/* xwrap.c - wrappers around existing library functions. * * Functions with the x prefix are wrappers that either succeed or kill the * program with an error message, but never return failure. They usually have * the same arguments and return value as the function they wrap. * * Copyright 2006 Rob Landley <rob@landley.net> */ #include "toys.h" // strcpy and strncat with size checking. Size is the total space in "dest", // including null terminator. Exit if there's not enough space for the string // (including space for the null terminator), because silently truncating is // still broken behavior. (And leaving the string unterminated is INSANE.) void xstrncpy(char *dest, char *src, size_t size) { if (strlen(src)+1 > size) error_exit("'%s' > %ld bytes", src, (long)size); strcpy(dest, src); } void xstrncat(char *dest, char *src, size_t size) { long len = strlen(dest); if (len+strlen(src)+1 > size) error_exit("'%s%s' > %ld bytes", dest, src, (long)size); strcpy(dest+len, src); } void xexit(void) { if (toys.rebound) longjmp(*toys.rebound, 1); if (fflush(NULL) || ferror(stdout)) if (!toys.exitval) perror_msg("write"); exit(toys.exitval); } // Die unless we can allocate memory. void *xmalloc(size_t size) { void *ret = malloc(size); if (!ret) error_exit("xmalloc(%ld)", (long)size); return ret; } // Die unless we can allocate prezeroed memory. void *xzalloc(size_t size) { void *ret = xmalloc(size); memset(ret, 0, size); return ret; } // Die unless we can change the size of an existing allocation, possibly // moving it. (Notice different arguments from libc function.) void *xrealloc(void *ptr, size_t size) { ptr = realloc(ptr, size); if (!ptr) error_exit("xrealloc"); return ptr; } // Die unless we can allocate a copy of this many bytes of string. char *xstrndup(char *s, size_t n) { char *ret = strndup(s, ++n); if (!ret) error_exit("xstrndup"); ret[--n] = 0; return ret; } // Die unless we can allocate a copy of this string. char *xstrdup(char *s) { return xstrndup(s, strlen(s)); } void *xmemdup(void *s, long len) { void *ret = xmalloc(len); memcpy(ret, s, len); return ret; } // Die unless we can allocate enough space to sprintf() into. char *xmprintf(char *format, ...) { va_list va, va2; int len; char *ret; va_start(va, format); va_copy(va2, va); // How long is it? len = vsnprintf(0, 0, format, va); len++; va_end(va); // Allocate and do the sprintf() ret = xmalloc(len); vsnprintf(ret, len, format, va2); va_end(va2); return ret; } void xprintf(char *format, ...) { va_list va; va_start(va, format); vprintf(format, va); va_end(va); if (fflush(stdout) || ferror(stdout)) perror_exit("write"); } void xputs(char *s) { if (EOF == puts(s) || fflush(stdout) || ferror(stdout)) perror_exit("write"); } void xputc(char c) { if (EOF == fputc(c, stdout) || fflush(stdout) || ferror(stdout)) perror_exit("write"); } void xflush(void) { if (fflush(stdout) || ferror(stdout)) perror_exit("write");; } // This is called through the XVFORK macro because parent/child of vfork // share a stack, so child returning from a function would stomp the return // address parent would need. Solution: make vfork() an argument so processes // diverge before function gets called. pid_t xvforkwrap(pid_t pid) { if (pid == -1) perror_exit("vfork"); // Signal to xexec() and friends that we vforked so can't recurse toys.stacktop = 0; return pid; } // Die unless we can exec argv[] (or run builtin command). Note that anything // with a path isn't a builtin, so /bin/sh won't match the builtin sh. void xexec(char **argv) { // Only recurse to builtin when we have multiplexer and !vfork context. if (CFG_TOYBOX && !CFG_TOYBOX_NORECURSE && toys.stacktop) toy_exec(argv); execvp(argv[0], argv); perror_msg("exec %s", argv[0]); toys.exitval = 127; if (!CFG_TOYBOX_FORK) _exit(toys.exitval); xexit(); } // Spawn child process, capturing stdin/stdout. // argv[]: command to exec. If null, child re-runs original program with // toys.stacktop zeroed. // pipes[2]: stdin, stdout of new process, only allocated if zero on way in, // pass NULL to skip pipe allocation entirely. // return: pid of child process pid_t xpopen_both(char **argv, int *pipes) { int cestnepasun[4], pid; // Make the pipes? Note this won't set either pipe to 0 because if fds are // allocated in order and if fd0 was free it would go to cestnepasun[0] if (pipes) { for (pid = 0; pid < 2; pid++) { if (pipes[pid] != 0) continue; if (pipe(cestnepasun+(2*pid))) perror_exit("pipe"); pipes[pid] = cestnepasun[pid+1]; } } // Child process. if (!(pid = CFG_TOYBOX_FORK ? xfork() : XVFORK())) { // Dance of the stdin/stdout redirection. if (pipes) { // if we had no stdin/out, pipe handles could overlap, so test for it // and free up potentially overlapping pipe handles before reuse if (pipes[1] != -1) close(cestnepasun[2]); if (pipes[0] != -1) { close(cestnepasun[1]); if (cestnepasun[0]) { dup2(cestnepasun[0], 0); close(cestnepasun[0]); } } if (pipes[1] != -1) { dup2(cestnepasun[3], 1); dup2(cestnepasun[3], 2); if (cestnepasun[3] > 2 || !cestnepasun[3]) close(cestnepasun[3]); } } if (argv) xexec(argv); // In fork() case, force recursion because we know it's us. if (CFG_TOYBOX_FORK) { toy_init(toys.which, toys.argv); toys.stacktop = 0; toys.which->toy_main(); xexit(); // In vfork() case, exec /proc/self/exe with high bit of first letter set // to tell main() we reentered. } else { char *s = "/proc/self/exe"; // We did a nommu-friendly vfork but must exec to continue. // setting high bit of argv[0][0] to let new process know **toys.argv |= 0x80; execv(s, toys.argv); perror_msg_raw(s); _exit(127); } } // Parent process if (!CFG_TOYBOX_FORK) **toys.argv &= 0x7f; if (pipes) { if (pipes[0] != -1) close(cestnepasun[0]); if (pipes[1] != -1) close(cestnepasun[3]); } return pid; } // Wait for child process to exit, then return adjusted exit code. int xwaitpid(pid_t pid) { int status; while (-1 == waitpid(pid, &status, 0) && errno == EINTR); return WIFEXITED(status) ? WEXITSTATUS(status) : WTERMSIG(status)+127; } int xpclose_both(pid_t pid, int *pipes) { if (pipes) { close(pipes[0]); close(pipes[1]); } return xwaitpid(pid); } // Wrapper to xpopen with a pipe for just one of stdin/stdout pid_t xpopen(char **argv, int *pipe, int stdout) { int pipes[2], pid; pipes[!stdout] = -1; pipes[!!stdout] = 0; pid = xpopen_both(argv, pipes); *pipe = pid ? pipes[!!stdout] : -1; return pid; } int xpclose(pid_t pid, int pipe) { close(pipe); return xpclose_both(pid, 0); } // Call xpopen and wait for it to finish, keeping existing stdin/stdout. int xrun(char **argv) { return xpclose_both(xpopen_both(argv, 0), 0); } void xaccess(char *path, int flags) { if (access(path, flags)) perror_exit("Can't access '%s'", path); } // Die unless we can delete a file. (File must exist to be deleted.) void xunlink(char *path) { if (unlink(path)) perror_exit("unlink '%s'", path); } // Die unless we can open/create a file, returning file descriptor. int xcreate(char *path, int flags, int mode) { int fd = open(path, flags^O_CLOEXEC, mode); if (fd == -1) perror_exit_raw(path); return fd; } // Die unless we can open a file, returning file descriptor. int xopen(char *path, int flags) { return xcreate(path, flags, 0); } void xpipe(int *pp) { if (pipe(pp)) perror_exit("xpipe"); } void xclose(int fd) { if (close(fd)) perror_exit("xclose"); } int xdup(int fd) { if (fd != -1) { fd = dup(fd); if (fd == -1) perror_exit("xdup"); } return fd; } FILE *xfdopen(int fd, char *mode) { FILE *f = fdopen(fd, mode); if (!f) perror_exit("xfdopen"); return f; } // Die unless we can open/create a file, returning FILE *. FILE *xfopen(char *path, char *mode) { FILE *f = fopen(path, mode); if (!f) perror_exit("No file %s", path); return f; } // Die if there's an error other than EOF. size_t xread(int fd, void *buf, size_t len) { ssize_t ret = read(fd, buf, len); if (ret < 0) perror_exit("xread"); return ret; } void xreadall(int fd, void *buf, size_t len) { if (len != readall(fd, buf, len)) perror_exit("xreadall"); } // There's no xwriteall(), just xwrite(). When we read, there may or may not // be more data waiting. When we write, there is data and it had better go // somewhere. void xwrite(int fd, void *buf, size_t len) { if (len != writeall(fd, buf, len)) perror_exit("xwrite"); } // Die if lseek fails, probably due to being called on a pipe. off_t xlseek(int fd, off_t offset, int whence) { offset = lseek(fd, offset, whence); if (offset<0) perror_exit("lseek"); return offset; } char *xgetcwd(void) { char *buf = getcwd(NULL, 0); if (!buf) perror_exit("xgetcwd"); return buf; } void xstat(char *path, struct stat *st) { if(stat(path, st)) perror_exit("Can't stat %s", path); } // Cannonicalize path, even to file with one or more missing components at end. // if exact, require last path component to exist char *xabspath(char *path, int exact) { struct string_list *todo, *done = 0; int try = 9999, dirfd = open("/", 0);; char buf[4096], *ret; // If this isn't an absolute path, start with cwd. if (*path != '/') { char *temp = xgetcwd(); splitpath(path, splitpath(temp, &todo)); free(temp); } else splitpath(path, &todo); // Iterate through path components while (todo) { struct string_list *new = llist_pop(&todo), **tail; ssize_t len; if (!try--) { errno = ELOOP; goto error; } // Removable path componenents. if (!strcmp(new->str, ".") || !strcmp(new->str, "..")) { int x = new->str[1]; free(new); if (x) { if (done) free(llist_pop(&done)); len = 0; } else continue; // Is this a symlink? } else len=readlinkat(dirfd, new->str, buf, 4096); if (len>4095) goto error; if (len<1) { int fd; char *s = ".."; // For .. just move dirfd if (len) { // Not a symlink: add to linked list, move dirfd, fail if error if ((exact || todo) && errno != EINVAL) goto error; new->next = done; done = new; if (errno == EINVAL && !todo) break; s = new->str; } fd = openat(dirfd, s, 0); if (fd == -1 && (exact || todo || errno != ENOENT)) goto error; close(dirfd); dirfd = fd; continue; } // If this symlink is to an absolute path, discard existing resolved path buf[len] = 0; if (*buf == '/') { llist_traverse(done, free); done=0; close(dirfd); dirfd = open("/", 0); } free(new); // prepend components of new path. Note symlink to "/" will leave new NULL tail = splitpath(buf, &new); // symlink to "/" will return null and leave tail alone if (new) { *tail = todo; todo = new; } } close(dirfd); // At this point done has the path, in reverse order. Reverse list while // calculating buffer length. try = 2; while (done) { struct string_list *temp = llist_pop(&done);; if (todo) try++; try += strlen(temp->str); temp->next = todo; todo = temp; } // Assemble return buffer ret = xmalloc(try); *ret = '/'; ret [try = 1] = 0; while (todo) { if (try>1) ret[try++] = '/'; try = stpcpy(ret+try, todo->str) - ret; free(llist_pop(&todo)); } return ret; error: close(dirfd); llist_traverse(todo, free); llist_traverse(done, free); return NULL; } void xchdir(char *path) { if (chdir(path)) error_exit("chdir '%s'", path); } void xchroot(char *path) { if (chroot(path)) error_exit("chroot '%s'", path); xchdir("/"); } struct passwd *xgetpwuid(uid_t uid) { struct passwd *pwd = getpwuid(uid); if (!pwd) error_exit("bad uid %ld", (long)uid); return pwd; } struct group *xgetgrgid(gid_t gid) { struct group *group = getgrgid(gid); if (!group) perror_exit("gid %ld", (long)gid); return group; } struct passwd *xgetpwnamid(char *user) { struct passwd *up = getpwnam(user); uid_t uid; if (!up) { char *s = 0; uid = estrtol(user, &s, 10); if (!errno && s && !*s) up = getpwuid(uid); } if (!up) perror_exit("user '%s'", user); return up; } struct group *xgetgrnamid(char *group) { struct group *gr = getgrnam(group); gid_t gid; if (!gr) { char *s = 0; gid = estrtol(group, &s, 10); if (!errno && s && !*s) gr = getgrgid(gid); } if (!gr) perror_exit("group '%s'", group); return gr; } struct passwd *xgetpwnam(char *name) { struct passwd *up = getpwnam(name); if (!up) perror_exit("user '%s'", name); return up; } struct group *xgetgrnam(char *name) { struct group *gr = getgrnam(name); if (!gr) perror_exit("group '%s'", name); return gr; } // setuid() can fail (for example, too many processes belonging to that user), // which opens a security hole if the process continues as the original user. void xsetuser(struct passwd *pwd) { if (initgroups(pwd->pw_name, pwd->pw_gid) || setgid(pwd->pw_uid) || setuid(pwd->pw_uid)) perror_exit("xsetuser '%s'", pwd->pw_name); } // This can return null (meaning file not found). It just won't return null // for memory allocation reasons. char *xreadlink(char *name) { int len, size = 0; char *buf = 0; // Grow by 64 byte chunks until it's big enough. for(;;) { size +=64; buf = xrealloc(buf, size); len = readlink(name, buf, size); if (len<0) { free(buf); return 0; } if (len<size) { buf[len]=0; return buf; } } } char *xreadfile(char *name, char *buf, off_t len) { if (!(buf = readfile(name, buf, len))) perror_exit("Bad '%s'", name); return buf; } int xioctl(int fd, int request, void *data) { int rc; errno = 0; rc = ioctl(fd, request, data); if (rc == -1 && errno) perror_exit("ioctl %x", request); return rc; } // Open a /var/run/NAME.pid file, dying if we can't write it or if it currently // exists and is this executable. void xpidfile(char *name) { char pidfile[256], spid[32]; int i, fd; pid_t pid; sprintf(pidfile, "/var/run/%s.pid", name); // Try three times to open the sucker. for (i=0; i<3; i++) { fd = open(pidfile, O_CREAT|O_EXCL|O_WRONLY, 0644); if (fd != -1) break; // If it already existed, read it. Loop for race condition. fd = open(pidfile, O_RDONLY); if (fd == -1) continue; // Is the old program still there? spid[xread(fd, spid, sizeof(spid)-1)] = 0; close(fd); pid = atoi(spid); if (pid < 1 || (kill(pid, 0) && errno == ESRCH)) unlink(pidfile); // An else with more sanity checking might be nice here. } if (i == 3) error_exit("xpidfile %s", name); xwrite(fd, spid, sprintf(spid, "%ld\n", (long)getpid())); close(fd); } // Copy the rest of in to out and close both files. void xsendfile(int in, int out) { long len; if (in<0) return; for (;;) { len = xread(in, libbuf, sizeof(libbuf)); if (len<1) break; xwrite(out, libbuf, len); } } // parse fractional seconds with optional s/m/h/d suffix long xparsetime(char *arg, long units, long *fraction) { double d; long l; if (CFG_TOYBOX_FLOAT) d = strtod(arg, &arg); else l = strtoul(arg, &arg, 10); // Parse suffix if (*arg) { int ismhd[]={1,60,3600,86400}, i = stridx("smhd", *arg); if (i == -1) error_exit("Unknown suffix '%c'", *arg); if (CFG_TOYBOX_FLOAT) d *= ismhd[i]; else l *= ismhd[i]; } if (CFG_TOYBOX_FLOAT) { l = (long)d; if (fraction) *fraction = units*(d-l); } else if (fraction) *fraction = 0; return l; } // Compile a regular expression into a regex_t void xregcomp(regex_t *preg, char *regex, int cflags) { int rc = regcomp(preg, regex, cflags); if (rc) { regerror(rc, preg, libbuf, sizeof(libbuf)); error_exit("xregcomp: %s", libbuf); } } char *xtzset(char *new) { char *old = getenv("TZ"); if (old) old = xstrdup(old); if (new ? setenv("TZ", new, 1) : unsetenv("TZ")) perror_exit("setenv"); tzset(); return old; } // Set a signal handler void xsignal(int signal, void *handler) { struct sigaction *sa = (void *)libbuf; memset(sa, 0, sizeof(struct sigaction)); sa->sa_handler = handler; if (sigaction(signal, sa, 0)) perror_exit("xsignal %d", signal); }