/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #if defined(SK_BUILD_FOR_WIN32) #undef GetGlyphIndices #include "SkDWrite.h" #include "SkDWriteGeometrySink.h" #include "SkEndian.h" #include "SkGlyph.h" #include "SkHRESULT.h" #include "SkMaskGamma.h" #include "SkMatrix22.h" #include "SkMutex.h" #include "SkOTTable_EBLC.h" #include "SkOTTable_EBSC.h" #include "SkOTTable_gasp.h" #include "SkOTTable_maxp.h" #include "SkPath.h" #include "SkScalerContext.h" #include "SkScalerContext_win_dw.h" #include "SkSharedMutex.h" #include "SkTScopedComPtr.h" #include "SkTypeface_win_dw.h" #include <dwrite.h> #if SK_HAS_DWRITE_1_H # include <dwrite_1.h> #endif /* Note: * In versions 8 and 8.1 of Windows, some calls in DWrite are not thread safe. * The DWriteFactoryMutex protects the calls that are problematic. */ static SkSharedMutex DWriteFactoryMutex; typedef SkAutoTExclusive<SkSharedMutex> Exclusive; typedef SkAutoSharedMutexShared Shared; static bool isLCD(const SkScalerContext::Rec& rec) { return SkMask::kLCD16_Format == rec.fMaskFormat; } static bool is_hinted_without_gasp(DWriteFontTypeface* typeface) { Exclusive l(DWriteFactoryMutex); AutoTDWriteTable<SkOTTableMaximumProfile> maxp(typeface->fDWriteFontFace.get()); if (!maxp.fExists) { return false; } if (maxp.fSize < sizeof(SkOTTableMaximumProfile::Version::TT)) { return false; } if (maxp->version.version != SkOTTableMaximumProfile::Version::TT::VERSION) { return false; } if (0 == maxp->version.tt.maxSizeOfInstructions) { // No hints. return false; } AutoTDWriteTable<SkOTTableGridAndScanProcedure> gasp(typeface->fDWriteFontFace.get()); return !gasp.fExists; } /** A PPEMRange is inclusive, [min, max]. */ struct PPEMRange { int min; int max; }; /** If the rendering mode for the specified 'size' is gridfit, then place * the gridfit range into 'range'. Otherwise, leave 'range' alone. */ static void expand_range_if_gridfit_only(DWriteFontTypeface* typeface, int size, PPEMRange* range) { AutoTDWriteTable<SkOTTableGridAndScanProcedure> gasp(typeface->fDWriteFontFace.get()); if (!gasp.fExists) { return; } if (gasp.fSize < sizeof(SkOTTableGridAndScanProcedure)) { return; } if (gasp->version != SkOTTableGridAndScanProcedure::version0 && gasp->version != SkOTTableGridAndScanProcedure::version1) { return; } uint16_t numRanges = SkEndianSwap16(gasp->numRanges); if (numRanges > 1024 || gasp.fSize < sizeof(SkOTTableGridAndScanProcedure) + sizeof(SkOTTableGridAndScanProcedure::GaspRange) * numRanges) { return; } const SkOTTableGridAndScanProcedure::GaspRange* rangeTable = SkTAfter<const SkOTTableGridAndScanProcedure::GaspRange>(gasp.get()); int minPPEM = -1; for (uint16_t i = 0; i < numRanges; ++i, ++rangeTable) { int maxPPEM = SkEndianSwap16(rangeTable->maxPPEM); // Test that the size is in range and the range is gridfit only. if (minPPEM < size && size <= maxPPEM && rangeTable->flags.raw.value == SkOTTableGridAndScanProcedure::GaspRange::behavior::Raw::GridfitMask) { range->min = minPPEM + 1; range->max = maxPPEM; return; } minPPEM = maxPPEM; } } static bool has_bitmap_strike(DWriteFontTypeface* typeface, PPEMRange range) { Exclusive l(DWriteFactoryMutex); { AutoTDWriteTable<SkOTTableEmbeddedBitmapLocation> eblc(typeface->fDWriteFontFace.get()); if (!eblc.fExists) { return false; } if (eblc.fSize < sizeof(SkOTTableEmbeddedBitmapLocation)) { return false; } if (eblc->version != SkOTTableEmbeddedBitmapLocation::version_initial) { return false; } uint32_t numSizes = SkEndianSwap32(eblc->numSizes); if (numSizes > 1024 || eblc.fSize < sizeof(SkOTTableEmbeddedBitmapLocation) + sizeof(SkOTTableEmbeddedBitmapLocation::BitmapSizeTable) * numSizes) { return false; } const SkOTTableEmbeddedBitmapLocation::BitmapSizeTable* sizeTable = SkTAfter<const SkOTTableEmbeddedBitmapLocation::BitmapSizeTable>(eblc.get()); for (uint32_t i = 0; i < numSizes; ++i, ++sizeTable) { if (sizeTable->ppemX == sizeTable->ppemY && range.min <= sizeTable->ppemX && sizeTable->ppemX <= range.max) { // TODO: determine if we should dig through IndexSubTableArray/IndexSubTable // to determine the actual number of glyphs with bitmaps. // TODO: Ensure that the bitmaps actually cover a significant portion of the strike. // TODO: Ensure that the bitmaps are bi-level? if (sizeTable->endGlyphIndex >= sizeTable->startGlyphIndex + 3) { return true; } } } } { AutoTDWriteTable<SkOTTableEmbeddedBitmapScaling> ebsc(typeface->fDWriteFontFace.get()); if (!ebsc.fExists) { return false; } if (ebsc.fSize < sizeof(SkOTTableEmbeddedBitmapScaling)) { return false; } if (ebsc->version != SkOTTableEmbeddedBitmapScaling::version_initial) { return false; } uint32_t numSizes = SkEndianSwap32(ebsc->numSizes); if (numSizes > 1024 || ebsc.fSize < sizeof(SkOTTableEmbeddedBitmapScaling) + sizeof(SkOTTableEmbeddedBitmapScaling::BitmapScaleTable) * numSizes) { return false; } const SkOTTableEmbeddedBitmapScaling::BitmapScaleTable* scaleTable = SkTAfter<const SkOTTableEmbeddedBitmapScaling::BitmapScaleTable>(ebsc.get()); for (uint32_t i = 0; i < numSizes; ++i, ++scaleTable) { if (scaleTable->ppemX == scaleTable->ppemY && range.min <= scaleTable->ppemX && scaleTable->ppemX <= range.max) { // EBSC tables are normally only found in bitmap only fonts. return true; } } } return false; } static bool both_zero(SkScalar a, SkScalar b) { return 0 == a && 0 == b; } // returns false if there is any non-90-rotation or skew static bool is_axis_aligned(const SkScalerContext::Rec& rec) { return 0 == rec.fPreSkewX && (both_zero(rec.fPost2x2[0][1], rec.fPost2x2[1][0]) || both_zero(rec.fPost2x2[0][0], rec.fPost2x2[1][1])); } SkScalerContext_DW::SkScalerContext_DW(DWriteFontTypeface* typeface, const SkDescriptor* desc) : SkScalerContext(typeface, desc) , fTypeface(SkRef(typeface)) , fGlyphCount(-1) { // In general, all glyphs should use CLEARTYPE_NATURAL_SYMMETRIC // except when bi-level rendering is requested or there are embedded // bi-level bitmaps (and the embedded bitmap flag is set and no rotation). // // DirectWrite's IDWriteFontFace::GetRecommendedRenderingMode does not do // this. As a result, determine the actual size of the text and then see if // there are any embedded bi-level bitmaps of that size. If there are, then // force bitmaps by requesting bi-level rendering. // // FreeType allows for separate ppemX and ppemY, but DirectWrite assumes // square pixels and only uses ppemY. Therefore the transform must track any // non-uniform x-scale. // // Also, rotated glyphs should have the same absolute advance widths as // horizontal glyphs and the subpixel flag should not affect glyph shapes. SkVector scale; SkMatrix GsA; fRec.computeMatrices(SkScalerContextRec::kVertical_PreMatrixScale, &scale, &fSkXform, &GsA, &fG_inv); fXform.m11 = SkScalarToFloat(fSkXform.getScaleX()); fXform.m12 = SkScalarToFloat(fSkXform.getSkewY()); fXform.m21 = SkScalarToFloat(fSkXform.getSkewX()); fXform.m22 = SkScalarToFloat(fSkXform.getScaleY()); fXform.dx = 0; fXform.dy = 0; fGsA.m11 = SkScalarToFloat(GsA.get(SkMatrix::kMScaleX)); fGsA.m12 = SkScalarToFloat(GsA.get(SkMatrix::kMSkewY)); // This should be ~0. fGsA.m21 = SkScalarToFloat(GsA.get(SkMatrix::kMSkewX)); fGsA.m22 = SkScalarToFloat(GsA.get(SkMatrix::kMScaleY)); fGsA.dx = 0; fGsA.dy = 0; // realTextSize is the actual device size we want (as opposed to the size the user requested). // gdiTextSize is the size we request when GDI compatible. // If the scale is negative, this means the matrix will do the flip anyway. const SkScalar realTextSize = scale.fY; // Due to floating point math, the lower bits are suspect. Round carefully. SkScalar gdiTextSize = SkScalarRoundToScalar(realTextSize * 64.0f) / 64.0f; if (gdiTextSize == 0) { gdiTextSize = SK_Scalar1; } bool bitmapRequested = SkToBool(fRec.fFlags & SkScalerContext::kEmbeddedBitmapText_Flag); bool treatLikeBitmap = false; bool axisAlignedBitmap = false; if (bitmapRequested) { // When embedded bitmaps are requested, treat the entire range like // a bitmap strike if the range is gridfit only and contains a bitmap. int bitmapPPEM = SkScalarTruncToInt(gdiTextSize); PPEMRange range = { bitmapPPEM, bitmapPPEM }; expand_range_if_gridfit_only(typeface, bitmapPPEM, &range); treatLikeBitmap = has_bitmap_strike(typeface, range); axisAlignedBitmap = is_axis_aligned(fRec); } // If the user requested aliased, do so with aliased compatible metrics. if (SkMask::kBW_Format == fRec.fMaskFormat) { fTextSizeRender = gdiTextSize; fRenderingMode = DWRITE_RENDERING_MODE_ALIASED; fTextureType = DWRITE_TEXTURE_ALIASED_1x1; fTextSizeMeasure = gdiTextSize; fMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC; // If we can use a bitmap, use gdi classic rendering and measurement. // This will not always provide a bitmap, but matches expected behavior. } else if (treatLikeBitmap && axisAlignedBitmap) { fTextSizeRender = gdiTextSize; fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_GDI_CLASSIC; fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1; fTextSizeMeasure = gdiTextSize; fMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC; // If rotated but the horizontal text could have used a bitmap, // render high quality rotated glyphs but measure using bitmap metrics. } else if (treatLikeBitmap) { fTextSizeRender = gdiTextSize; fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL_SYMMETRIC; fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1; fTextSizeMeasure = gdiTextSize; fMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC; // Fonts that have hints but no gasp table get non-symmetric rendering. // Usually such fonts have low quality hints which were never tested // with anything but GDI ClearType classic. Such fonts often rely on // drop out control in the y direction in order to be legible. } else if (is_hinted_without_gasp(typeface)) { fTextSizeRender = gdiTextSize; fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL; fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1; fTextSizeMeasure = realTextSize; fMeasuringMode = DWRITE_MEASURING_MODE_NATURAL; // The normal case is to use natural symmetric rendering and linear metrics. } else { fTextSizeRender = realTextSize; fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL_SYMMETRIC; fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1; fTextSizeMeasure = realTextSize; fMeasuringMode = DWRITE_MEASURING_MODE_NATURAL; } if (this->isSubpixel()) { fTextSizeMeasure = realTextSize; fMeasuringMode = DWRITE_MEASURING_MODE_NATURAL; } } SkScalerContext_DW::~SkScalerContext_DW() { } unsigned SkScalerContext_DW::generateGlyphCount() { if (fGlyphCount < 0) { fGlyphCount = fTypeface->fDWriteFontFace->GetGlyphCount(); } return fGlyphCount; } uint16_t SkScalerContext_DW::generateCharToGlyph(SkUnichar uni) { uint16_t index = 0; fTypeface->fDWriteFontFace->GetGlyphIndices(reinterpret_cast<UINT32*>(&uni), 1, &index); return index; } void SkScalerContext_DW::generateAdvance(SkGlyph* glyph) { //Delta is the difference between the right/left side bearing metric //and where the right/left side bearing ends up after hinting. //DirectWrite does not provide this information. glyph->fRsbDelta = 0; glyph->fLsbDelta = 0; glyph->fAdvanceX = 0; glyph->fAdvanceY = 0; uint16_t glyphId = glyph->getGlyphID(); DWRITE_GLYPH_METRICS gm; if (DWRITE_MEASURING_MODE_GDI_CLASSIC == fMeasuringMode || DWRITE_MEASURING_MODE_GDI_NATURAL == fMeasuringMode) { Exclusive l(DWriteFactoryMutex); HRVM(fTypeface->fDWriteFontFace->GetGdiCompatibleGlyphMetrics( fTextSizeMeasure, 1.0f, // pixelsPerDip &fGsA, DWRITE_MEASURING_MODE_GDI_NATURAL == fMeasuringMode, &glyphId, 1, &gm), "Could not get gdi compatible glyph metrics."); } else { Exclusive l(DWriteFactoryMutex); HRVM(fTypeface->fDWriteFontFace->GetDesignGlyphMetrics(&glyphId, 1, &gm), "Could not get design metrics."); } DWRITE_FONT_METRICS dwfm; { Shared l(DWriteFactoryMutex); fTypeface->fDWriteFontFace->GetMetrics(&dwfm); } SkScalar advanceX = SkScalarMulDiv(fTextSizeMeasure, SkIntToScalar(gm.advanceWidth), SkIntToScalar(dwfm.designUnitsPerEm)); SkVector vecs[1] = { { advanceX, 0 } }; if (DWRITE_MEASURING_MODE_GDI_CLASSIC == fMeasuringMode || DWRITE_MEASURING_MODE_GDI_NATURAL == fMeasuringMode) { // DirectWrite produced 'compatible' metrics, but while close, // the end result is not always an integer as it would be with GDI. vecs[0].fX = SkScalarRoundToScalar(advanceX); fG_inv.mapVectors(vecs, SK_ARRAY_COUNT(vecs)); } else { fSkXform.mapVectors(vecs, SK_ARRAY_COUNT(vecs)); } glyph->fAdvanceX = SkScalarToFixed(vecs[0].fX); glyph->fAdvanceY = SkScalarToFixed(vecs[0].fY); } HRESULT SkScalerContext_DW::getBoundingBox(SkGlyph* glyph, DWRITE_RENDERING_MODE renderingMode, DWRITE_TEXTURE_TYPE textureType, RECT* bbox) { //Measure raster size. fXform.dx = SkFixedToFloat(glyph->getSubXFixed()); fXform.dy = SkFixedToFloat(glyph->getSubYFixed()); FLOAT advance = 0; UINT16 glyphId = glyph->getGlyphID(); DWRITE_GLYPH_OFFSET offset; offset.advanceOffset = 0.0f; offset.ascenderOffset = 0.0f; DWRITE_GLYPH_RUN run; run.glyphCount = 1; run.glyphAdvances = &advance; run.fontFace = fTypeface->fDWriteFontFace.get(); run.fontEmSize = SkScalarToFloat(fTextSizeRender); run.bidiLevel = 0; run.glyphIndices = &glyphId; run.isSideways = FALSE; run.glyphOffsets = &offset; SkTScopedComPtr<IDWriteGlyphRunAnalysis> glyphRunAnalysis; { Exclusive l(DWriteFactoryMutex); HRM(fTypeface->fFactory->CreateGlyphRunAnalysis( &run, 1.0f, // pixelsPerDip, &fXform, renderingMode, fMeasuringMode, 0.0f, // baselineOriginX, 0.0f, // baselineOriginY, &glyphRunAnalysis), "Could not create glyph run analysis."); } { Shared l(DWriteFactoryMutex); HRM(glyphRunAnalysis->GetAlphaTextureBounds(textureType, bbox), "Could not get texture bounds."); } return S_OK; } /** GetAlphaTextureBounds succeeds but sometimes returns empty bounds like * { 0x80000000, 0x80000000, 0x80000000, 0x80000000 } * for small, but not quite zero, sized glyphs. * Only set as non-empty if the returned bounds are non-empty. */ static bool glyph_check_and_set_bounds(SkGlyph* glyph, const RECT& bbox) { if (bbox.left >= bbox.right || bbox.top >= bbox.bottom) { return false; } glyph->fWidth = SkToU16(bbox.right - bbox.left); glyph->fHeight = SkToU16(bbox.bottom - bbox.top); glyph->fLeft = SkToS16(bbox.left); glyph->fTop = SkToS16(bbox.top); return true; } void SkScalerContext_DW::generateMetrics(SkGlyph* glyph) { glyph->fWidth = 0; glyph->fHeight = 0; glyph->fLeft = 0; glyph->fTop = 0; this->generateAdvance(glyph); RECT bbox; HRVM(this->getBoundingBox(glyph, fRenderingMode, fTextureType, &bbox), "Requested bounding box could not be determined."); if (glyph_check_and_set_bounds(glyph, bbox)) { return; } // GetAlphaTextureBounds succeeds but returns an empty RECT if there are no // glyphs of the specified texture type. When this happens, try with the // alternate texture type. if (DWRITE_TEXTURE_CLEARTYPE_3x1 == fTextureType) { HRVM(this->getBoundingBox(glyph, DWRITE_RENDERING_MODE_ALIASED, DWRITE_TEXTURE_ALIASED_1x1, &bbox), "Fallback bounding box could not be determined."); if (glyph_check_and_set_bounds(glyph, bbox)) { glyph->fForceBW = 1; } } // TODO: handle the case where a request for DWRITE_TEXTURE_ALIASED_1x1 // fails, and try DWRITE_TEXTURE_CLEARTYPE_3x1. } void SkScalerContext_DW::generateFontMetrics(SkPaint::FontMetrics* metrics) { if (nullptr == metrics) { return; } sk_bzero(metrics, sizeof(*metrics)); DWRITE_FONT_METRICS dwfm; if (DWRITE_MEASURING_MODE_GDI_CLASSIC == fMeasuringMode || DWRITE_MEASURING_MODE_GDI_NATURAL == fMeasuringMode) { fTypeface->fDWriteFontFace->GetGdiCompatibleMetrics( fTextSizeRender, 1.0f, // pixelsPerDip &fXform, &dwfm); } else { fTypeface->fDWriteFontFace->GetMetrics(&dwfm); } SkScalar upem = SkIntToScalar(dwfm.designUnitsPerEm); metrics->fAscent = -fTextSizeRender * SkIntToScalar(dwfm.ascent) / upem; metrics->fDescent = fTextSizeRender * SkIntToScalar(dwfm.descent) / upem; metrics->fLeading = fTextSizeRender * SkIntToScalar(dwfm.lineGap) / upem; metrics->fXHeight = fTextSizeRender * SkIntToScalar(dwfm.xHeight) / upem; metrics->fUnderlineThickness = fTextSizeRender * SkIntToScalar(dwfm.underlineThickness) / upem; metrics->fUnderlinePosition = -(fTextSizeRender * SkIntToScalar(dwfm.underlinePosition) / upem); metrics->fFlags |= SkPaint::FontMetrics::kUnderlineThinknessIsValid_Flag; metrics->fFlags |= SkPaint::FontMetrics::kUnderlinePositionIsValid_Flag; #if SK_HAS_DWRITE_1_H if (fTypeface->fDWriteFontFace1.get()) { DWRITE_FONT_METRICS1 dwfm1; fTypeface->fDWriteFontFace1->GetMetrics(&dwfm1); metrics->fTop = -fTextSizeRender * SkIntToScalar(dwfm1.glyphBoxTop) / upem; metrics->fBottom = -fTextSizeRender * SkIntToScalar(dwfm1.glyphBoxBottom) / upem; metrics->fXMin = fTextSizeRender * SkIntToScalar(dwfm1.glyphBoxLeft) / upem; metrics->fXMax = fTextSizeRender * SkIntToScalar(dwfm1.glyphBoxRight) / upem; metrics->fMaxCharWidth = metrics->fXMax - metrics->fXMin; return; } #else # pragma message("No dwrite_1.h is available, font metrics may be affected.") #endif AutoTDWriteTable<SkOTTableHead> head(fTypeface->fDWriteFontFace.get()); if (head.fExists && head.fSize >= sizeof(SkOTTableHead) && head->version == SkOTTableHead::version1) { metrics->fTop = -fTextSizeRender * (int16_t)SkEndian_SwapBE16(head->yMax) / upem; metrics->fBottom = -fTextSizeRender * (int16_t)SkEndian_SwapBE16(head->yMin) / upem; metrics->fXMin = fTextSizeRender * (int16_t)SkEndian_SwapBE16(head->xMin) / upem; metrics->fXMax = fTextSizeRender * (int16_t)SkEndian_SwapBE16(head->xMax) / upem; metrics->fMaxCharWidth = metrics->fXMax - metrics->fXMin; return; } metrics->fTop = metrics->fAscent; metrics->fBottom = metrics->fDescent; } /////////////////////////////////////////////////////////////////////////////// #include "SkColorPriv.h" static void bilevel_to_bw(const uint8_t* SK_RESTRICT src, const SkGlyph& glyph) { const int width = glyph.fWidth; const size_t dstRB = (width + 7) >> 3; uint8_t* SK_RESTRICT dst = static_cast<uint8_t*>(glyph.fImage); int byteCount = width >> 3; int bitCount = width & 7; for (int y = 0; y < glyph.fHeight; ++y) { if (byteCount > 0) { for (int i = 0; i < byteCount; ++i) { unsigned byte = 0; byte |= src[0] & (1 << 7); byte |= src[1] & (1 << 6); byte |= src[2] & (1 << 5); byte |= src[3] & (1 << 4); byte |= src[4] & (1 << 3); byte |= src[5] & (1 << 2); byte |= src[6] & (1 << 1); byte |= src[7] & (1 << 0); dst[i] = byte; src += 8; } } if (bitCount > 0) { unsigned byte = 0; unsigned mask = 0x80; for (int i = 0; i < bitCount; i++) { byte |= (src[i]) & mask; mask >>= 1; } dst[byteCount] = byte; } src += bitCount; dst += dstRB; } } template<bool APPLY_PREBLEND> static void rgb_to_a8(const uint8_t* SK_RESTRICT src, const SkGlyph& glyph, const uint8_t* table8) { const size_t dstRB = glyph.rowBytes(); const U16CPU width = glyph.fWidth; uint8_t* SK_RESTRICT dst = static_cast<uint8_t*>(glyph.fImage); for (U16CPU y = 0; y < glyph.fHeight; y++) { for (U16CPU i = 0; i < width; i++) { U8CPU r = *(src++); U8CPU g = *(src++); U8CPU b = *(src++); dst[i] = sk_apply_lut_if<APPLY_PREBLEND>((r + g + b) / 3, table8); } dst = (uint8_t*)((char*)dst + dstRB); } } template<bool APPLY_PREBLEND, bool RGB> static void rgb_to_lcd16(const uint8_t* SK_RESTRICT src, const SkGlyph& glyph, const uint8_t* tableR, const uint8_t* tableG, const uint8_t* tableB) { const size_t dstRB = glyph.rowBytes(); const U16CPU width = glyph.fWidth; uint16_t* SK_RESTRICT dst = static_cast<uint16_t*>(glyph.fImage); for (U16CPU y = 0; y < glyph.fHeight; y++) { for (U16CPU i = 0; i < width; i++) { U8CPU r, g, b; if (RGB) { r = sk_apply_lut_if<APPLY_PREBLEND>(*(src++), tableR); g = sk_apply_lut_if<APPLY_PREBLEND>(*(src++), tableG); b = sk_apply_lut_if<APPLY_PREBLEND>(*(src++), tableB); } else { b = sk_apply_lut_if<APPLY_PREBLEND>(*(src++), tableB); g = sk_apply_lut_if<APPLY_PREBLEND>(*(src++), tableG); r = sk_apply_lut_if<APPLY_PREBLEND>(*(src++), tableR); } dst[i] = SkPack888ToRGB16(r, g, b); } dst = (uint16_t*)((char*)dst + dstRB); } } const void* SkScalerContext_DW::drawDWMask(const SkGlyph& glyph, DWRITE_RENDERING_MODE renderingMode, DWRITE_TEXTURE_TYPE textureType) { int sizeNeeded = glyph.fWidth * glyph.fHeight; if (DWRITE_RENDERING_MODE_ALIASED != renderingMode) { sizeNeeded *= 3; } if (sizeNeeded > fBits.count()) { fBits.setCount(sizeNeeded); } // erase memset(fBits.begin(), 0, sizeNeeded); fXform.dx = SkFixedToFloat(glyph.getSubXFixed()); fXform.dy = SkFixedToFloat(glyph.getSubYFixed()); FLOAT advance = 0.0f; UINT16 index = glyph.getGlyphID(); DWRITE_GLYPH_OFFSET offset; offset.advanceOffset = 0.0f; offset.ascenderOffset = 0.0f; DWRITE_GLYPH_RUN run; run.glyphCount = 1; run.glyphAdvances = &advance; run.fontFace = fTypeface->fDWriteFontFace.get(); run.fontEmSize = SkScalarToFloat(fTextSizeRender); run.bidiLevel = 0; run.glyphIndices = &index; run.isSideways = FALSE; run.glyphOffsets = &offset; { SkTScopedComPtr<IDWriteGlyphRunAnalysis> glyphRunAnalysis; { Exclusive l(DWriteFactoryMutex); HRNM(fTypeface->fFactory->CreateGlyphRunAnalysis(&run, 1.0f, // pixelsPerDip, &fXform, renderingMode, fMeasuringMode, 0.0f, // baselineOriginX, 0.0f, // baselineOriginY, &glyphRunAnalysis), "Could not create glyph run analysis."); } //NOTE: this assumes that the glyph has already been measured //with an exact same glyph run analysis. RECT bbox; bbox.left = glyph.fLeft; bbox.top = glyph.fTop; bbox.right = glyph.fLeft + glyph.fWidth; bbox.bottom = glyph.fTop + glyph.fHeight; { Shared l(DWriteFactoryMutex); HRNM(glyphRunAnalysis->CreateAlphaTexture(textureType, &bbox, fBits.begin(), sizeNeeded), "Could not draw mask."); } } return fBits.begin(); } void SkScalerContext_DW::generateImage(const SkGlyph& glyph) { //Create the mask. DWRITE_RENDERING_MODE renderingMode = fRenderingMode; DWRITE_TEXTURE_TYPE textureType = fTextureType; if (glyph.fForceBW) { renderingMode = DWRITE_RENDERING_MODE_ALIASED; textureType = DWRITE_TEXTURE_ALIASED_1x1; } const void* bits = this->drawDWMask(glyph, renderingMode, textureType); if (!bits) { sk_bzero(glyph.fImage, glyph.computeImageSize()); return; } //Copy the mask into the glyph. const uint8_t* src = (const uint8_t*)bits; if (DWRITE_RENDERING_MODE_ALIASED == renderingMode) { bilevel_to_bw(src, glyph); const_cast<SkGlyph&>(glyph).fMaskFormat = SkMask::kBW_Format; } else if (!isLCD(fRec)) { if (fPreBlend.isApplicable()) { rgb_to_a8<true>(src, glyph, fPreBlend.fG); } else { rgb_to_a8<false>(src, glyph, fPreBlend.fG); } } else { SkASSERT(SkMask::kLCD16_Format == glyph.fMaskFormat); if (fPreBlend.isApplicable()) { if (fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag) { rgb_to_lcd16<true, false>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { rgb_to_lcd16<true, true>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } } else { if (fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag) { rgb_to_lcd16<false, false>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { rgb_to_lcd16<false, true>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } } } } void SkScalerContext_DW::generatePath(const SkGlyph& glyph, SkPath* path) { SkASSERT(path); path->reset(); SkTScopedComPtr<IDWriteGeometrySink> geometryToPath; HRVM(SkDWriteGeometrySink::Create(path, &geometryToPath), "Could not create geometry to path converter."); uint16_t glyphId = glyph.getGlyphID(); { Exclusive l(DWriteFactoryMutex); //TODO: convert to<->from DIUs? This would make a difference if hinting. //It may not be needed, it appears that DirectWrite only hints at em size. HRVM(fTypeface->fDWriteFontFace->GetGlyphRunOutline(SkScalarToFloat(fTextSizeRender), &glyphId, nullptr, //advances nullptr, //offsets 1, //num glyphs FALSE, //sideways FALSE, //rtl geometryToPath.get()), "Could not create glyph outline."); } path->transform(fSkXform); } #endif//defined(SK_BUILD_FOR_WIN32)