// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_TYPES_H_ #define V8_TYPES_H_ #include "src/conversions.h" #include "src/handles.h" #include "src/objects.h" #include "src/ostreams.h" namespace v8 { namespace internal { // SUMMARY // // A simple type system for compiler-internal use. It is based entirely on // union types, and all subtyping hence amounts to set inclusion. Besides the // obvious primitive types and some predefined unions, the type language also // can express class types (a.k.a. specific maps) and singleton types (i.e., // concrete constants). // // Types consist of two dimensions: semantic (value range) and representation. // Both are related through subtyping. // // // SEMANTIC DIMENSION // // The following equations and inequations hold for the semantic axis: // // None <= T // T <= Any // // Number = Signed32 \/ Unsigned32 \/ Double // Smi <= Signed32 // Name = String \/ Symbol // UniqueName = InternalizedString \/ Symbol // InternalizedString < String // // Receiver = Object \/ Proxy // Array < Object // Function < Object // RegExp < Object // Undetectable < Object // Detectable = Receiver \/ Number \/ Name - Undetectable // // Class(map) < T iff instance_type(map) < T // Constant(x) < T iff instance_type(map(x)) < T // Array(T) < Array // Function(R, S, T0, T1, ...) < Function // Context(T) < Internal // // Both structural Array and Function types are invariant in all parameters; // relaxing this would make Union and Intersect operations more involved. // There is no subtyping relation between Array, Function, or Context types // and respective Constant types, since these types cannot be reconstructed // for arbitrary heap values. // Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can // change! (Its instance type cannot, however.) // TODO(rossberg): the latter is not currently true for proxies, because of fix, // but will hold once we implement direct proxies. // However, we also define a 'temporal' variant of the subtyping relation that // considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)). // // // REPRESENTATIONAL DIMENSION // // For the representation axis, the following holds: // // None <= R // R <= Any // // UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/ // UntaggedInt16 \/ UntaggedInt32 // UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64 // UntaggedNumber = UntaggedInt \/ UntaggedFloat // Untagged = UntaggedNumber \/ UntaggedPtr // Tagged = TaggedInt \/ TaggedPtr // // Subtyping relates the two dimensions, for example: // // Number <= Tagged \/ UntaggedNumber // Object <= TaggedPtr \/ UntaggedPtr // // That holds because the semantic type constructors defined by the API create // types that allow for all possible representations, and dually, the ones for // representation types initially include all semantic ranges. Representations // can then e.g. be narrowed for a given semantic type using intersection: // // SignedSmall /\ TaggedInt (a 'smi') // Number /\ TaggedPtr (a heap number) // // // RANGE TYPES // // A range type represents a continuous integer interval by its minimum and // maximum value. Either value may be an infinity, in which case that infinity // itself is also included in the range. A range never contains NaN or -0. // // If a value v happens to be an integer n, then Constant(v) is considered a // subtype of Range(n, n) (and therefore also a subtype of any larger range). // In order to avoid large unions, however, it is usually a good idea to use // Range rather than Constant. // // // PREDICATES // // There are two main functions for testing types: // // T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2) // T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0) // // Typically, the former is to be used to select representations (e.g., via // T->Is(SignedSmall())), and the latter to check whether a specific case needs // handling (e.g., via T->Maybe(Number())). // // There is no functionality to discover whether a type is a leaf in the // lattice. That is intentional. It should always be possible to refine the // lattice (e.g., splitting up number types further) without invalidating any // existing assumptions or tests. // Consequently, do not normally use Equals for type tests, always use Is! // // The NowIs operator implements state-sensitive subtying, as described above. // Any compilation decision based on such temporary properties requires runtime // guarding! // // // PROPERTIES // // Various formal properties hold for constructors, operators, and predicates // over types. For example, constructors are injective and subtyping is a // complete partial order. // // See test/cctest/test-types.cc for a comprehensive executable specification, // especially with respect to the properties of the more exotic 'temporal' // constructors and predicates (those prefixed 'Now'). // // // IMPLEMENTATION // // Internally, all 'primitive' types, and their unions, are represented as // bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the // respective map. Only structured types require allocation. // Note that the bitset representation is closed under both Union and Intersect. // // There are two type representations, using different allocation: // // - class Type (zone-allocated, for compiler and concurrent compilation) // - class HeapType (heap-allocated, for persistent types) // // Both provide the same API, and the Convert method can be used to interconvert // them. For zone types, no query method touches the heap, only constructors do. // ----------------------------------------------------------------------------- // Values for bitset types // clang-format off #define MASK_BITSET_TYPE_LIST(V) \ V(Representation, 0xff800000u) \ V(Semantic, 0x007ffffeu) #define REPRESENTATION(k) ((k) & BitsetType::kRepresentation) #define SEMANTIC(k) ((k) & BitsetType::kSemantic) #define REPRESENTATION_BITSET_TYPE_LIST(V) \ V(None, 0) \ V(UntaggedBit, 1u << 23 | kSemantic) \ V(UntaggedIntegral8, 1u << 24 | kSemantic) \ V(UntaggedIntegral16, 1u << 25 | kSemantic) \ V(UntaggedIntegral32, 1u << 26 | kSemantic) \ V(UntaggedFloat32, 1u << 27 | kSemantic) \ V(UntaggedFloat64, 1u << 28 | kSemantic) \ V(UntaggedPointer, 1u << 29 | kSemantic) \ V(TaggedSigned, 1u << 30 | kSemantic) \ V(TaggedPointer, 1u << 31 | kSemantic) \ \ V(UntaggedIntegral, kUntaggedBit | kUntaggedIntegral8 | \ kUntaggedIntegral16 | kUntaggedIntegral32) \ V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \ V(UntaggedNumber, kUntaggedIntegral | kUntaggedFloat) \ V(Untagged, kUntaggedNumber | kUntaggedPointer) \ V(Tagged, kTaggedSigned | kTaggedPointer) #define INTERNAL_BITSET_TYPE_LIST(V) \ V(OtherUnsigned31, 1u << 1 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(OtherUnsigned32, 1u << 2 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(OtherSigned32, 1u << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(OtherNumber, 1u << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) #define SEMANTIC_BITSET_TYPE_LIST(V) \ V(Negative31, 1u << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(Null, 1u << 6 | REPRESENTATION(kTaggedPointer)) \ V(Undefined, 1u << 7 | REPRESENTATION(kTaggedPointer)) \ V(Boolean, 1u << 8 | REPRESENTATION(kTaggedPointer)) \ V(Unsigned30, 1u << 9 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(MinusZero, 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(NaN, 1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(Symbol, 1u << 12 | REPRESENTATION(kTaggedPointer)) \ V(InternalizedString, 1u << 13 | REPRESENTATION(kTaggedPointer)) \ V(OtherString, 1u << 14 | REPRESENTATION(kTaggedPointer)) \ V(Simd, 1u << 15 | REPRESENTATION(kTaggedPointer)) \ V(Undetectable, 1u << 16 | REPRESENTATION(kTaggedPointer)) \ V(OtherObject, 1u << 17 | REPRESENTATION(kTaggedPointer)) \ V(Proxy, 1u << 18 | REPRESENTATION(kTaggedPointer)) \ V(Function, 1u << 19 | REPRESENTATION(kTaggedPointer)) \ V(Internal, 1u << 20 | REPRESENTATION(kTagged | kUntagged)) \ \ V(Signed31, kUnsigned30 | kNegative31) \ V(Signed32, kSigned31 | kOtherUnsigned31 | kOtherSigned32) \ V(Negative32, kNegative31 | kOtherSigned32) \ V(Unsigned31, kUnsigned30 | kOtherUnsigned31) \ V(Unsigned32, kUnsigned30 | kOtherUnsigned31 | \ kOtherUnsigned32) \ V(Integral32, kSigned32 | kUnsigned32) \ V(PlainNumber, kIntegral32 | kOtherNumber) \ V(OrderedNumber, kPlainNumber | kMinusZero) \ V(MinusZeroOrNaN, kMinusZero | kNaN) \ V(Number, kOrderedNumber | kNaN) \ V(String, kInternalizedString | kOtherString) \ V(UniqueName, kSymbol | kInternalizedString) \ V(Name, kSymbol | kString) \ V(BooleanOrNumber, kBoolean | kNumber) \ V(BooleanOrNullOrUndefined, kBoolean | kNull | kUndefined) \ V(NullOrUndefined, kNull | kUndefined) \ V(NumberOrString, kNumber | kString) \ V(NumberOrUndefined, kNumber | kUndefined) \ V(PlainPrimitive, kNumberOrString | kBoolean | kNullOrUndefined) \ V(Primitive, kSymbol | kSimd | kPlainPrimitive) \ V(DetectableReceiver, kFunction | kOtherObject | kProxy) \ V(Detectable, kDetectableReceiver | kNumber | kName) \ V(Object, kFunction | kOtherObject | kUndetectable) \ V(Receiver, kObject | kProxy) \ V(StringOrReceiver, kString | kReceiver) \ V(Unique, kBoolean | kUniqueName | kNull | kUndefined | \ kReceiver) \ V(NonNumber, kUnique | kString | kInternal) \ V(Any, 0xfffffffeu) // clang-format on /* * The following diagrams show how integers (in the mathematical sense) are * divided among the different atomic numerical types. * * ON OS32 N31 U30 OU31 OU32 ON * ______[_______[_______[_______[_______[_______[_______ * -2^31 -2^30 0 2^30 2^31 2^32 * * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1. * * Some of the atomic numerical bitsets are internal only (see * INTERNAL_BITSET_TYPE_LIST). To a types user, they should only occur in * union with certain other bitsets. For instance, OtherNumber should only * occur as part of PlainNumber. */ #define PROPER_BITSET_TYPE_LIST(V) \ REPRESENTATION_BITSET_TYPE_LIST(V) \ SEMANTIC_BITSET_TYPE_LIST(V) #define BITSET_TYPE_LIST(V) \ MASK_BITSET_TYPE_LIST(V) \ REPRESENTATION_BITSET_TYPE_LIST(V) \ INTERNAL_BITSET_TYPE_LIST(V) \ SEMANTIC_BITSET_TYPE_LIST(V) // ----------------------------------------------------------------------------- // The abstract Type class, parameterized over the low-level representation. // struct Config { // typedef TypeImpl<Config> Type; // typedef Base; // typedef Struct; // typedef Range; // typedef Region; // template<class> struct Handle { typedef type; } // No template typedefs... // // template<class T> static Handle<T>::type null_handle(); // template<class T> static Handle<T>::type handle(T* t); // !is_bitset(t) // template<class T> static Handle<T>::type cast(Handle<Type>::type); // // static bool is_bitset(Type*); // static bool is_class(Type*); // static bool is_struct(Type*, int tag); // static bool is_range(Type*); // // static bitset as_bitset(Type*); // static i::Handle<i::Map> as_class(Type*); // static Handle<Struct>::type as_struct(Type*); // static Handle<Range>::type as_range(Type*); // // static Type* from_bitset(bitset); // static Handle<Type>::type from_bitset(bitset, Region*); // static Handle<Type>::type from_class(i::Handle<Map>, Region*); // static Handle<Type>::type from_struct(Handle<Struct>::type, int tag); // static Handle<Type>::type from_range(Handle<Range>::type); // // static Handle<Struct>::type struct_create(int tag, int length, Region*); // static void struct_shrink(Handle<Struct>::type, int length); // static int struct_tag(Handle<Struct>::type); // static int struct_length(Handle<Struct>::type); // static Handle<Type>::type struct_get(Handle<Struct>::type, int); // static void struct_set(Handle<Struct>::type, int, Handle<Type>::type); // template<class V> // static i::Handle<V> struct_get_value(Handle<Struct>::type, int); // template<class V> // static void struct_set_value(Handle<Struct>::type, int, i::Handle<V>); // // static Handle<Range>::type range_create(Region*); // static int range_get_bitset(Handle<Range>::type); // static void range_set_bitset(Handle<Range>::type, int); // static double range_get_double(Handle<Range>::type, int); // static void range_set_double(Handle<Range>::type, int, double, Region*); // } template<class Config> class TypeImpl : public Config::Base { public: // Auxiliary types. typedef uint32_t bitset; // Internal class BitsetType; // Internal class StructuralType; // Internal class UnionType; // Internal class ClassType; class ConstantType; class RangeType; class ContextType; class ArrayType; class FunctionType; typedef typename Config::template Handle<TypeImpl>::type TypeHandle; typedef typename Config::template Handle<ClassType>::type ClassHandle; typedef typename Config::template Handle<ConstantType>::type ConstantHandle; typedef typename Config::template Handle<RangeType>::type RangeHandle; typedef typename Config::template Handle<ContextType>::type ContextHandle; typedef typename Config::template Handle<ArrayType>::type ArrayHandle; typedef typename Config::template Handle<FunctionType>::type FunctionHandle; typedef typename Config::template Handle<UnionType>::type UnionHandle; typedef typename Config::Region Region; // Constructors. #define DEFINE_TYPE_CONSTRUCTOR(type, value) \ static TypeImpl* type() { \ return BitsetType::New(BitsetType::k##type); \ } \ static TypeHandle type(Region* region) { \ return BitsetType::New(BitsetType::k##type, region); \ } PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR) #undef DEFINE_TYPE_CONSTRUCTOR static TypeImpl* SignedSmall() { return BitsetType::New(BitsetType::SignedSmall()); } static TypeHandle SignedSmall(Region* region) { return BitsetType::New(BitsetType::SignedSmall(), region); } static TypeImpl* UnsignedSmall() { return BitsetType::New(BitsetType::UnsignedSmall()); } static TypeHandle UnsignedSmall(Region* region) { return BitsetType::New(BitsetType::UnsignedSmall(), region); } static TypeHandle Class(i::Handle<i::Map> map, Region* region) { return ClassType::New(map, region); } static TypeHandle Constant(i::Handle<i::Object> value, Region* region) { return ConstantType::New(value, region); } static TypeHandle Range(double min, double max, Region* region) { return RangeType::New( min, max, BitsetType::New(REPRESENTATION(BitsetType::kTagged | BitsetType::kUntaggedNumber), region), region); } static TypeHandle Context(TypeHandle outer, Region* region) { return ContextType::New(outer, region); } static TypeHandle Array(TypeHandle element, Region* region) { return ArrayType::New(element, region); } static FunctionHandle Function( TypeHandle result, TypeHandle receiver, int arity, Region* region) { return FunctionType::New(result, receiver, arity, region); } static TypeHandle Function(TypeHandle result, Region* region) { return Function(result, Any(region), 0, region); } static TypeHandle Function( TypeHandle result, TypeHandle param0, Region* region) { FunctionHandle function = Function(result, Any(region), 1, region); function->InitParameter(0, param0); return function; } static TypeHandle Function( TypeHandle result, TypeHandle param0, TypeHandle param1, Region* region) { FunctionHandle function = Function(result, Any(region), 2, region); function->InitParameter(0, param0); function->InitParameter(1, param1); return function; } static TypeHandle Function( TypeHandle result, TypeHandle param0, TypeHandle param1, TypeHandle param2, Region* region) { FunctionHandle function = Function(result, Any(region), 3, region); function->InitParameter(0, param0); function->InitParameter(1, param1); function->InitParameter(2, param2); return function; } static TypeHandle Function(TypeHandle result, int arity, TypeHandle* params, Region* region) { FunctionHandle function = Function(result, Any(region), arity, region); for (int i = 0; i < arity; ++i) { function->InitParameter(i, params[i]); } return function; } #define CONSTRUCT_SIMD_TYPE(NAME, Name, name, lane_count, lane_type) \ static TypeHandle Name(Isolate* isolate, Region* region); SIMD128_TYPES(CONSTRUCT_SIMD_TYPE) #undef CONSTRUCT_SIMD_TYPE static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg); static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg); static TypeHandle Of(double value, Region* region) { return Config::from_bitset(BitsetType::ExpandInternals( BitsetType::Lub(value)), region); } static TypeHandle Of(i::Object* value, Region* region) { return Config::from_bitset(BitsetType::ExpandInternals( BitsetType::Lub(value)), region); } static TypeHandle Of(i::Handle<i::Object> value, Region* region) { return Of(*value, region); } // Extraction of components. static TypeHandle Representation(TypeHandle t, Region* region); static TypeHandle Semantic(TypeHandle t, Region* region); // Predicates. bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); } bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); } template<class TypeHandle> bool Is(TypeHandle that) { return this->Is(*that); } bool Maybe(TypeImpl* that); template<class TypeHandle> bool Maybe(TypeHandle that) { return this->Maybe(*that); } bool Equals(TypeImpl* that) { return this->Is(that) && that->Is(this); } template<class TypeHandle> bool Equals(TypeHandle that) { return this->Equals(*that); } // Equivalent to Constant(val)->Is(this), but avoiding allocation. bool Contains(i::Object* val); bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); } // State-dependent versions of the above that consider subtyping between // a constant and its map class. inline static TypeHandle NowOf(i::Object* value, Region* region); static TypeHandle NowOf(i::Handle<i::Object> value, Region* region) { return NowOf(*value, region); } bool NowIs(TypeImpl* that); template<class TypeHandle> bool NowIs(TypeHandle that) { return this->NowIs(*that); } inline bool NowContains(i::Object* val); bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); } bool NowStable(); // Inspection. bool IsRange() { return Config::is_range(this); } bool IsClass() { return Config::is_class(this) || Config::is_struct(this, StructuralType::kClassTag); } bool IsConstant() { return Config::is_struct(this, StructuralType::kConstantTag); } bool IsContext() { return Config::is_struct(this, StructuralType::kContextTag); } bool IsArray() { return Config::is_struct(this, StructuralType::kArrayTag); } bool IsFunction() { return Config::is_struct(this, StructuralType::kFunctionTag); } ClassType* AsClass() { return ClassType::cast(this); } ConstantType* AsConstant() { return ConstantType::cast(this); } RangeType* AsRange() { return RangeType::cast(this); } ContextType* AsContext() { return ContextType::cast(this); } ArrayType* AsArray() { return ArrayType::cast(this); } FunctionType* AsFunction() { return FunctionType::cast(this); } // Minimum and maximum of a numeric type. // These functions do not distinguish between -0 and +0. If the type equals // kNaN, they return NaN; otherwise kNaN is ignored. Only call these // functions on subtypes of Number. double Min(); double Max(); // Extracts a range from the type: if the type is a range or a union // containing a range, that range is returned; otherwise, NULL is returned. RangeType* GetRange(); static bool IsInteger(double x) { return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities. } static bool IsInteger(i::Object* x) { return x->IsNumber() && IsInteger(x->Number()); } int NumClasses(); int NumConstants(); template<class T> class Iterator; Iterator<i::Map> Classes() { if (this->IsBitset()) return Iterator<i::Map>(); return Iterator<i::Map>(Config::handle(this)); } Iterator<i::Object> Constants() { if (this->IsBitset()) return Iterator<i::Object>(); return Iterator<i::Object>(Config::handle(this)); } // Casting and conversion. static inline TypeImpl* cast(typename Config::Base* object); template<class OtherTypeImpl> static TypeHandle Convert( typename OtherTypeImpl::TypeHandle type, Region* region); // Printing. enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM }; void PrintTo(std::ostream& os, PrintDimension dim = BOTH_DIMS); // NOLINT #ifdef DEBUG void Print(); #endif bool IsUnionForTesting() { return IsUnion(); } protected: // Friends. template<class> friend class Iterator; template<class> friend class TypeImpl; // Handle conversion. template<class T> static typename Config::template Handle<T>::type handle(T* type) { return Config::handle(type); } TypeImpl* unhandle() { return this; } // Internal inspection. bool IsNone() { return this == None(); } bool IsAny() { return this == Any(); } bool IsBitset() { return Config::is_bitset(this); } bool IsUnion() { return Config::is_struct(this, StructuralType::kUnionTag); } bitset AsBitset() { DCHECK(this->IsBitset()); return static_cast<BitsetType*>(this)->Bitset(); } UnionType* AsUnion() { return UnionType::cast(this); } bitset Representation(); // Auxiliary functions. bool SemanticMaybe(TypeImpl* that); bitset BitsetGlb() { return BitsetType::Glb(this); } bitset BitsetLub() { return BitsetType::Lub(this); } bool SlowIs(TypeImpl* that); bool SemanticIs(TypeImpl* that); struct Limits { double min; double max; Limits(double min, double max) : min(min), max(max) {} explicit Limits(RangeType* range) : min(range->Min()), max(range->Max()) {} bool IsEmpty(); static Limits Empty() { return Limits(1, 0); } static Limits Intersect(Limits lhs, Limits rhs); static Limits Union(Limits lhs, Limits rhs); }; static bool Overlap(RangeType* lhs, RangeType* rhs); static bool Contains(RangeType* lhs, RangeType* rhs); static bool Contains(RangeType* range, ConstantType* constant); static bool Contains(RangeType* range, i::Object* val); static int UpdateRange( RangeHandle type, UnionHandle result, int size, Region* region); static Limits IntersectRangeAndBitset(TypeHandle range, TypeHandle bits, Region* region); static Limits ToLimits(bitset bits, Region* region); bool SimplyEquals(TypeImpl* that); template<class TypeHandle> bool SimplyEquals(TypeHandle that) { return this->SimplyEquals(*that); } static int AddToUnion( TypeHandle type, UnionHandle result, int size, Region* region); static int IntersectAux(TypeHandle type, TypeHandle other, UnionHandle result, int size, Limits* limits, Region* region); static TypeHandle NormalizeUnion(UnionHandle unioned, int size, Region* region); static TypeHandle NormalizeRangeAndBitset(RangeHandle range, bitset* bits, Region* region); }; // ----------------------------------------------------------------------------- // Bitset types (internal). template<class Config> class TypeImpl<Config>::BitsetType : public TypeImpl<Config> { protected: friend class TypeImpl<Config>; enum : uint32_t { #define DECLARE_TYPE(type, value) k##type = (value), BITSET_TYPE_LIST(DECLARE_TYPE) #undef DECLARE_TYPE kUnusedEOL = 0 }; static bitset SignedSmall(); static bitset UnsignedSmall(); bitset Bitset() { return Config::as_bitset(this); } static TypeImpl* New(bitset bits) { return Config::from_bitset(bits); } static TypeHandle New(bitset bits, Region* region) { return Config::from_bitset(bits, region); } static bool IsInhabited(bitset bits) { return SEMANTIC(bits) != kNone && REPRESENTATION(bits) != kNone; } static bool SemanticIsInhabited(bitset bits) { return SEMANTIC(bits) != kNone; } static bool Is(bitset bits1, bitset bits2) { return (bits1 | bits2) == bits2; } static double Min(bitset); static double Max(bitset); static bitset Glb(TypeImpl* type); // greatest lower bound that's a bitset static bitset Glb(double min, double max); static bitset Lub(TypeImpl* type); // least upper bound that's a bitset static bitset Lub(i::Map* map); static bitset Lub(i::Object* value); static bitset Lub(double value); static bitset Lub(double min, double max); static bitset ExpandInternals(bitset bits); static const char* Name(bitset); static void Print(std::ostream& os, bitset); // NOLINT #ifdef DEBUG static void Print(bitset); #endif static bitset NumberBits(bitset bits); private: struct Boundary { bitset internal; bitset external; double min; }; static const Boundary BoundariesArray[]; static inline const Boundary* Boundaries(); static inline size_t BoundariesSize(); }; // ----------------------------------------------------------------------------- // Superclass for non-bitset types (internal). // Contains a tag and a variable number of type or value fields. template<class Config> class TypeImpl<Config>::StructuralType : public TypeImpl<Config> { protected: template<class> friend class TypeImpl; friend struct ZoneTypeConfig; // For tags. friend struct HeapTypeConfig; enum Tag { kClassTag, kConstantTag, kContextTag, kArrayTag, kFunctionTag, kUnionTag }; int Length() { return Config::struct_length(Config::as_struct(this)); } TypeHandle Get(int i) { DCHECK(0 <= i && i < this->Length()); return Config::struct_get(Config::as_struct(this), i); } void Set(int i, TypeHandle type) { DCHECK(0 <= i && i < this->Length()); Config::struct_set(Config::as_struct(this), i, type); } void Shrink(int length) { DCHECK(2 <= length && length <= this->Length()); Config::struct_shrink(Config::as_struct(this), length); } template<class V> i::Handle<V> GetValue(int i) { DCHECK(0 <= i && i < this->Length()); return Config::template struct_get_value<V>(Config::as_struct(this), i); } template<class V> void SetValue(int i, i::Handle<V> x) { DCHECK(0 <= i && i < this->Length()); Config::struct_set_value(Config::as_struct(this), i, x); } static TypeHandle New(Tag tag, int length, Region* region) { DCHECK(1 <= length); return Config::from_struct(Config::struct_create(tag, length, region)); } }; // ----------------------------------------------------------------------------- // Union types (internal). // A union is a structured type with the following invariants: // - its length is at least 2 // - at most one field is a bitset, and it must go into index 0 // - no field is a union // - no field is a subtype of any other field template<class Config> class TypeImpl<Config>::UnionType : public StructuralType { public: static UnionHandle New(int length, Region* region) { return Config::template cast<UnionType>( StructuralType::New(StructuralType::kUnionTag, length, region)); } static UnionType* cast(TypeImpl* type) { DCHECK(type->IsUnion()); return static_cast<UnionType*>(type); } bool Wellformed(); }; // ----------------------------------------------------------------------------- // Class types. template<class Config> class TypeImpl<Config>::ClassType : public StructuralType { public: i::Handle<i::Map> Map() { return Config::is_class(this) ? Config::as_class(this) : this->template GetValue<i::Map>(1); } static ClassHandle New(i::Handle<i::Map> map, Region* region) { ClassHandle type = Config::template cast<ClassType>(Config::from_class(map, region)); if (!type->IsClass()) { type = Config::template cast<ClassType>( StructuralType::New(StructuralType::kClassTag, 2, region)); type->Set(0, BitsetType::New(BitsetType::Lub(*map), region)); type->SetValue(1, map); } return type; } static ClassType* cast(TypeImpl* type) { DCHECK(type->IsClass()); return static_cast<ClassType*>(type); } private: template<class> friend class TypeImpl; bitset Lub() { return Config::is_class(this) ? BitsetType::Lub(*Config::as_class(this)) : this->Get(0)->AsBitset(); } }; // ----------------------------------------------------------------------------- // Constant types. template<class Config> class TypeImpl<Config>::ConstantType : public StructuralType { public: i::Handle<i::Object> Value() { return this->template GetValue<i::Object>(1); } static ConstantHandle New(i::Handle<i::Object> value, Region* region) { ConstantHandle type = Config::template cast<ConstantType>( StructuralType::New(StructuralType::kConstantTag, 2, region)); type->Set(0, BitsetType::New(BitsetType::Lub(*value), region)); type->SetValue(1, value); return type; } static ConstantType* cast(TypeImpl* type) { DCHECK(type->IsConstant()); return static_cast<ConstantType*>(type); } private: template<class> friend class TypeImpl; bitset Lub() { return this->Get(0)->AsBitset(); } }; // TODO(neis): Also cache value if numerical. // TODO(neis): Allow restricting the representation. // ----------------------------------------------------------------------------- // Range types. template <class Config> class TypeImpl<Config>::RangeType : public TypeImpl<Config> { public: double Min() { return Config::range_get_double(Config::as_range(this), 0); } double Max() { return Config::range_get_double(Config::as_range(this), 1); } static RangeHandle New(double min, double max, TypeHandle representation, Region* region) { DCHECK(IsInteger(min) && IsInteger(max)); DCHECK(min <= max); bitset representation_bits = representation->AsBitset(); DCHECK(REPRESENTATION(representation_bits) == representation_bits); typename Config::template Handle<typename Config::Range>::type range = Config::range_create(region); bitset bits = SEMANTIC(BitsetType::Lub(min, max)) | representation_bits; Config::range_set_bitset(range, bits); Config::range_set_double(range, 0, min, region); Config::range_set_double(range, 1, max, region); return Config::template cast<RangeType>(Config::from_range(range)); } static RangeHandle New(Limits lim, bitset representation, Region* region) { return New(lim.min, lim.max, BitsetType::New(representation, region), region); } static RangeType* cast(TypeImpl* type) { DCHECK(type->IsRange()); return static_cast<RangeType*>(type); } private: template<class> friend class TypeImpl; bitset Lub() { return Config::range_get_bitset(Config::as_range(this)); } }; // ----------------------------------------------------------------------------- // Context types. template<class Config> class TypeImpl<Config>::ContextType : public StructuralType { public: TypeHandle Outer() { return this->Get(0); } static ContextHandle New(TypeHandle outer, Region* region) { ContextHandle type = Config::template cast<ContextType>( StructuralType::New(StructuralType::kContextTag, 1, region)); type->Set(0, outer); return type; } static ContextType* cast(TypeImpl* type) { DCHECK(type->IsContext()); return static_cast<ContextType*>(type); } }; // ----------------------------------------------------------------------------- // Array types. template<class Config> class TypeImpl<Config>::ArrayType : public StructuralType { public: TypeHandle Element() { return this->Get(0); } static ArrayHandle New(TypeHandle element, Region* region) { ArrayHandle type = Config::template cast<ArrayType>( StructuralType::New(StructuralType::kArrayTag, 1, region)); type->Set(0, element); return type; } static ArrayType* cast(TypeImpl* type) { DCHECK(type->IsArray()); return static_cast<ArrayType*>(type); } }; // ----------------------------------------------------------------------------- // Function types. template<class Config> class TypeImpl<Config>::FunctionType : public StructuralType { public: int Arity() { return this->Length() - 2; } TypeHandle Result() { return this->Get(0); } TypeHandle Receiver() { return this->Get(1); } TypeHandle Parameter(int i) { return this->Get(2 + i); } void InitParameter(int i, TypeHandle type) { this->Set(2 + i, type); } static FunctionHandle New( TypeHandle result, TypeHandle receiver, int arity, Region* region) { FunctionHandle type = Config::template cast<FunctionType>( StructuralType::New(StructuralType::kFunctionTag, 2 + arity, region)); type->Set(0, result); type->Set(1, receiver); return type; } static FunctionType* cast(TypeImpl* type) { DCHECK(type->IsFunction()); return static_cast<FunctionType*>(type); } }; // ----------------------------------------------------------------------------- // Type iterators. template<class Config> template<class T> class TypeImpl<Config>::Iterator { public: bool Done() const { return index_ < 0; } i::Handle<T> Current(); void Advance(); private: template<class> friend class TypeImpl; Iterator() : index_(-1) {} explicit Iterator(TypeHandle type) : type_(type), index_(-1) { Advance(); } inline bool matches(TypeHandle type); inline TypeHandle get_type(); TypeHandle type_; int index_; }; // ----------------------------------------------------------------------------- // Zone-allocated types; they are either (odd) integers to represent bitsets, or // (even) pointers to structures for everything else. struct ZoneTypeConfig { typedef TypeImpl<ZoneTypeConfig> Type; class Base {}; typedef void* Struct; // Hack: the Struct and Range types can be aliased in memory, the first // pointer word of each both must be the tag (kRangeStructTag for Range, // anything else for Struct) so that we can differentiate them. struct Range { void* tag; int bitset; double limits[2]; }; typedef i::Zone Region; template<class T> struct Handle { typedef T* type; }; static const int kRangeStructTag = 0x1000; template<class T> static inline T* null_handle() { return nullptr; } template<class T> static inline T* handle(T* type); template<class T> static inline T* cast(Type* type); static inline bool is_bitset(Type* type); static inline bool is_class(Type* type); static inline bool is_struct(Type* type, int tag); static inline bool is_range(Type* type); static inline Type::bitset as_bitset(Type* type); static inline i::Handle<i::Map> as_class(Type* type); static inline Struct* as_struct(Type* type); static inline Range* as_range(Type* type); static inline Type* from_bitset(Type::bitset); static inline Type* from_bitset(Type::bitset, Zone* zone); static inline Type* from_class(i::Handle<i::Map> map, Zone* zone); static inline Type* from_struct(Struct* structured); static inline Type* from_range(Range* range); static inline Struct* struct_create(int tag, int length, Zone* zone); static inline void struct_shrink(Struct* structure, int length); static inline int struct_tag(Struct* structure); static inline int struct_length(Struct* structure); static inline Type* struct_get(Struct* structure, int i); static inline void struct_set(Struct* structure, int i, Type* type); template<class V> static inline i::Handle<V> struct_get_value(Struct* structure, int i); template<class V> static inline void struct_set_value( Struct* structure, int i, i::Handle<V> x); static inline Range* range_create(Zone* zone); static inline int range_get_bitset(Range* range); static inline void range_set_bitset(Range* range, int); static inline double range_get_double(Range*, int index); static inline void range_set_double(Range*, int index, double value, Zone*); }; typedef TypeImpl<ZoneTypeConfig> Type; // ----------------------------------------------------------------------------- // Heap-allocated types; either smis for bitsets, maps for classes, boxes for // constants, or fixed arrays for unions. struct HeapTypeConfig { typedef TypeImpl<HeapTypeConfig> Type; typedef i::Object Base; typedef i::FixedArray Struct; typedef i::FixedArray Range; typedef i::Isolate Region; template<class T> struct Handle { typedef i::Handle<T> type; }; static const int kRangeStructTag = 0xffff; template<class T> static inline i::Handle<T> null_handle() { return i::Handle<T>(); } template<class T> static inline i::Handle<T> handle(T* type); template<class T> static inline i::Handle<T> cast(i::Handle<Type> type); static inline bool is_bitset(Type* type); static inline bool is_class(Type* type); static inline bool is_struct(Type* type, int tag); static inline bool is_range(Type* type); static inline Type::bitset as_bitset(Type* type); static inline i::Handle<i::Map> as_class(Type* type); static inline i::Handle<Struct> as_struct(Type* type); static inline i::Handle<Range> as_range(Type* type); static inline Type* from_bitset(Type::bitset); static inline i::Handle<Type> from_bitset(Type::bitset, Isolate* isolate); static inline i::Handle<Type> from_class( i::Handle<i::Map> map, Isolate* isolate); static inline i::Handle<Type> from_struct(i::Handle<Struct> structure); static inline i::Handle<Type> from_range(i::Handle<Range> range); static inline i::Handle<Struct> struct_create( int tag, int length, Isolate* isolate); static inline void struct_shrink(i::Handle<Struct> structure, int length); static inline int struct_tag(i::Handle<Struct> structure); static inline int struct_length(i::Handle<Struct> structure); static inline i::Handle<Type> struct_get(i::Handle<Struct> structure, int i); static inline void struct_set( i::Handle<Struct> structure, int i, i::Handle<Type> type); template<class V> static inline i::Handle<V> struct_get_value( i::Handle<Struct> structure, int i); template<class V> static inline void struct_set_value( i::Handle<Struct> structure, int i, i::Handle<V> x); static inline i::Handle<Range> range_create(Isolate* isolate); static inline int range_get_bitset(i::Handle<Range> range); static inline void range_set_bitset(i::Handle<Range> range, int value); static inline double range_get_double(i::Handle<Range> range, int index); static inline void range_set_double(i::Handle<Range> range, int index, double value, Isolate* isolate); }; typedef TypeImpl<HeapTypeConfig> HeapType; // ----------------------------------------------------------------------------- // Type bounds. A simple struct to represent a pair of lower/upper types. template<class Config> struct BoundsImpl { typedef TypeImpl<Config> Type; typedef typename Type::TypeHandle TypeHandle; typedef typename Type::Region Region; TypeHandle lower; TypeHandle upper; BoundsImpl() : // Make sure accessing uninitialized bounds crashes big-time. lower(Config::template null_handle<Type>()), upper(Config::template null_handle<Type>()) {} explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {} BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) { DCHECK(lower->Is(upper)); } // Unrestricted bounds. static BoundsImpl Unbounded() { return BoundsImpl(Type::None(), Type::Any()); } // Meet: both b1 and b2 are known to hold. static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) { TypeHandle lower = Type::Union(b1.lower, b2.lower, region); TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region); // Lower bounds are considered approximate, correct as necessary. if (!lower->Is(upper)) lower = upper; return BoundsImpl(lower, upper); } // Join: either b1 or b2 is known to hold. static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) { TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region); TypeHandle upper = Type::Union(b1.upper, b2.upper, region); return BoundsImpl(lower, upper); } static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) { TypeHandle lower = Type::Union(b.lower, t, region); // Lower bounds are considered approximate, correct as necessary. if (!lower->Is(b.upper)) lower = b.upper; return BoundsImpl(lower, b.upper); } static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) { TypeHandle lower = b.lower; TypeHandle upper = Type::Intersect(b.upper, t, region); // Lower bounds are considered approximate, correct as necessary. if (!lower->Is(upper)) lower = upper; return BoundsImpl(lower, upper); } bool Narrows(BoundsImpl that) { return that.lower->Is(this->lower) && this->upper->Is(that.upper); } }; typedef BoundsImpl<ZoneTypeConfig> Bounds; } // namespace internal } // namespace v8 #endif // V8_TYPES_H_