/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkColor.h" #include "SkColorPriv.h" #include "SkTaskGroup.h" #include "SkXfermode.h" #include <functional> struct Results { int diffs, diffs_0x00, diffs_0xff, diffs_by_1; }; static bool acceptable(const Results& r) { #if 0 SkDebugf("%d diffs, %d at 0x00, %d at 0xff, %d off by 1, all out of 65536\n", r.diffs, r.diffs_0x00, r.diffs_0xff, r.diffs_by_1); #endif return r.diffs_by_1 == r.diffs // never off by more than 1 && r.diffs_0x00 == 0 // transparent must stay transparent && r.diffs_0xff == 0; // opaque must stay opaque } template <typename Fn> static Results test(Fn&& multiply) { Results r = { 0,0,0,0 }; for (int x = 0; x < 256; x++) { for (int y = 0; y < 256; y++) { int p = multiply(x, y), ideal = (x*y+127)/255; if (p != ideal) { r.diffs++; if (x == 0x00 || y == 0x00) { r.diffs_0x00++; } if (x == 0xff || y == 0xff) { r.diffs_0xff++; } if (SkTAbs(ideal - p) == 1) { r.diffs_by_1++; } } }} return r; } DEF_TEST(Blend_byte_multiply, r) { // These are all temptingly close but fundamentally broken. int (*broken[])(int, int) = { [](int x, int y) { return (x*y)>>8; }, [](int x, int y) { return (x*y+128)>>8; }, [](int x, int y) { y += y>>7; return (x*y)>>8; }, }; for (auto multiply : broken) { REPORTER_ASSERT(r, !acceptable(test(multiply))); } // These are fine to use, but not perfect. int (*fine[])(int, int) = { [](int x, int y) { return (x*y+x)>>8; }, [](int x, int y) { return (x*y+y)>>8; }, [](int x, int y) { return (x*y+255)>>8; }, [](int x, int y) { y += y>>7; return (x*y+128)>>8; }, }; for (auto multiply : fine) { REPORTER_ASSERT(r, acceptable(test(multiply))); } // These are pefect. int (*perfect[])(int, int) = { [](int x, int y) { return (x*y+127)/255; }, // Duh. [](int x, int y) { int p = (x*y+128); return (p+(p>>8))>>8; }, [](int x, int y) { return ((x*y+128)*257)>>16; }, }; for (auto multiply : perfect) { REPORTER_ASSERT(r, test(multiply).diffs == 0); } } DEF_TEST(Blend_premul_begets_premul, r) { // This test is quite slow, even if you have enough cores to run each mode in parallel. if (!r->allowExtendedTest()) { return; } // No matter what xfermode we use, premul inputs should create premul outputs. auto test_mode = [&](int m) { SkXfermode::Mode mode = (SkXfermode::Mode)m; if (mode == SkXfermode::kSrcOver_Mode) { return; // TODO: can't create a SrcOver xfermode. } SkAutoTUnref<SkXfermode> xfermode(SkXfermode::Create(mode)); SkASSERT(xfermode); // We'll test all alphas and legal color values, assuming all colors work the same. // This is not true for non-separable blend modes, but this test still can't hurt. for (int sa = 0; sa <= 255; sa++) { for (int da = 0; da <= 255; da++) { for (int s = 0; s <= sa; s++) { for (int d = 0; d <= da; d++) { SkPMColor src = SkPackARGB32(sa, s, s, s), dst = SkPackARGB32(da, d, d, d); xfermode->xfer32(&dst, &src, 1, nullptr); // To keep it simple, no AA. if (!SkPMColorValid(dst)) { ERRORF(r, "%08x is not premul using %s", dst, SkXfermode::ModeName(mode)); } }}}} }; // Parallelism helps speed things up on my desktop from ~725s to ~50s. SkTaskGroup().batch(SkXfermode::kLastMode, test_mode); }