/* -*- mode: C; c-basic-offset: 3; -*- */ /*--------------------------------------------------------------------*/ /*--- Segment name management aspacemgr-segnames.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2015-2015 Florian Krohm This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* Segment names are stored in a string table. The string table is organised into slots of varying length. Slots are adjacent and there are no holes between slots. A slot consists of two parts: (1) a fixed size overhead of length 4 bytes (2) a variable size payload of up to 65535 bytes The segment name is stored in the payload area. Therefore: a segment name cannot be longer than 65535 bytes including the '\0' terminator. This looks like a reasonable limitation. Overall slot layout: | 4 bytes | max 65535 bytes | +-----------------------------+-------------------------+ | overhead | payload | +-----------------------------+-------------------------+ ^ ^ | | -4 +----- seg->fnIdx Each slot is uniquely identified by an index which points to the first byte of the payload area. It is this value that is stored in seg->fnIdx. Note, that this value is at least 4. A slot either holds a string or it is free. The status of a slot is identified by the leftmost bit in the overhead field, the so called F-bit. F-bit == 1 means that slot is free; otherwise it is occupied and holds a string. Slot containing a string (segment name): bits | 1 | 15 | 16 | +---+--------------+----------+-------------------------+ | 0 | refcount | slotsize | the string including \0 | +---+--------------+----------+-------------------------+ ^ ^ ^ | | | -4 -2 +----- seg->fnIdx Segment names are reference counted. 15 bits are available which allows for up to 32767 references. If the string is referenced more than 32767 times, the reference count will be frozen and the slot can never become free. I'm not unduly concerned. Two bytes are reserved to hold the size of the slot. Well, it's actually the size of the payload aread (i.e. the size of the slot minus the overhead). Ah well -- the name sticks. With two bytes to store the size, the payload area can be at most 65535 bytes large. A free slot looks like this: bits | 1 | 31 | 16 | +---+-------------------------+----------+--------------+ | 1 | index of next free slot | slotsize | .. unused .. | +---+-------------------------+----------+--------------+ ^ ^ | | -4 +----- seg->fnIdx Free slots are chained together in a singly linked list. An index of zero indicates the end of the chain. Note that zero cannot conflict with an index into the string table as the minimum index is at least four (see above). The typical way to traverse the segment names is: for (ix = overhead; (size = get_slotsize(ix)) != 0; ix += size + overhead) { if (is_freeslot(ix)) do this else do that } Important detail: there is a sentinel at the end of the list, namely a slot with a zero-sized payload area. Whenever a new segment name needs to be stashed away, the list of free slots is traversed and the first slot which is large enough is being taken (first fit). There will be no splitting of slots, as that complicates matters and without slot coalescing would lead to memory fragmentation. So we leave it as is until a use case comes up that needs something better. */ #include "pub_core_basics.h" // types #include "priv_aspacemgr.h" // A few constants. enum { refcount_size = sizeof(UShort), slotsize_size = sizeof(UShort), overhead = refcount_size + slotsize_size, max_refcount = 0x7fff, // 2 bytes - F-bit max_slotsize = 0xffff, // 2 bytes max_slotindex = 0x7fffffff, // 4 bytes - F-bit fbit_mask_value = 0x80, end_of_chain = 0 }; static const UInt fbit_mask = fbit_mask_value; /* The old segname implementation allowed for 1000 names on Android and 6000 names on other platforms. Each name was allowed to be 1000 characters long. That was very wasteful. */ #define VG_TABLE_SIZE 1000000 /* String table for segment names */ static HChar segnames[VG_TABLE_SIZE]; /* her majesty, the string table */ static SizeT segnames_used = 0; /* number of bytes used */ static UInt num_segnames = 0; /* number of names in string table */ static UInt num_slots = 0; /* number of slots in string table */ static UInt freeslot_chain = end_of_chain; static Bool is_freeslot(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); return (segnames[ix - 4] & fbit_mask) != 0; } static void put_slotindex(UInt ix, UInt slotindex) { aspacem_assert(ix >= overhead && ix <= segnames_used); if (slotindex != 0) aspacem_assert(slotindex >= overhead && slotindex <= segnames_used); slotindex |= fbit_mask << 24; segnames[ix - 1] = slotindex & 0xFF; slotindex >>= 8; segnames[ix - 2] = slotindex & 0xFF; slotindex >>= 8; segnames[ix - 3] = slotindex & 0xFF; slotindex >>= 8; segnames[ix - 4] = slotindex & 0xFF; } static UInt get_slotindex(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); aspacem_assert(is_freeslot(ix)); // Avoid unexpected sign extension const UChar *unames = (const UChar *)segnames; UInt slotindex = 0; slotindex |= unames[ix - 4]; slotindex <<= 8; slotindex |= unames[ix - 3]; slotindex <<= 8; slotindex |= unames[ix - 2]; slotindex <<= 8; slotindex |= unames[ix - 1]; return slotindex & max_slotindex; // removes the F-bit } static void put_slotsize(UInt ix, UInt size) { aspacem_assert(ix >= overhead && ix <= segnames_used); aspacem_assert(size <= max_slotsize); segnames[ix - 1] = size & 0xff; segnames[ix - 2] = size >> 8; } static UInt get_slotsize(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); // Avoid unexpected sign extension const UChar *unames = (const UChar *)segnames; if (is_freeslot(ix)) return (unames[ix] << 8) | unames[ix+1]; else return (unames[ix - 2] << 8) | unames[ix - 1]; } static void put_refcount(UInt ix, UInt rc) { aspacem_assert(ix >= overhead && ix <= segnames_used); aspacem_assert(rc <= max_refcount); // rc <= max_refcount ensures that the F-bit is zero segnames[ix - 3] = rc & 0xff; segnames[ix - 4] = rc >> 8; } static UInt get_refcount(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); // must not be a free slot aspacem_assert(! is_freeslot(ix)); // Avoid unexpected sign extension const UChar *unames = (const UChar *)segnames; return (unames[ix - 4] << 8) | unames[ix - 3]; } static void inc_refcount(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); UInt rc = get_refcount(ix); if (rc != max_refcount) put_refcount(ix, rc + 1); } static void dec_refcount(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); UInt rc = get_refcount(ix); aspacem_assert(rc > 0); if (rc != max_refcount) { --rc; if (rc != 0) { put_refcount(ix, rc); } else { UInt size = get_slotsize(ix); /* Chain this slot in the freelist */ put_slotindex(ix, freeslot_chain); get_slotindex(ix); put_slotsize(ix + slotsize_size, size); get_slotindex(ix); freeslot_chain = ix; --num_segnames; if (0) VG_(am_show_nsegments)(0, "AFTER DECREASE rc -> 0"); } } } static void put_sentinel(UInt ix) { aspacem_assert(ix >= overhead && ix <= segnames_used); put_refcount(ix, 0); put_slotsize(ix, 0); } /* Searches the string table to find an index for the given name. If none is found, an index is allocated and the name stored. If running ouf of memory, return -1. */ Int ML_(am_allocate_segname)(const HChar *name) { UInt len, ix, size, next_freeslot; aspacem_assert(name); if (0) VG_(debugLog)(0, "aspacem", "allocate_segname %s\n", name); len = VG_(strlen)(name); /* First see if we already have the name. */ for (ix = overhead; (size = get_slotsize(ix)) != 0; ix += size + overhead) { if (is_freeslot(ix)) continue; if (VG_(strcmp)(name, segnames + ix) == 0) { inc_refcount(ix); return ix; } } /* Is there a free slot in the string table from a previously "freed" segment name ? */ Int prev; for (prev = -1, ix = freeslot_chain; ix != end_of_chain; prev = ix, ix = next_freeslot) { next_freeslot = get_slotindex(ix); // next in chain size = get_slotsize(ix); if (size >= len + 1) { /* Note, if the size of the slot is a lot larger than the length of the string we're about to store in it, we could split the slot into two. But that complicates matters and as we're not doing any coalescing of adjacent free slots this could lead to fragmentation. */ if (prev == -1) freeslot_chain = next_freeslot; else put_slotindex(prev, next_freeslot); put_refcount(ix, 1); put_slotsize(ix, size); VG_(strcpy)(segnames + ix, name); ++num_segnames; return ix; } } /* We need to add a new name. */ /* Note, that we need at least two bytes in the payload. The reason is that the payload area will be used to store the size of the slot when the slot is on the freelist. */ if (len == 0) len = 1; /* Is there enough room in the string table? The OVERHEAD is for the sentinel following the payload of new slot. */ SizeT need = len + 1 + overhead; if (need > (sizeof segnames) - segnames_used) { return -1; } ++num_segnames; ++num_slots; /* copy it in */ ix = segnames_used; put_refcount(ix, 1); put_slotsize(ix, len + 1); VG_(strcpy)(segnames + ix, name); segnames_used += need; /* Add sentinel at end of segment name list */ put_sentinel(segnames_used); return ix; } /* Debugging output */ void ML_(am_show_segnames)(Int logLevel, const HChar *prefix) { UInt size, ix, i; VG_(debugLog)(logLevel, "aspacem", "%u segment names in %u slots\n", num_segnames, num_slots); if (freeslot_chain == end_of_chain) VG_(debugLog)(logLevel, "aspacem", "freelist is empty\n"); else VG_(debugLog)(logLevel, "aspacem", "freelist begins at %u\n", freeslot_chain); for (i = 0, ix = overhead; (size = get_slotsize(ix)) != 0; ix += size + overhead, ++i) { if (is_freeslot(ix)) VG_(debugLog)(logLevel, "aspacem", "(%u,%u,0) [free slot: size=%u next=%u]\n", i, ix, get_slotsize(ix), get_slotindex(ix)); else VG_(debugLog)(logLevel, "aspacem", "(%u,%u,%u) %s\n", i, ix, get_refcount(ix), segnames + ix); } } /* Returns a sequence number for the fnIdx position in segnames. Used in aspacemgr debug output to associate a segment with a segment name. */ Int ML_(am_segname_get_seqnr)(Int fnIdx) { SizeT ix, size; Int seqnr = -1; if (fnIdx == -1) return -1; // shortcut for (ix = overhead; (size = get_slotsize(ix)) != 0; ix += size + overhead) { seqnr++; if (ix == fnIdx) return seqnr; } // We should always find the given index; something's busted aspacem_assert(0); return -1; } /* Initialise the string table for segment names. It contains an empty string which is not referenced. */ void ML_(am_segnames_init)(void) { aspacem_assert(sizeof segnames >= overhead); segnames_used = overhead; put_sentinel(segnames_used); } /* Increase reference count of segment name identified by IX. */ void ML_(am_inc_refcount)(Int ix) { if (ix != -1) inc_refcount(ix); } /* Decrease reference count of segment name identified by IX. */ void ML_(am_dec_refcount)(Int ix) { if (ix != -1) dec_refcount(ix); } Bool ML_(am_sane_segname)(Int ix) { return ix == -1 || (ix >= overhead && ix < segnames_used); } const HChar * ML_(am_get_segname)(Int ix) { return (ix == -1) ? NULL : segnames + ix; } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/