Cunop_Neg: VG_(printf)("-"); break; case Cunop_Not: VG_(printf)("~"); break; default: vg_assert(0); } } static void ppCfiBinop ( CfiBinop op ) { switch (op) { case Cbinop_Add: VG_(printf)("+"); break; case Cbinop_Sub: VG_(printf)("-"); break; case Cbinop_And: VG_(printf)("&"); break; case Cbinop_Mul: VG_(printf)("*"); break; case Cbinop_Shl: VG_(printf)("<<"); break; case Cbinop_Shr: VG_(printf)(">>"); break; case Cbinop_Eq: VG_(printf)("=="); break; case Cbinop_Ge: VG_(printf)(">="); break; case Cbinop_Gt: VG_(printf)(">"); break; case Cbinop_Le: VG_(printf)("<="); break; case Cbinop_Lt: VG_(printf)("<"); break; case Cbinop_Ne: VG_(printf)("!="); break; default: vg_assert(0); } } static void ppCfiReg ( CfiReg reg ) { switch (reg) { case Creg_INVALID: VG_(printf)("Creg_INVALID"); break; case Creg_IA_SP: VG_(printf)("xSP"); break; case Creg_IA_BP: VG_(printf)("xBP"); break; case Creg_IA_IP: VG_(printf)("xIP"); break; case Creg_ARM_R13: VG_(printf)("R13"); break; case Creg_ARM_R12: VG_(printf)("R12"); break; case Creg_ARM_R15: VG_(printf)("R15"); break; case Creg_ARM_R14: VG_(printf)("R14"); break; case Creg_ARM_R7: VG_(printf)("R7"); break; case Creg_ARM64_X30: VG_(printf)("X30"); break; case Creg_MIPS_RA: VG_(printf)("RA"); break; case Creg_S390_IA: VG_(printf)("IA"); break; case Creg_S390_SP: VG_(printf)("SP"); break; case Creg_S390_FP: VG_(printf)("FP"); break; case Creg_S390_LR: VG_(printf)("LR"); break; case Creg_TILEGX_IP: VG_(printf)("PC"); break; case Creg_TILEGX_SP: VG_(printf)("SP"); break; case Creg_TILEGX_BP: VG_(printf)("BP"); break; case Creg_TILEGX_LR: VG_(printf)("R55"); break; default: vg_assert(0); } } void ML_(ppCfiExpr)( const XArray* src, Int ix ) { /* VG_(indexXA) checks for invalid src/ix values, so we can use it indiscriminately. */ const CfiExpr* e = VG_(indexXA)( src, ix ); switch (e->tag) { case Cex_Undef: VG_(printf)("Undef"); break; case Cex_Deref: VG_(printf)("*("); ML_(ppCfiExpr)(src, e->Cex.Deref.ixAddr); VG_(printf)(")"); break; case Cex_Const: VG_(printf)("0x%lx", e->Cex.Const.con); break; case Cex_Unop: ppCfiUnop(e->Cex.Unop.op); VG_(printf)("("); ML_(ppCfiExpr)(src, e->Cex.Unop.ix); VG_(printf)(")"); break; case Cex_Binop: VG_(printf)("("); ML_(ppCfiExpr)(src, e->Cex.Binop.ixL); VG_(printf)(")"); ppCfiBinop(e->Cex.Binop.op); VG_(printf)("("); ML_(ppCfiExpr)(src, e->Cex.Binop.ixR); VG_(printf)(")"); break; case Cex_CfiReg: ppCfiReg(e->Cex.CfiReg.reg); break; case Cex_DwReg: VG_(printf)("dwr%d", e->Cex.DwReg.reg); break; default: VG_(core_panic)("ML_(ppCfiExpr)"); /*NOTREACHED*/ break; } } Word ML_(cmp_for_DiAddrRange_range) ( const void* keyV, const void* elemV ) { const Addr* key = (const Addr*)keyV; const DiAddrRange* elem = (const DiAddrRange*)elemV; if (0) VG_(printf)("cmp_for_DiAddrRange_range: %#lx vs %#lx\n", *key, elem->aMin); if ((*key) < elem->aMin) return -1; if ((*key) > elem->aMax) return 1; return 0; } static void show_scope ( OSet* /* of DiAddrRange */ scope, const HChar* who ) { DiAddrRange* range; VG_(printf)("Scope \"%s\" = {\n", who); VG_(OSetGen_ResetIter)( scope ); while (True) { range = VG_(OSetGen_Next)( scope ); if (!range) break; VG_(printf)(" %#lx .. %#lx: %ld vars\n", range->aMin, range->aMax, range->vars ? VG_(sizeXA)(range->vars) : 0); } VG_(printf)("}\n"); } /* Add the variable 'var' to 'scope' for the address range [aMin,aMax] (inclusive of aMin and aMax). Split existing ranges as required if aMin or aMax or both don't match existing range boundaries, and add 'var' to all required ranges. Take great care to preserve the invariant that the ranges in 'scope' cover the entire address range exactly once, with no overlaps and no holes. */ static void add_var_to_arange ( /*MOD*/OSet* /* of DiAddrRange */ scope, Addr aMin, Addr aMax, DiVariable* var ) { DiAddrRange *first, *last, *range; /* These xx variables are for assertion checking only; they don't contribute anything to the actual work of this function. */ DiAddrRange *xxRangep, *xxFirst, *xxLast; UWord xxIters; vg_assert(aMin <= aMax); if (0) VG_(printf)("add_var_to_arange: %#lx .. %#lx\n", aMin, aMax); if (0) show_scope( scope, "add_var_to_arange(1)" ); /* See if the lower end of the range (aMin) falls exactly on an existing range boundary. If not, find the range it does fall into, and split it (copying the variables in the process), so that aMin does exactly fall on a range boundary. */ first = VG_(OSetGen_Lookup)( scope, &aMin ); /* It must be present, since the presented OSet must cover the entire address range. */ vg_assert(first); vg_assert(first->aMin <= first->aMax); vg_assert(first->aMin <= aMin && aMin <= first->aMax); /* Fast track common case, which is that the range specified for the variable exactly coincides with one already-existing range. */ if (first->aMin == aMin && first->aMax == aMax) { vg_assert(first->vars); VG_(addToXA)( first->vars, var ); return; } /* We have to get into splitting ranges, which is complex and slow. */ if (first->aMin < aMin) { DiAddrRange* nyu; /* Ok. We'll have to split 'first'. */ /* truncate the upper end of 'first' */ Addr tmp = first->aMax; first->aMax = aMin-1; vg_assert(first->aMin <= first->aMax); /* create a new range */ nyu = VG_(OSetGen_AllocNode)( scope, sizeof(DiAddrRange) ); nyu->aMin = aMin; nyu->aMax = tmp; vg_assert(nyu->aMin <= nyu->aMax); /* copy vars into it */ vg_assert(first->vars); nyu->vars = VG_(cloneXA)( "di.storage.avta.1", first->vars ); VG_(OSetGen_Insert)( scope, nyu ); first = nyu; } vg_assert(first->aMin == aMin); /* Now do exactly the same for the upper end (aMax): if it doesn't fall on a boundary, cause it to do so by splitting the range it does currently fall into. */ last = VG_(OSetGen_Lookup)( scope, &aMax ); vg_assert(last->aMin <= last->aMax); vg_assert(last->aMin <= aMax && aMax <= last->aMax); if (aMax < last->aMax) { DiAddrRange* nyu; /* We have to split 'last'. */ /* truncate the lower end of 'last' */ Addr tmp = last->aMin; last->aMin = aMax+1; vg_assert(last->aMin <= last->aMax); /* create a new range */ nyu = VG_(OSetGen_AllocNode)( scope, sizeof(DiAddrRange) ); nyu->aMin = tmp; nyu->aMax = aMax; vg_assert(nyu->aMin <= nyu->aMax); /* copy vars into it */ vg_assert(last->vars); nyu->vars = VG_(cloneXA)( "di.storage.avta.2", last->vars ); VG_(OSetGen_Insert)( scope, nyu ); last = nyu; } vg_assert(aMax == last->aMax); xxFirst = (DiAddrRange*)VG_(OSetGen_Lookup)(scope, &aMin); xxLast = (DiAddrRange*)VG_(OSetGen_Lookup)(scope, &aMax); vg_assert(xxFirst); vg_assert(xxLast); vg_assert(xxFirst->aMin == aMin); vg_assert(xxLast->aMax == aMax); if (xxFirst != xxLast) vg_assert(xxFirst->aMax < xxLast->aMin); /* Great. Now we merely need to iterate over the segments from 'first' to 'last' inclusive, and add 'var' to the variable set of each of them. */ if (0) { static UWord ctr = 0; ctr++; VG_(printf)("ctr = %lu\n", ctr); if (ctr >= 33263) show_scope( scope, "add_var_to_arange(2)" ); } xxIters = 0; range = xxRangep = NULL; VG_(OSetGen_ResetIterAt)( scope, &aMin ); while (True) { xxRangep = range; range = VG_(OSetGen_Next)( scope ); if (!range) break; if (range->aMin > aMax) break; xxIters++; if (0) VG_(printf)("have range %#lx %#lx\n", range->aMin, range->aMax); /* Sanity checks */ if (!xxRangep) { /* This is the first in the range */ vg_assert(range->aMin == aMin); } else { vg_assert(xxRangep->aMax + 1 == range->aMin); } vg_assert(range->vars); VG_(addToXA)( range->vars, var ); } /* Done. We should have seen at least one range. */ vg_assert(xxIters >= 1); if (xxIters == 1) vg_assert(xxFirst == xxLast); if (xxFirst == xxLast) vg_assert(xxIters == 1); vg_assert(xxRangep); vg_assert(xxRangep->aMax == aMax); vg_assert(xxRangep == xxLast); } /* Top-level place to call to add a variable description (as extracted from a DWARF3 .debug_info section. */ void ML_(addVar)( struct _DebugInfo* di, Int level, Addr aMin, Addr aMax, const HChar* name, /* in di's .strpool */ UWord typeR, /* a cuOff */ const GExpr* gexpr, const GExpr* fbGX, UInt fndn_ix, /* where decl'd - may be zero. index in in di's .fndnpool */ Int lineNo, /* where decl'd - may be zero */ Bool show ) { OSet* /* of DiAddrRange */ scope; DiVariable var; Bool all; TyEnt* ent; MaybeULong mul; const HChar* badness; vg_assert(di && di->admin_tyents); if (0) { VG_(printf)(" ML_(addVar): level %d %#lx-%#lx %s :: ", level, aMin, aMax, name ); ML_(pp_TyEnt_C_ishly)( di->admin_tyents, typeR ); VG_(printf)("\n Var="); ML_(pp_GX)(gexpr); VG_(printf)("\n"); if (fbGX) { VG_(printf)(" FrB="); ML_(pp_GX)( fbGX ); VG_(printf)("\n"); } else { VG_(printf)(" FrB=none\n"); } VG_(printf)("\n"); } vg_assert(level >= 0); vg_assert(aMin <= aMax); vg_assert(name); vg_assert(gexpr); ent = ML_(TyEnts__index_by_cuOff)( di->admin_tyents, NULL, typeR); vg_assert(ent); vg_assert(ML_(TyEnt__is_type)(ent)); /* "Comment_Regarding_Text_Range_Checks" (is referred to elsewhere) ---------------------------------------------------------------- Ignore any variables whose aMin .. aMax (that is, range of text addresses for which they actually exist) falls outside the text segment. Is this indicative of a bug in the reader? Maybe. (LATER): instead of restricting strictly to the .text segment, be a bit more relaxed, and accept any variable whose text range falls inside the r-x mapped area. This is useful because .text is not always the only instruction-carrying segment: others are: .init .plt __libc_freeres_fn and .fini. This implicitly assumes that those extra sections have the same bias as .text, but that seems a reasonable assumption to me. */ /* This is assured us by top level steering logic in debuginfo.c, and it is re-checked at the start of ML_(read_elf_debug_info). */ vg_assert(di->fsm.have_rx_map && di->fsm.have_rw_map); if (level > 0 && ML_(find_rx_mapping)(di, aMin, aMax) == NULL) { if (VG_(clo_verbosity) >= 0) { VG_(message)(Vg_DebugMsg, "warning: addVar: in range %#lx .. %#lx outside " "all rx mapped areas (%s)\n", aMin, aMax, name ); } return; } /* If the type's size is zero (which can mean unknown size), ignore it. We will never be able to actually relate a data address to a data object with zero size, so there's no point in storing info on it. On 32-bit platforms, also reject types whose size is 2^32 bytes or large. (It's amazing what junk shows up ..) */ mul = ML_(sizeOfType)(di->admin_tyents, typeR); badness = NULL; if (mul.b != True) badness = "unknown size"; else if (mul.ul == 0) badness = "zero size "; else if (sizeof(void*) == 4 && mul.ul >= (1ULL<<32)) badness = "implausibly large"; if (badness) { static Int complaints = 10; if (VG_(clo_verbosity) >= 2 && complaints > 0) { VG_(message)(Vg_DebugMsg, "warning: addVar: %s (%s)\n", badness, name ); complaints--; } return; } if (!di->varinfo) { di->varinfo = VG_(newXA)( ML_(dinfo_zalloc), "di.storage.addVar.1", ML_(dinfo_free), sizeof(OSet*) ); } vg_assert(level < 256); /* arbitrary; stay sane */ /* Expand the top level array enough to map this level */ while ( VG_(sizeXA)(di->varinfo) <= level ) { DiAddrRange* nyu; scope = VG_(OSetGen_Create)( offsetof(DiAddrRange,aMin), ML_(cmp_for_DiAddrRange_range), ML_(dinfo_zalloc), "di.storage.addVar.2", ML_(dinfo_free) ); if (0) VG_(printf)("create: scope = %p, adding at %ld\n", scope, VG_(sizeXA)(di->varinfo)); VG_(addToXA)( di->varinfo, &scope ); /* Add a single range covering the entire address space. At level 0 we require this doesn't get split. At levels above 0 we require that any additions to it cause it to get split. All of these invariants get checked both add_var_to_arange and after reading is complete, in canonicaliseVarInfo. */ nyu = VG_(OSetGen_AllocNode)( scope, sizeof(DiAddrRange) ); nyu->aMin = (Addr)0; nyu->aMax = ~(Addr)0; nyu->vars = VG_(newXA)( ML_(dinfo_zalloc), "di.storage.addVar.3", ML_(dinfo_free), sizeof(DiVariable) ); VG_(OSetGen_Insert)( scope, nyu ); } vg_assert( VG_(sizeXA)(di->varinfo) > level ); scope = *(OSet**)VG_(indexXA)( di->varinfo, level ); vg_assert(scope); var.name = name; var.typeR = typeR; var.gexpr = gexpr; var.fbGX = fbGX; var.fndn_ix = fndn_ix; var.lineNo = lineNo; all = aMin == (Addr)0 && aMax == ~(Addr)0; vg_assert(level == 0 ? all : !all); add_var_to_arange( /*MOD*/scope, aMin, aMax, &var ); } /* This really just checks the constructed data structure, as there is no canonicalisation to do. */ static void canonicaliseVarInfo ( struct _DebugInfo* di ) { Word i, nInThisScope; if (!di->varinfo) return; for (i = 0; i < VG_(sizeXA)(di->varinfo); i++) { DiAddrRange *range, *rangep; OSet* scope = *(OSet**)VG_(indexXA)(di->varinfo, i); if (!scope) continue; /* Deal with the global-scope case. */ if (i == 0) { Addr zero = 0; vg_assert(VG_(OSetGen_Size)( scope ) == 1); range = VG_(OSetGen_Lookup)( scope, &zero ); vg_assert(range); vg_assert(range->aMin == (Addr)0); vg_assert(range->aMax == ~(Addr)0); continue; } /* All the rest of this is for the local-scope case. */ /* iterate over all entries in 'scope' */ nInThisScope = 0; rangep = NULL; VG_(OSetGen_ResetIter)(scope); while (True) { range = VG_(OSetGen_Next)(scope); if (!range) { /* We just saw the last one. There must have been at least one entry in the range. */ vg_assert(rangep); vg_assert(rangep->aMax == ~(Addr)0); break; } vg_assert(range->aMin <= range->aMax); vg_assert(range->vars); if (!rangep) { /* This is the first entry in the range. */ vg_assert(range->aMin == 0); } else { vg_assert(rangep->aMax + 1 == range->aMin); } rangep = range; nInThisScope++; } /* iterating over ranges in a given scope */ /* If there's only one entry in this (local) scope, it must cover the entire address space (obviously), but it must not contain any vars. */ vg_assert(nInThisScope > 0); if (nInThisScope == 1) { Addr zero = 0; vg_assert(VG_(OSetGen_Size)( scope ) == 1); range = VG_(OSetGen_Lookup)( scope, &zero ); vg_assert(range); vg_assert(range->aMin == (Addr)0); vg_assert(range->aMax == ~(Addr)0); vg_assert(range->vars); vg_assert(VG_(sizeXA)(range->vars) == 0); } } /* iterate over scopes */ } /*------------------------------------------------------------*/ /*--- Canonicalisers ---*/ /*------------------------------------------------------------*/ /* Sort the symtab by starting address, and emit warnings if any symbols have overlapping address ranges. We use that old chestnut, shellsort. Mash the table around so as to establish the property that addresses are in order and the ranges to not overlap. This facilitates using binary search to map addresses to symbols when we come to query the table. */ static Int compare_DiSym ( const void* va, const void* vb ) { const DiSym* a = va; const DiSym* b = vb; if (a->avmas.main < b->avmas.main) return -1; if (a->avmas.main > b->avmas.main) return 1; return 0; } /* An address is associated with more than one name. Which do we prefer as the "display" name (that we show the user in stack traces)? In order: - Prefer "PMPI_<foo>" over "MPI_<foo>". - Else, prefer a non-empty name over an empty one. - Else, prefer a non-whitespace name over an all-whitespace name. - Else, prefer the shorter symbol name. If the symbol contains a version symbol ('@' on Linux, other platforms may differ), which means it is versioned, then the length up to the version symbol is used for length comparison purposes (so "foo@GLIBC_2.4.2" is considered shorter than "foobar"). - Else, if two symbols have the same length, prefer a versioned symbol over a non-versioned symbol. - Else, use alphabetical ordering. - Otherwise, they must be the same; use the name with the lower address. Very occasionally this goes wrong (eg. 'memcmp' and 'bcmp' are aliases in glibc, we choose the 'bcmp' symbol because it's shorter, so we can misdescribe memcmp() as bcmp()). This is hard to avoid. It's mentioned in the FAQ file. Returned value is True if a_name is preferred, False if b_name is preferred. */ static Bool preferName ( const DebugInfo* di, const HChar* a_name, const HChar* b_name, Addr sym_avma/*exposition only*/ ) { Word cmp; Word vlena, vlenb; /* length without version */ const HChar *vpa, *vpb; Bool preferA = False; Bool preferB = False; vg_assert(a_name); vg_assert(b_name); // vg_assert(a_name != b_name); // ???? now the pointers can be equal but is that // ???? not the indication of a latent bug ???? vlena = VG_(strlen)(a_name); vlenb = VG_(strlen)(b_name); # if defined(VGO_linux) || defined(VGO_solaris) # define VERSION_CHAR '@' # elif defined(VGO_darwin) # define VERSION_CHAR '$' # else # error Unknown OS # endif vpa = VG_(strchr)(a_name, VERSION_CHAR); vpb = VG_(strchr)(b_name, VERSION_CHAR); # undef VERSION_CHAR if (vpa) vlena = vpa - a_name; if (vpb) vlenb = vpb - b_name; /* MPI hack: prefer PMPI_Foo over MPI_Foo */ if (0==VG_(strncmp)(a_name, "MPI_", 4) && 0==VG_(strncmp)(b_name, "PMPI_", 5) && 0==VG_(strcmp)(a_name, 1+b_name)) { preferB = True; goto out; } if (0==VG_(strncmp)(b_name, "MPI_", 4) && 0==VG_(strncmp)(a_name, "PMPI_", 5) && 0==VG_(strcmp)(b_name, 1+a_name)) { preferA = True; goto out; } /* Prefer non-empty name. */ if (vlena && !vlenb) { preferA = True; goto out; } if (vlenb && !vlena) { preferB = True; goto out; } /* Prefer non-whitespace name. */ { Bool blankA = True; Bool blankB = True; const HChar *s; s = a_name; while (*s) { if (!VG_(isspace)(*s++)) { blankA = False; break; } } s = b_name; while (*s) { if (!VG_(isspace)(*s++)) { blankB = False; break; } } if (!blankA && blankB) { preferA = True; goto out; } if (!blankB && blankA) { preferB = True; goto out; } } /* Select the shortest unversioned name */ if (vlena < vlenb) { preferA = True; goto out; } if (vlenb < vlena) { preferB = True; goto out; } /* Equal lengths; select the versioned name */ if (vpa && !vpb) { preferA = True; goto out; } if (vpb && !vpa) { preferB = True; goto out; } /* Either both versioned or neither is versioned; select them alphabetically */ cmp = VG_(strcmp)(a_name, b_name); if (cmp < 0) { preferA = True; goto out; } if (cmp > 0) { preferB = True; goto out; } /* If we get here, they are the same name. */ /* In this case we could choose either (arbitrarily), but might as well choose the one with the lowest DiSym* address, so as to try and make the comparison mechanism more stable (a la sorting parlance). Also, skip the diagnostic printing in this case. */ return a_name <= b_name ? True : False; /*NOTREACHED*/ vg_assert(0); out: if (preferA && !preferB) { TRACE_SYMTAB("sym at %#lx: prefer '%s' to '%s'\n", sym_avma, a_name, b_name ); return True; } if (preferB && !preferA) { TRACE_SYMTAB("sym at %#lx: prefer '%s' to '%s'\n", sym_avma, b_name, a_name ); return False; } /*NOTREACHED*/ vg_assert(0); } /* Add the names in FROM to the names in TO. */ static void add_DiSym_names_to_from ( const DebugInfo* di, DiSym* to, const DiSym* from ) { vg_assert(to->pri_name); vg_assert(from->pri_name); /* Figure out how many names there will be in the new combined secondary vector. */ const HChar** to_sec = to->sec_names; const HChar** from_sec = from->sec_names; Word n_new_sec = 1; if (from_sec) { while (*from_sec) { n_new_sec++; from_sec++; } } if (to_sec) { while (*to_sec) { n_new_sec++; to_sec++; } } if (0) TRACE_SYMTAB("merge: -> %ld\n", n_new_sec); /* Create the new sec and copy stuff into it, putting the new entries at the end. */ const HChar** new_sec = ML_(dinfo_zalloc)( "di.storage.aDntf.1", (n_new_sec+1) * sizeof(HChar*) ); from_sec = from->sec_names; to_sec = to->sec_names; Word i = 0; if (to_sec) { while (*to_sec) { new_sec[i++] = *to_sec; to_sec++; } } new_sec[i++] = from->pri_name; if (from_sec) { while (*from_sec) { new_sec[i++] = *from_sec; from_sec++; } } vg_assert(i == n_new_sec); vg_assert(new_sec[i] == NULL); /* If we're replacing an existing secondary vector, free it. */ if (to->sec_names) { ML_(dinfo_free)(to->sec_names); } to->sec_names = new_sec; } static void canonicaliseSymtab ( struct _DebugInfo* di ) { Word i, j, n_truncated; Addr sta1, sta2, end1, end2, toc1, toc2; const HChar *pri1, *pri2, **sec1, **sec2; Bool ist1, ist2, isf1, isf2; # define SWAP(ty,aa,bb) \ do { ty tt = (aa); (aa) = (bb); (bb) = tt; } while (0) if (di->symtab_used == 0) return; /* Check initial invariants */ for (i = 0; i < di->symtab_used; i++) { DiSym* sym = &di->symtab[i]; vg_assert(sym->pri_name); vg_assert(!sym->sec_names); } /* Sort by address. */ VG_(ssort)(di->symtab, di->symtab_used, sizeof(*di->symtab), compare_DiSym); cleanup_more: /* BEGIN Detect and "fix" identical address ranges. */ while (1) { Word r, w, n_merged; n_merged = 0; w = 0; /* A pass merging entries together in the case where they agree on .isText -- that is, either: both are .isText or both are not .isText. They are merged into a single entry, but both sets of names are preserved, so we end up knowing all the names for that particular address range.*/ for (r = 1; r < di->symtab_used; r++) { vg_assert(w < r); if ( di->symtab[w].avmas.main == di->symtab[r].avmas.main && di->symtab[w].size == di->symtab[r].size && !!di->symtab[w].isText == !!di->symtab[r].isText) { /* merge the two into one */ n_merged++; /* Add r names to w if r has secondary names or r and w primary names differ. */ if (di->symtab[r].sec_names || (0 != VG_(strcmp)(di->symtab[r].pri_name, di->symtab[w].pri_name))) { add_DiSym_names_to_from(di, &di->symtab[w], &di->symtab[r]); } /* mark w as an IFunc if either w or r are */ di->symtab[w].isIFunc = di->symtab[w].isIFunc || di->symtab[r].isIFunc; /* and use ::pri_names to indicate this slot is no longer in use */ di->symtab[r].pri_name = NULL; if (di->symtab[r].sec_names) { ML_(dinfo_free)(di->symtab[r].sec_names); di->symtab[r].sec_names = NULL; } /* Completely zap the entry -- paranoia to make it more likely we'll notice if we inadvertantly use it again. */ VG_(memset)(&di->symtab[r], 0, sizeof(DiSym)); } else { w = r; } } /* A second pass merging entries together where one .isText but the other isn't. In such cases, just ignore the non-.isText one (a heuristic hack.) */ for (r = 1; r < di->symtab_used; r++) { /* Either of the symbols might already have been zapped by the previous pass, so we first have to check that. */ if (di->symtab[r-1].pri_name == NULL) continue; if (di->symtab[r-0].pri_name == NULL) continue; /* ok, they are both still valid. Identical address ranges? */ if (di->symtab[r-1].avmas.main != di->symtab[r-0].avmas.main) continue; if (di->symtab[r-1].size != di->symtab[r-0].size) continue; /* Identical address ranges. They must disagree on .isText since if they agreed, the previous pass would have merged them. */ if (di->symtab[r-1].isText && di->symtab[r-0].isText) vg_assert(0); if (!di->symtab[r-1].isText && !di->symtab[r-0].isText) vg_assert(0); Word to_zap = di->symtab[r-1].isText ? (r-0) : (r-1); Word to_keep = di->symtab[r-1].isText ? (r-1) : (r-0); vg_assert(!di->symtab[to_zap].isText); vg_assert(di->symtab[to_keep].isText); /* Add to_zap's names to to_keep if to_zap has secondary names or to_zap's and to_keep's primary names differ. */ if (di->symtab[to_zap].sec_names || (0 != VG_(strcmp)(di->symtab[to_zap].pri_name, di->symtab[to_keep].pri_name))) { add_DiSym_names_to_from(di, &di->symtab[to_keep], &di->symtab[to_zap]); } /* Mark to_zap as not-in use in the same way as in the previous loop. */ di->symtab[to_zap].pri_name = NULL; if (di->symtab[to_zap].sec_names) { ML_(dinfo_free)(di->symtab[to_zap].sec_names); di->symtab[to_zap].sec_names = NULL; } VG_(memset)(&di->symtab[to_zap], 0, sizeof(DiSym)); n_merged++; } TRACE_SYMTAB( "canonicaliseSymtab: %ld symbols merged\n", n_merged); if (n_merged == 0) break; /* Now a pass to squeeze out any unused ones */ w = 0; for (r = 0; r < di->symtab_used; r++) { vg_assert(w <= r); if (di->symtab[r].pri_name == NULL) continue; if (w < r) { di->symtab[w] = di->symtab[r]; } w++; } vg_assert(w + n_merged == di->symtab_used); di->symtab_used = w; } /* while (1) */ /* END Detect and "fix" identical address ranges. */ /* BEGIN Detect and "fix" overlapping address ranges. */ n_truncated = 0; for (i = 0; i < ((Word)di->symtab_used) -1; i++) { vg_assert(di->symtab[i].avmas.main <= di->symtab[i+1].avmas.main); /* Check for common (no overlap) case. */ if (di->symtab[i].avmas.main + di->symtab[i].size <= di->symtab[i+1].avmas.main) continue; /* There's an overlap. Truncate one or the other. */ if (di->trace_symtab) { VG_(printf)("overlapping address ranges in symbol table\n\t"); ML_(ppSym)( i, &di->symtab[i] ); VG_(printf)("\t"); ML_(ppSym)( i+1, &di->symtab[i+1] ); VG_(printf)("\n"); } /* Truncate one or the other. */ sta1 = di->symtab[i].avmas.main; end1 = sta1 + di->symtab[i].size - 1; toc1 = GET_TOCPTR_AVMA(di->symtab[i].avmas); // aren't we missing local_ep here ???? pri1 = di->symtab[i].pri_name; sec1 = di->symtab[i].sec_names; ist1 = di->symtab[i].isText; isf1 = di->symtab[i].isIFunc; sta2 = di->symtab[i+1].avmas.main; end2 = sta2 + di->symtab[i+1].size - 1; toc2 = GET_TOCPTR_AVMA(di->symtab[i+1].avmas); // aren't we missing local_ep here ???? pri2 = di->symtab[i+1].pri_name; sec2 = di->symtab[i+1].sec_names; ist2 = di->symtab[i+1].isText; isf2 = di->symtab[i+1].isIFunc; if (sta1 < sta2) { end1 = sta2 - 1; } else { vg_assert(sta1 == sta2); if (end1 > end2) { sta1 = end2 + 1; SWAP(Addr,sta1,sta2); SWAP(Addr,end1,end2); SWAP(Addr,toc1,toc2); SWAP(const HChar*,pri1,pri2); SWAP(const HChar**,sec1,sec2); SWAP(Bool,ist1,ist2); SWAP(Bool,isf1,isf2); } else if (end1 < end2) { sta2 = end1 + 1; } else { /* end1 == end2. Identical addr ranges. We'll eventually wind up back at cleanup_more, which will take care of it. */ } } di->symtab[i].avmas.main = sta1; di->symtab[i].size = end1 - sta1 + 1; SET_TOCPTR_AVMA(di->symtab[i].avmas, toc1); // missing local_ep ??? di->symtab[i].pri_name = pri1; di->symtab[i].sec_names = sec1; di->symtab[i].isText = ist1; di->symtab[i].isIFunc = isf1; di->symtab[i+1].avmas.main = sta2; di->symtab[i+1].size = end2 - sta2 + 1; SET_TOCPTR_AVMA(di->symtab[i+1].avmas, toc2); // missing local_ep ??? di->symtab[i+1].pri_name = pri2; di->symtab[i+1].sec_names = sec2; di->symtab[i+1].isText = ist2; di->symtab[i+1].isIFunc = isf2; vg_assert(sta1 <= sta2); vg_assert(di->symtab[i].size > 0); vg_assert(di->symtab[i+1].size > 0); /* It may be that the i+1 entry now needs to be moved further along to maintain the address order requirement. */ j = i+1; while (j < ((Word)di->symtab_used)-1 && di->symtab[j].avmas.main > di->symtab[j+1].avmas.main) { SWAP(DiSym,di->symtab[j],di->symtab[j+1]); j++; } n_truncated++; } /* END Detect and "fix" overlapping address ranges. */ if (n_truncated > 0) goto cleanup_more; /* Ensure relevant postconditions hold. */ for (i = 0; i < ((Word)di->symtab_used)-1; i++) { /* No zero-sized symbols. */ vg_assert(di->symtab[i].size > 0); /* In order. */ vg_assert(di->symtab[i].avmas.main < di->symtab[i+1].avmas.main); /* No overlaps. */ vg_assert(di->symtab[i].avmas.main + di->symtab[i].size - 1 < di->symtab[i+1].avmas.main); /* Names are sane(ish) */ vg_assert(di->symtab[i].pri_name); if (di->symtab[i].sec_names) { vg_assert(di->symtab[i].sec_names[0]); } } /* For each symbol that has more than one name, use preferName to select the primary name. This is a complete kludge in that doing it properly requires making a total ordering on the candidate names, whilst what we have to work with is an ad-hoc binary relation (preferName) that certainly doesn't have the relevant transitivity etc properties that are needed to induce a legitimate total order. Doesn't matter though if it doesn't always work right since this is only used to generate names to show the user. */ for (i = 0; i < ((Word)di->symtab_used)-1; i++) { DiSym* sym = &di->symtab[i]; const HChar** sec = sym->sec_names; if (!sec) continue; /* Slow but simple. Copy all the cands into a temp array, choose the primary name, and copy them all back again. */ Word n_tmp = 1; while (*sec) { n_tmp++; sec++; } j = 0; const HChar** tmp = ML_(dinfo_zalloc)( "di.storage.cS.1", (n_tmp+1) * sizeof(HChar*) ); tmp[j++] = sym->pri_name; sec = sym->sec_names; while (*sec) { tmp[j++] = *sec; sec++; } vg_assert(j == n_tmp); vg_assert(tmp[n_tmp] == NULL); /* because of zalloc */ /* Choose the most favoured. */ Word best = 0; for (j = 1; j < n_tmp; j++) { if (preferName(di, tmp[best], tmp[j], di->symtab[i].avmas.main)) { /* best is unchanged */ } else { best = j; } } vg_assert(best >= 0 && best < n_tmp); /* Copy back */ sym->pri_name = tmp[best]; const HChar** cursor = sym->sec_names; for (j = 0; j < n_tmp; j++) { if (j == best) continue; *cursor = tmp[j]; cursor++; } vg_assert(*cursor == NULL); ML_(dinfo_free)( tmp ); } # undef SWAP } static DiLoc* sorting_loctab = NULL; static Int compare_DiLoc_via_ix ( const void* va, const void* vb ) { const DiLoc* a = &sorting_loctab[*(const UInt*)va]; const DiLoc* b = &sorting_loctab[*(const UInt*)vb]; if (a->addr < b->addr) return -1; if (a->addr > b->addr) return 1; return 0; } static void sort_loctab_and_loctab_fndn_ix (struct _DebugInfo* di ) { /* We have to sort the array loctab by addr together with its "parallel" array loctab_fndn_ix. We first build sort_ix : an array of indexes in loctab, that we sort by loctab address. Then we can reorder both arrays according to sort_ix. */ UInt *sort_ix = ML_(dinfo_zalloc)("di.storage.six", di->loctab_used*sizeof(UInt)); Word i, j, k; for (i = 0; i < di->loctab_used; i++) sort_ix[i] = i; sorting_loctab = di->loctab; VG_(ssort)(sort_ix, di->loctab_used, sizeof(*sort_ix), compare_DiLoc_via_ix); sorting_loctab = NULL; // Permute in place, using the sort_ix. for (i=0; i < di->loctab_used; i++) { DiLoc tmp_diloc; UInt tmp_fndn_ix; if (i == sort_ix[i]) continue; // i already at the good place tmp_diloc = di->loctab[i]; tmp_fndn_ix = ML_(fndn_ix)(di, i); j = i; for (;;) { k = sort_ix[j]; sort_ix[j] = j; if (k == i) break; di->loctab[j] = di->loctab[k]; set_fndn_ix (di, j, ML_(fndn_ix)(di, k)); j = k; } di->loctab[j] = tmp_diloc; set_fndn_ix (di, j, tmp_fndn_ix); } ML_(dinfo_free)(sort_ix); } /* Sort the location table by starting address. Mash the table around so as to establish the property that addresses are in order and the ranges do not overlap. This facilitates using binary search to map addresses to locations when we come to query the table. */ static void canonicaliseLoctab ( struct _DebugInfo* di ) { Word i, j; if (di->loctab_used == 0) return; /* sort loctab and loctab_fndn_ix by addr. */ sort_loctab_and_loctab_fndn_ix (di); /* If two adjacent entries overlap, truncate the first. */ for (i = 0; i < ((Word)di->loctab_used)-1; i++) { vg_assert(di->loctab[i].size < 10000); if (di->loctab[i].addr + di->loctab[i].size > di->loctab[i+1].addr) { /* Do this in signed int32 because the actual .size fields are only 12 bits. */ Int new_size = di->loctab[i+1].addr - di->loctab[i].addr; if (new_size < 0) { di->loctab[i].size = 0; } else if (new_size > MAX_LOC_SIZE) { di->loctab[i].size = MAX_LOC_SIZE; } else { di->loctab[i].size = (UShort)new_size; } } } /* Zap any zero-sized entries resulting from the truncation process. */ j = 0; for (i = 0; i < (Word)di->loctab_used; i++) { if (di->loctab[i].size > 0) { if (j != i) { di->loctab[j] = di->loctab[i]; set_fndn_ix(di, j, ML_(fndn_ix)(di, i)); } j++; } } di->loctab_used = j; /* Ensure relevant postconditions hold. */ for (i = 0; i < ((Word)di->loctab_used)-1; i++) { if (0) VG_(printf)("%ld 0x%p lno:%d sz:%d fndn_ix:%u i+1 0x%p\n", i, (void*)di->loctab[i].addr, di->loctab[i].lineno, di->loctab[i].size, ML_(fndn_ix)(di, i), (void*)di->loctab[i+1].addr); /* No zero-sized symbols. */ vg_assert(di->loctab[i].size > 0); /* In order. */ vg_assert(di->loctab[i].addr < di->loctab[i+1].addr); /* No overlaps. */ vg_assert(di->loctab[i].addr + di->loctab[i].size - 1 < di->loctab[i+1].addr); } /* Free up unused space at the end of the table. */ shrinkLocTab(di); } /* Sort the inlined call table by starting address. Mash the table around so as to establish the property that addresses are in order. This facilitates using binary search to map addresses to locations when we come to query the table. Note : ranges can overlap, multiple ranges can start at an address, multiple ranges can end at an address. */ static Int compare_DiInlLoc ( const void* va, const void* vb ) { const DiInlLoc* a = va; const DiInlLoc* b = vb; if (a->addr_lo < b->addr_lo) return -1; if (a->addr_lo > b->addr_lo) return 1; return 0; } static void canonicaliseInltab ( struct _DebugInfo* di ) { Word i; if (di->inltab_used == 0) return; /* Sort by start address. */ VG_(ssort)(di->inltab, di->inltab_used, sizeof(*di->inltab), compare_DiInlLoc); /* Ensure relevant postconditions hold. */ for (i = 0; i < ((Word)di->inltab_used)-1; i++) { /* No zero-sized inlined call. */ vg_assert(di->inltab[i].addr_lo < di->inltab[i].addr_hi); /* In order, but we can have duplicates and overlapping ranges. */ vg_assert(di->inltab[i].addr_lo <= di->inltab[i+1].addr_lo); } /* Free up unused space at the end of the table. */ shrinkInlTab(di); } /* Sort the call-frame-info cfsi_rd by starting address. Mash the table around so as to establish the property that addresses are in order and the ranges do not overlap. This facilitates using binary search to map addresses to locations when we come to query the table. Also, set cfisi_minaddr and cfisi_maxaddr to be the min and max of any of the address ranges contained in cfisi[0 .. cfisi_used-1], so as to facilitate rapidly skipping this SegInfo when looking for an address which falls outside that range. */ static Int compare_DiCfSI ( const void* va, const void* vb ) { const DiCfSI* a = va; const DiCfSI* b = vb; if (a->base < b->base) return -1; if (a->base > b->base) return 1; return 0; } static void get_cfsi_rd_stats ( const DebugInfo* di, UWord *n_mergeables, UWord *n_holes ) { Word i; *n_mergeables = 0; *n_holes = 0; vg_assert (di->cfsi_used == 0 || di->cfsi_rd); for (i = 1; i < (Word)di->cfsi_used; i++) { Addr here_min = di->cfsi_rd[i].base; Addr prev_max = di->cfsi_rd[i-1].base + di->cfsi_rd[i-1].len - 1; Addr sep = here_min - prev_max; if (sep > 1) (*n_holes)++; if (sep == 1 && di->cfsi_rd[i-1].cfsi_m_ix == di->cfsi_rd[i].cfsi_m_ix) (*n_mergeables)++; } } void ML_(canonicaliseCFI) ( struct _DebugInfo* di ) { Word i, j; const Addr minAvma = 0; const Addr maxAvma = ~minAvma; /* Note: take care in here. di->cfsi can be NULL, in which case _used and _size fields will be zero. */ if (di->cfsi_rd == NULL) { vg_assert(di->cfsi_used == 0); vg_assert(di->cfsi_size == 0); vg_assert(di->cfsi_m_pool == NULL); } else { vg_assert(di->cfsi_size != 0); vg_assert(di->cfsi_m_pool != NULL); } /* Set cfsi_minavma and cfsi_maxavma to summarise the entire address range contained in cfsi_rd[0 .. cfsi_used-1]. */ di->cfsi_minavma = maxAvma; di->cfsi_maxavma = minAvma; for (i = 0; i < (Word)di->cfsi_used; i++) { Addr here_min = di->cfsi_rd[i].base; Addr here_max = di->cfsi_rd[i].base + di->cfsi_rd[i].len - 1; if (here_min < di->cfsi_minavma) di->cfsi_minavma = here_min; if (here_max > di->cfsi_maxavma) di->cfsi_maxavma = here_max; } if (di->trace_cfi) VG_(printf)("canonicaliseCfiSI: %lu entries, %#lx .. %#lx\n", di->cfsi_used, di->cfsi_minavma, di->cfsi_maxavma); /* Sort the cfsi_rd array by base address. */ VG_(ssort)(di->cfsi_rd, di->cfsi_used, sizeof(*di->cfsi_rd), compare_DiCfSI); /* If two adjacent entries overlap, truncate the first. */ for (i = 0; i < (Word)di->cfsi_used-1; i++) { if (di->cfsi_rd[i].base + di->cfsi_rd[i].len > di->cfsi_rd[i+1].base) { Word new_len = di->cfsi_rd[i+1].base - di->cfsi_rd[i].base; /* how could it be otherwise? The entries are sorted by the .base field. */ vg_assert(new_len >= 0); vg_assert(new_len <= di->cfsi_rd[i].len); di->cfsi_rd[i].len = new_len; } } /* Zap any zero-sized entries resulting from the truncation process. */ j = 0; for (i = 0; i < (Word)di->cfsi_used; i++) { if (di->cfsi_rd[i].len > 0) { if (j != i) di->cfsi_rd[j] = di->cfsi_rd[i]; j++; } } /* VG_(printf)("XXXXXXXXXXXXX %d %d\n", di->cfsi_used, j); */ di->cfsi_used = j; /* Ensure relevant postconditions hold. */ for (i = 0; i < (Word)di->cfsi_used; i++) { /* No zero-length ranges. */ vg_assert(di->cfsi_rd[i].len > 0); /* Makes sense w.r.t. summary address range */ vg_assert(di->cfsi_rd[i].base >= di->cfsi_minavma); vg_assert(di->cfsi_rd[i].base + di->cfsi_rd[i].len - 1 <= di->cfsi_maxavma); if (i < di->cfsi_used - 1) { /* if (!(di->cfsi[i].base < di->cfsi[i+1].base)) { VG_(printf)("\nOOO cfsis:\n"); ML_(ppCfiSI)(&di->cfsi[i]); ML_(ppCfiSI)(&di->cfsi[i+1]); } */ /* In order. */ vg_assert(di->cfsi_rd[i].base < di->cfsi_rd[i+1].base); /* No overlaps. */ vg_assert(di->cfsi_rd[i].base + di->cfsi_rd[i].len - 1 < di->cfsi_rd[i+1].base); } } if (VG_(clo_stats) && VG_(clo_verbosity) >= 3) { UWord n_mergeables, n_holes; get_cfsi_rd_stats (di, &n_mergeables, &n_holes); VG_(dmsg)("CFSI total %lu mergeables %lu holes %lu uniq cfsi_m %u\n", di->cfsi_used, n_mergeables, n_holes, di->cfsi_m_pool ? VG_(sizeDedupPA) (di->cfsi_m_pool) : 0); } } void ML_(finish_CFSI_arrays) ( struct _DebugInfo* di ) { UWord n_mergeables, n_holes; UWord new_used; UWord i; UWord pos; UWord f_mergeables, f_holes; UInt sz_cfsi_m_pool; get_cfsi_rd_stats (di, &n_mergeables, &n_holes); if (di->cfsi_used == 0) { vg_assert (di->cfsi_rd == NULL); vg_assert (di->cfsi_m_pool == NULL); vg_assert (n_mergeables == 0); vg_assert (n_holes == 0); return; } vg_assert (di->cfsi_used > n_mergeables); new_used = di->cfsi_used - n_mergeables + n_holes; sz_cfsi_m_pool = VG_(sizeDedupPA)(di->cfsi_m_pool); vg_assert (sz_cfsi_m_pool > 0); if (sz_cfsi_m_pool <= 255) di->sizeof_cfsi_m_ix = 1; else if (sz_cfsi_m_pool <= 65535) di->sizeof_cfsi_m_ix = 2; else di->sizeof_cfsi_m_ix = 4; di->cfsi_base = ML_(dinfo_zalloc)( "di.storage.finCfSI.1", new_used * sizeof(Addr) ); di->cfsi_m_ix = ML_(dinfo_zalloc)( "di.storage.finCfSI.2", new_used * sizeof(UChar)*di->sizeof_cfsi_m_ix); pos = 0; f_mergeables = 0; f_holes = 0; for (i = 0; i < (Word)di->cfsi_used; i++) { if (i > 0) { Addr here_min = di->cfsi_rd[i].base; Addr prev_max = di->cfsi_rd[i-1].base + di->cfsi_rd[i-1].len - 1; SizeT sep = here_min - prev_max; // Skip a mergeable entry. if (sep == 1) { if (di->cfsi_rd[i-1].cfsi_m_ix == di->cfsi_rd[i].cfsi_m_ix) { f_mergeables++; continue; } } // Insert a hole if needed. if (sep > 1) { f_holes++; di->cfsi_base[pos] = prev_max + 1; switch (di->sizeof_cfsi_m_ix) { case 1: ((UChar*) di->cfsi_m_ix)[pos] = 0; break; case 2: ((UShort*)di->cfsi_m_ix)[pos] = 0; break; case 4: ((UInt*) di->cfsi_m_ix)[pos] = 0; break; default: vg_assert(0); } pos++; } } // Insert the cfsi entry i. di->cfsi_base[pos] = di->cfsi_rd[i].base; switch (di->sizeof_cfsi_m_ix) { case 1: ((UChar*) di->cfsi_m_ix)[pos] = di->cfsi_rd[i].cfsi_m_ix; break; case 2: ((UShort*)di->cfsi_m_ix)[pos] = di->cfsi_rd[i].cfsi_m_ix; break; case 4: ((UInt*) di->cfsi_m_ix)[pos] = di->cfsi_rd[i].cfsi_m_ix; break; default: vg_assert(0); } pos++; } vg_assert (f_mergeables == n_mergeables); vg_assert (f_holes == n_holes); vg_assert (pos == new_used); di->cfsi_used = new_used; di->cfsi_size = new_used; ML_(dinfo_free) (di->cfsi_rd); di->cfsi_rd = NULL; } /* Canonicalise the tables held by 'di', in preparation for use. Call this after finishing adding entries to these tables. */ void ML_(canonicaliseTables) ( struct _DebugInfo* di ) { canonicaliseSymtab ( di ); canonicaliseLoctab ( di ); canonicaliseInltab ( di ); ML_(canonicaliseCFI) ( di ); if (di->cfsi_m_pool) VG_(freezeDedupPA) (di->cfsi_m_pool, ML_(dinfo_shrink_block)); canonicaliseVarInfo ( di ); if (di->strpool) VG_(freezeDedupPA) (di->strpool, ML_(dinfo_shrink_block)); if (di->fndnpool) VG_(freezeDedupPA) (di->fndnpool, ML_(dinfo_shrink_block)); } /*------------------------------------------------------------*/ /*--- Searching the tables ---*/ /*------------------------------------------------------------*/ /* Find a symbol-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_symtab) ( const DebugInfo* di, Addr ptr, Bool match_anywhere_in_sym, Bool findText ) { Addr a_mid_lo, a_mid_hi; Word mid, size, lo = 0, hi = di->symtab_used-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return -1; /* not found */ mid = (lo + hi) / 2; a_mid_lo = di->symtab[mid].avmas.main; size = ( match_anywhere_in_sym ? di->symtab[mid].size : 1); a_mid_hi = ((Addr)di->symtab[mid].avmas.main) + size - 1; if (ptr < a_mid_lo) { hi = mid-1; continue; } if (ptr > a_mid_hi) { lo = mid+1; continue; } vg_assert(ptr >= a_mid_lo && ptr <= a_mid_hi); /* Found a symbol with the correct address range. But is it of the right kind (text vs data) ? */ if ( findText && di->symtab[mid].isText ) return mid; if ( (!findText) && (!di->symtab[mid].isText) ) return mid; return -1; } } /* Find a location-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_loctab) ( const DebugInfo* di, Addr ptr ) { Addr a_mid_lo, a_mid_hi; Word mid, lo = 0, hi = di->loctab_used-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return -1; /* not found */ mid = (lo + hi) / 2; a_mid_lo = di->loctab[mid].addr; a_mid_hi = ((Addr)di->loctab[mid].addr) + di->loctab[mid].size - 1; if (ptr < a_mid_lo) { hi = mid-1; continue; } if (ptr > a_mid_hi) { lo = mid+1; continue; } vg_assert(ptr >= a_mid_lo && ptr <= a_mid_hi); return mid; } } /* Find a CFI-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_cfitab) ( const DebugInfo* di, Addr ptr ) { Word mid, lo = 0, hi = di->cfsi_used-1; while (lo <= hi) { /* Invariants : hi == cfsi_used-1 || ptr < cfsi_base[hi+1] lo == 0 || ptr > cfsi_base[lo-1] (the first part of the invariants is similar to considering that cfsi_base[-1] is 0 and cfsi_base[cfsi_used] is ~0) */ mid = (lo + hi) / 2; if (ptr < di->cfsi_base[mid]) { hi = mid-1; continue; } if (ptr > di->cfsi_base[mid]) { lo = mid+1; continue; } lo = mid+1; break; } #if 0 for (mid = 0; mid <= di->cfsi_used-1; mid++) if (ptr < di->cfsi_base[mid]) break; vg_assert (lo - 1 == mid - 1); #endif return lo - 1; } /* Find a FPO-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_fpotab) ( const DebugInfo* di, Addr ptr ) { Addr const addr = ptr - di->fpo_base_avma; Addr a_mid_lo, a_mid_hi; Word mid, size, lo = 0, hi = di->fpo_size-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return -1; /* not found */ mid = (lo + hi) / 2; a_mid_lo = di->fpo[mid].ulOffStart; size = di->fpo[mid].cbProcSize; a_mid_hi = a_mid_lo + size - 1; vg_assert(a_mid_hi >= a_mid_lo); if (addr < a_mid_lo) { hi = mid-1; continue; } if (addr > a_mid_hi) { lo = mid+1; continue; } vg_assert(addr >= a_mid_lo && addr <= a_mid_hi); return mid; } } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/