// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_GLOBAL_HANDLES_H_ #define V8_GLOBAL_HANDLES_H_ #include "include/v8.h" #include "include/v8-profiler.h" #include "src/handles.h" #include "src/list.h" #include "src/utils.h" namespace v8 { namespace internal { class HeapStats; class ObjectVisitor; // Structure for tracking global handles. // A single list keeps all the allocated global handles. // Destroyed handles stay in the list but is added to the free list. // At GC the destroyed global handles are removed from the free list // and deallocated. // Data structures for tracking object groups and implicit references. // An object group is treated like a single JS object: if one of object in // the group is alive, all objects in the same group are considered alive. // An object group is used to simulate object relationship in a DOM tree. // An implicit references group consists of two parts: a parent object and a // list of children objects. If the parent is alive, all the children are alive // too. struct ObjectGroup { explicit ObjectGroup(size_t length) : info(NULL), length(length) { DCHECK(length > 0); objects = new Object**[length]; } ~ObjectGroup(); v8::RetainedObjectInfo* info; Object*** objects; size_t length; }; struct ImplicitRefGroup { ImplicitRefGroup(HeapObject** parent, size_t length) : parent(parent), length(length) { DCHECK(length > 0); children = new Object**[length]; } ~ImplicitRefGroup(); HeapObject** parent; Object*** children; size_t length; }; // For internal bookkeeping. struct ObjectGroupConnection { ObjectGroupConnection(UniqueId id, Object** object) : id(id), object(object) {} bool operator==(const ObjectGroupConnection& other) const { return id == other.id; } bool operator<(const ObjectGroupConnection& other) const { return id < other.id; } UniqueId id; Object** object; }; struct ObjectGroupRetainerInfo { ObjectGroupRetainerInfo(UniqueId id, RetainedObjectInfo* info) : id(id), info(info) {} bool operator==(const ObjectGroupRetainerInfo& other) const { return id == other.id; } bool operator<(const ObjectGroupRetainerInfo& other) const { return id < other.id; } UniqueId id; RetainedObjectInfo* info; }; enum WeaknessType { NORMAL_WEAK, // Embedder gets a handle to the dying object. // In the following cases, the embedder gets the parameter they passed in // earlier, and 0 or 2 first internal fields. Note that the internal // fields must contain aligned non-V8 pointers. Getting pointers to V8 // objects through this interface would be GC unsafe so in that case the // embedder gets a null pointer instead. PHANTOM_WEAK, PHANTOM_WEAK_2_INTERNAL_FIELDS }; class GlobalHandles { public: ~GlobalHandles(); // Creates a new global handle that is alive until Destroy is called. Handle<Object> Create(Object* value); // Copy a global handle static Handle<Object> CopyGlobal(Object** location); // Destroy a global handle. static void Destroy(Object** location); typedef WeakCallbackData<v8::Value, void>::Callback WeakCallback; // For a phantom weak reference, the callback does not have access to the // dying object. Phantom weak references are preferred because they allow // memory to be reclaimed in one GC cycle rather than two. However, for // historical reasons the default is non-phantom. enum PhantomState { Nonphantom, Phantom }; // Make the global handle weak and set the callback parameter for the // handle. When the garbage collector recognizes that only weak global // handles point to an object the callback function is invoked (for each // handle) with the handle and corresponding parameter as arguments. By // default the handle still contains a pointer to the object that is being // collected. For this reason the object is not collected until the next // GC. For a phantom weak handle the handle is cleared (set to a Smi) // before the callback is invoked, but the handle can still be identified // in the callback by using the location() of the handle. static void MakeWeak(Object** location, void* parameter, WeakCallback weak_callback); // It would be nice to template this one, but it's really hard to get // the template instantiator to work right if you do. static void MakeWeak(Object** location, void* parameter, WeakCallbackInfo<void>::Callback weak_callback, v8::WeakCallbackType type); void RecordStats(HeapStats* stats); // Returns the current number of weak handles. int NumberOfWeakHandles(); // Returns the current number of weak handles to global objects. // These handles are also included in NumberOfWeakHandles(). int NumberOfGlobalObjectWeakHandles(); // Returns the current number of handles to global objects. int global_handles_count() const { return number_of_global_handles_; } // Clear the weakness of a global handle. static void* ClearWeakness(Object** location); // Clear the weakness of a global handle. static void MarkIndependent(Object** location); // Mark the reference to this object externaly unreachable. static void MarkPartiallyDependent(Object** location); static bool IsIndependent(Object** location); // Tells whether global handle is near death. static bool IsNearDeath(Object** location); // Tells whether global handle is weak. static bool IsWeak(Object** location); // Process pending weak handles. // Returns the number of freed nodes. int PostGarbageCollectionProcessing( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags); // Iterates over all strong handles. void IterateStrongRoots(ObjectVisitor* v); // Iterates over all handles. void IterateAllRoots(ObjectVisitor* v); // Iterates over all handles that have embedder-assigned class ID. void IterateAllRootsWithClassIds(ObjectVisitor* v); // Iterates over all handles in the new space that have embedder-assigned // class ID. void IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v); // Iterate over all handles in the new space that are weak, unmodified // and have class IDs void IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor* v); // Iterates over all weak roots in heap. void IterateWeakRoots(ObjectVisitor* v); // Find all weak handles satisfying the callback predicate, mark // them as pending. void IdentifyWeakHandles(WeakSlotCallback f); // NOTE: Five ...NewSpace... functions below are used during // scavenge collections and iterate over sets of handles that are // guaranteed to contain all handles holding new space objects (but // may also include old space objects). // Iterates over strong and dependent handles. See the node above. void IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v); // Finds weak independent or partially independent handles satisfying // the callback predicate and marks them as pending. See the note above. void IdentifyNewSpaceWeakIndependentHandles(WeakSlotCallbackWithHeap f); // Iterates over weak independent or partially independent handles. // See the note above. void IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v); // Finds weak independent or unmodified handles satisfying // the callback predicate and marks them as pending. See the note above. void MarkNewSpaceWeakUnmodifiedObjectsPending( WeakSlotCallbackWithHeap is_unscavenged); // Iterates over weak independent or unmodified handles. // See the note above. void IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor* v); // Identify unmodified objects that are in weak state and marks them // unmodified void IdentifyWeakUnmodifiedObjects(WeakSlotCallback is_unmodified); // Iterate over objects in object groups that have at least one object // which requires visiting. The callback has to return true if objects // can be skipped and false otherwise. bool IterateObjectGroups(ObjectVisitor* v, WeakSlotCallbackWithHeap can_skip); // Add an object group. // Should be only used in GC callback function before a collection. // All groups are destroyed after a garbage collection. void AddObjectGroup(Object*** handles, size_t length, v8::RetainedObjectInfo* info); // Associates handle with the object group represented by id. // Should be only used in GC callback function before a collection. // All groups are destroyed after a garbage collection. void SetObjectGroupId(Object** handle, UniqueId id); // Set RetainedObjectInfo for an object group. Should not be called more than // once for a group. Should not be called for a group which contains no // handles. void SetRetainedObjectInfo(UniqueId id, RetainedObjectInfo* info); // Adds an implicit reference from a group to an object. Should be only used // in GC callback function before a collection. All implicit references are // destroyed after a mark-compact collection. void SetReferenceFromGroup(UniqueId id, Object** child); // Adds an implicit reference from a parent object to a child object. Should // be only used in GC callback function before a collection. All implicit // references are destroyed after a mark-compact collection. void SetReference(HeapObject** parent, Object** child); List<ObjectGroup*>* object_groups() { ComputeObjectGroupsAndImplicitReferences(); return &object_groups_; } List<ImplicitRefGroup*>* implicit_ref_groups() { ComputeObjectGroupsAndImplicitReferences(); return &implicit_ref_groups_; } // Remove bags, this should only happen after GC. void RemoveObjectGroups(); void RemoveImplicitRefGroups(); // Tear down the global handle structure. void TearDown(); Isolate* isolate() { return isolate_; } #ifdef DEBUG void PrintStats(); void Print(); #endif private: explicit GlobalHandles(Isolate* isolate); // Migrates data from the internal representation (object_group_connections_, // retainer_infos_ and implicit_ref_connections_) to the public and more // efficient representation (object_groups_ and implicit_ref_groups_). void ComputeObjectGroupsAndImplicitReferences(); // v8::internal::List is inefficient even for small number of elements, if we // don't assign any initial capacity. static const int kObjectGroupConnectionsCapacity = 20; class PendingPhantomCallback; // Helpers for PostGarbageCollectionProcessing. static void InvokeSecondPassPhantomCallbacks( List<PendingPhantomCallback>* callbacks, Isolate* isolate); int PostScavengeProcessing(int initial_post_gc_processing_count); int PostMarkSweepProcessing(int initial_post_gc_processing_count); int DispatchPendingPhantomCallbacks(bool synchronous_second_pass); void UpdateListOfNewSpaceNodes(); // Internal node structures. class Node; class NodeBlock; class NodeIterator; class PendingPhantomCallbacksSecondPassTask; Isolate* isolate_; // Field always containing the number of handles to global objects. int number_of_global_handles_; // List of all allocated node blocks. NodeBlock* first_block_; // List of node blocks with used nodes. NodeBlock* first_used_block_; // Free list of nodes. Node* first_free_; // Contains all nodes holding new space objects. Note: when the list // is accessed, some of the objects may have been promoted already. List<Node*> new_space_nodes_; int post_gc_processing_count_; // Object groups and implicit references, public and more efficient // representation. List<ObjectGroup*> object_groups_; List<ImplicitRefGroup*> implicit_ref_groups_; // Object groups and implicit references, temporary representation while // constructing the groups. List<ObjectGroupConnection> object_group_connections_; List<ObjectGroupRetainerInfo> retainer_infos_; List<ObjectGroupConnection> implicit_ref_connections_; List<PendingPhantomCallback> pending_phantom_callbacks_; friend class Isolate; DISALLOW_COPY_AND_ASSIGN(GlobalHandles); }; class GlobalHandles::PendingPhantomCallback { public: typedef v8::WeakCallbackInfo<void> Data; PendingPhantomCallback( Node* node, Data::Callback callback, void* parameter, void* internal_fields[v8::kInternalFieldsInWeakCallback]) : node_(node), callback_(callback), parameter_(parameter) { for (int i = 0; i < v8::kInternalFieldsInWeakCallback; ++i) { internal_fields_[i] = internal_fields[i]; } } void Invoke(Isolate* isolate); Node* node() { return node_; } Data::Callback callback() { return callback_; } private: Node* node_; Data::Callback callback_; void* parameter_; void* internal_fields_[v8::kInternalFieldsInWeakCallback]; }; class EternalHandles { public: enum SingletonHandle { I18N_TEMPLATE_ONE, I18N_TEMPLATE_TWO, DATE_CACHE_VERSION, NUMBER_OF_SINGLETON_HANDLES }; EternalHandles(); ~EternalHandles(); int NumberOfHandles() { return size_; } // Create an EternalHandle, overwriting the index. void Create(Isolate* isolate, Object* object, int* index); // Grab the handle for an existing EternalHandle. inline Handle<Object> Get(int index) { return Handle<Object>(GetLocation(index)); } // Grab the handle for an existing SingletonHandle. inline Handle<Object> GetSingleton(SingletonHandle singleton) { DCHECK(Exists(singleton)); return Get(singleton_handles_[singleton]); } // Checks whether a SingletonHandle has been assigned. inline bool Exists(SingletonHandle singleton) { return singleton_handles_[singleton] != kInvalidIndex; } // Assign a SingletonHandle to an empty slot and returns the handle. Handle<Object> CreateSingleton(Isolate* isolate, Object* object, SingletonHandle singleton) { Create(isolate, object, &singleton_handles_[singleton]); return Get(singleton_handles_[singleton]); } // Iterates over all handles. void IterateAllRoots(ObjectVisitor* visitor); // Iterates over all handles which might be in new space. void IterateNewSpaceRoots(ObjectVisitor* visitor); // Rebuilds new space list. void PostGarbageCollectionProcessing(Heap* heap); private: static const int kInvalidIndex = -1; static const int kShift = 8; static const int kSize = 1 << kShift; static const int kMask = 0xff; // Gets the slot for an index inline Object** GetLocation(int index) { DCHECK(index >= 0 && index < size_); return &blocks_[index >> kShift][index & kMask]; } int size_; List<Object**> blocks_; List<int> new_space_indices_; int singleton_handles_[NUMBER_OF_SINGLETON_HANDLES]; DISALLOW_COPY_AND_ASSIGN(EternalHandles); }; } // namespace internal } // namespace v8 #endif // V8_GLOBAL_HANDLES_H_