/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef Sk4pxXfermode_DEFINED #define Sk4pxXfermode_DEFINED #include "Sk4px.h" #include "SkMSAN.h" #include "SkNx.h" #include "SkXfermode_proccoeff.h" namespace { // Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point. #define XFERMODE(Xfermode) \ struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \ inline Sk4px Xfermode::operator()(const Sk4px& d, const Sk4px& s) const XFERMODE(Clear) { return Sk4px::DupPMColor(0); } XFERMODE(Src) { return s; } XFERMODE(Dst) { return d; } XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); } XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); } XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); } XFERMODE(DstIn) { return SrcIn ()(s,d); } XFERMODE(DstOut) { return SrcOut ()(s,d); } XFERMODE(DstOver) { return SrcOver()(s,d); } // [ S * Da + (1 - Sa) * D] XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); } XFERMODE(DstATop) { return SrcATop()(s,d); } //[ S * (1 - Da) + (1 - Sa) * D ] XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); } // [S + D ] XFERMODE(Plus) { return s.saturatedAdd(d); } // [S * D ] XFERMODE(Modulate) { return s.approxMulDiv255(d); } // [S + D - S * D] XFERMODE(Screen) { // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap. return s + d.approxMulDiv255(s.inv()); } XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); } // [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).) XFERMODE(Difference) { auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255(); // There's no chance of underflow, and if we subtract m before adding s+d, no overflow. return (s - m) + (d - m.zeroAlphas()); } // [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ] XFERMODE(Exclusion) { auto p = s.approxMulDiv255(d); // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow. return (s - p) + (d - p.zeroAlphas()); } // We take care to use exact math for these next few modes where alphas // and colors are calculated using significantly different math. We need // to preserve premul invariants, and exact math makes this easier. // // TODO: Some of these implementations might be able to be sped up a bit // while maintaining exact math, but let's follow up with that. XFERMODE(HardLight) { auto sa = s.alphas(), da = d.alphas(); auto srcover = s + (d * sa.inv()).div255(); auto isLite = ((sa-s) < s).widenLoHi(); auto lite = sa*da - ((da-d)*(sa-s) << 1), dark = s*d << 1, both = s*da.inv() + d*sa.inv(); auto alphas = srcover; auto colors = (both + isLite.thenElse(lite, dark)).div255(); return alphas.zeroColors() + colors.zeroAlphas(); } XFERMODE(Overlay) { return HardLight()(s,d); } XFERMODE(Darken) { auto sa = s.alphas(), da = d.alphas(); auto sda = (s*da).div255(), dsa = (d*sa).div255(); auto srcover = s + (d * sa.inv()).div255(), dstover = d + (s * da.inv()).div255(); auto alphas = srcover, colors = (sda < dsa).thenElse(srcover, dstover); return alphas.zeroColors() + colors.zeroAlphas(); } XFERMODE(Lighten) { auto sa = s.alphas(), da = d.alphas(); auto sda = (s*da).div255(), dsa = (d*sa).div255(); auto srcover = s + (d * sa.inv()).div255(), dstover = d + (s * da.inv()).div255(); auto alphas = srcover, colors = (dsa < sda).thenElse(srcover, dstover); return alphas.zeroColors() + colors.zeroAlphas(); } #undef XFERMODE // Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time. #define XFERMODE(Xfermode) \ struct Xfermode { Sk4f operator()(const Sk4f&, const Sk4f&) const; }; \ inline Sk4f Xfermode::operator()(const Sk4f& d, const Sk4f& s) const static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) { static_assert(SK_A32_SHIFT == 24, ""); return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0); } static inline Sk4f alphas(const Sk4f& f) { return f[SK_A32_SHIFT/8]; } XFERMODE(ColorDodge) { auto sa = alphas(s), da = alphas(d), isa = Sk4f(1)-sa, ida = Sk4f(1)-da; auto srcover = s + d*isa, dstover = d + s*ida, otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa; // Order matters here, preferring d==0 over s==sa. auto colors = (d == Sk4f(0)).thenElse(dstover, (s == sa).thenElse(srcover, otherwise)); return a_rgb(srcover, colors); } XFERMODE(ColorBurn) { auto sa = alphas(s), da = alphas(d), isa = Sk4f(1)-sa, ida = Sk4f(1)-da; auto srcover = s + d*isa, dstover = d + s*ida, otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa; // Order matters here, preferring d==da over s==0. auto colors = (d == da).thenElse(dstover, (s == Sk4f(0)).thenElse(srcover, otherwise)); return a_rgb(srcover, colors); } XFERMODE(SoftLight) { auto sa = alphas(s), da = alphas(d), isa = Sk4f(1)-sa, ida = Sk4f(1)-da; // Some common terms. auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)), s2 = Sk4f(2)*s, m4 = Sk4f(4)*m; // The logic forks three ways: // 1. dark src? // 2. light src, dark dst? // 3. light src, light dst? auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1. darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2. liteDst = m.sqrt() - m, // Used in case 3. liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3? auto alpha = s + d*isa; auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3? return a_rgb(alpha, colors); } #undef XFERMODE // A reasonable fallback mode for doing AA is to simply apply the transfermode first, // then linearly interpolate the AA. template <typename Xfermode> static Sk4px xfer_aa(const Sk4px& d, const Sk4px& s, const Sk4px& aa) { Sk4px bw = Xfermode()(d, s); return (bw * aa + d * aa.inv()).div255(); } // For some transfermodes we specialize AA, either for correctness or performance. #define XFERMODE_AA(Xfermode) \ template <> Sk4px xfer_aa<Xfermode>(const Sk4px& d, const Sk4px& s, const Sk4px& aa) // Plus' clamp needs to happen after AA. skia:3852 XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ] return d.saturatedAdd(s.approxMulDiv255(aa)); } #undef XFERMODE_AA // Src and Clear modes are safe to use with unitialized dst buffers, // even if the implementation branches based on bytes from dst (e.g. asserts in Debug mode). // For those modes, just lie to MSAN that dst is always intialized. template <typename Xfermode> static void mark_dst_initialized_if_safe(void*, void*) {} template <> void mark_dst_initialized_if_safe<Src>(void* dst, void* end) { sk_msan_mark_initialized(dst, end, "Src doesn't read dst."); } template <> void mark_dst_initialized_if_safe<Clear>(void* dst, void* end) { sk_msan_mark_initialized(dst, end, "Clear doesn't read dst."); } template <typename Xfermode> class Sk4pxXfermode : public SkProcCoeffXfermode { public: Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) : INHERITED(rec, mode) {} void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { mark_dst_initialized_if_safe<Xfermode>(dst, dst+n); if (nullptr == aa) { Sk4px::MapDstSrc(n, dst, src, Xfermode()); } else { Sk4px::MapDstSrcAlpha(n, dst, src, aa, xfer_aa<Xfermode>); } } void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { mark_dst_initialized_if_safe<Xfermode>(dst, dst+n); SkPMColor dst32[4]; while (n >= 4) { dst32[0] = SkPixel16ToPixel32(dst[0]); dst32[1] = SkPixel16ToPixel32(dst[1]); dst32[2] = SkPixel16ToPixel32(dst[2]); dst32[3] = SkPixel16ToPixel32(dst[3]); this->xfer32(dst32, src, 4, aa); dst[0] = SkPixel32ToPixel16(dst32[0]); dst[1] = SkPixel32ToPixel16(dst32[1]); dst[2] = SkPixel32ToPixel16(dst32[2]); dst[3] = SkPixel32ToPixel16(dst32[3]); dst += 4; src += 4; aa += aa ? 4 : 0; n -= 4; } while (n) { SkPMColor dst32 = SkPixel16ToPixel32(*dst); this->xfer32(&dst32, src, 1, aa); *dst = SkPixel32ToPixel16(dst32); dst += 1; src += 1; aa += aa ? 1 : 0; n -= 1; } } private: typedef SkProcCoeffXfermode INHERITED; }; template <typename Xfermode> class Sk4fXfermode : public SkProcCoeffXfermode { public: Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) : INHERITED(rec, mode) {} void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { for (int i = 0; i < n; i++) { dst[i] = Xfer32_1(dst[i], src[i], aa ? aa+i : nullptr); } } void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { for (int i = 0; i < n; i++) { SkPMColor dst32 = SkPixel16ToPixel32(dst[i]); dst32 = Xfer32_1(dst32, src[i], aa ? aa+i : nullptr); dst[i] = SkPixel32ToPixel16(dst32); } } private: static SkPMColor Xfer32_1(SkPMColor dst, const SkPMColor src, const SkAlpha* aa) { Sk4f d = Load(dst), s = Load(src), b = Xfermode()(d, s); if (aa) { Sk4f a = Sk4f(*aa) * Sk4f(1.0f/255); b = b*a + d*(Sk4f(1)-a); } return Round(b); } static Sk4f Load(SkPMColor c) { return SkNx_cast<float>(Sk4b::Load(&c)) * Sk4f(1.0f/255); } static SkPMColor Round(const Sk4f& f) { SkPMColor c; SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store(&c); return c; } typedef SkProcCoeffXfermode INHERITED; }; } // namespace namespace SK_OPTS_NS { static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode) { switch (mode) { #define CASE(Xfermode) \ case SkXfermode::k##Xfermode##_Mode: return new Sk4pxXfermode<Xfermode>(rec, mode) CASE(Clear); CASE(Src); CASE(Dst); CASE(SrcOver); CASE(DstOver); CASE(SrcIn); CASE(DstIn); CASE(SrcOut); CASE(DstOut); CASE(SrcATop); CASE(DstATop); CASE(Xor); CASE(Plus); CASE(Modulate); CASE(Screen); CASE(Multiply); CASE(Difference); CASE(Exclusion); CASE(HardLight); CASE(Overlay); CASE(Darken); CASE(Lighten); #undef CASE #define CASE(Xfermode) \ case SkXfermode::k##Xfermode##_Mode: return new Sk4fXfermode<Xfermode>(rec, mode) CASE(ColorDodge); CASE(ColorBurn); CASE(SoftLight); #undef CASE default: break; } return nullptr; } } // namespace SK_OPTS_NS #endif//Sk4pxXfermode_DEFINED