/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkOpts.h" #define SK_OPTS_NS sk_sse41 #include "SkBlurImageFilter_opts.h" #ifndef SK_SUPPORT_LEGACY_X86_BLITS namespace sk_sse41 { // An SSE register holding at most 64 bits of useful data in the low lanes. struct m64i { __m128i v; /*implicit*/ m64i(__m128i v) : v(v) {} operator __m128i() const { return v; } }; // Load 4, 2, or 1 constant pixels or coverages (4x replicated). static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } // Load 4, 2, or 1 variable pixels or coverages (4x replicated), // incrementing the pointer past what we read. static __m128i next4(const uint32_t*& ptr) { auto r = _mm_loadu_si128((const __m128i*)ptr); ptr += 4; return r; } static m64i next2(const uint32_t*& ptr) { auto r = _mm_loadl_epi64((const __m128i*)ptr); ptr += 2; return r; } static m64i next1(const uint32_t*& ptr) { auto r = _mm_cvtsi32_si128(*ptr); ptr += 1; return r; } // xyzw -> xxxx yyyy zzzz wwww static __m128i replicate_coverage(__m128i xyzw) { const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 }; return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask)); } static __m128i next4(const uint8_t*& ptr) { auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); ptr += 4; return r; } static m64i next2(const uint8_t*& ptr) { auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); ptr += 2; return r; } static m64i next1(const uint8_t*& ptr) { auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); ptr += 1; return r; } // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. template <typename Dst, typename Src, typename Cov, typename Fn> static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { // We don't want to muck with the callers' pointers, so we make them const and copy here. Dst d = dst; Src s = src; Cov c = cov; // Writing this as a single while-loop helps hoist loop invariants from fn. while (n) { if (n >= 4) { _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); t += 4; n -= 4; continue; } if (n & 2) { _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); t += 2; } if (n & 1) { *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); } return; } } // packed // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // unpacked // Everything on the packed side of the squiggly line deals with densely packed 8-bit data, // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. // // Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage, // where _ is a zero byte. // // Adapt<Fn> / adapt(fn) allow the two sides to interoperate, // by unpacking arguments, calling fn, then packing the results. // // This lets us write most of our code in terms of unpacked inputs (considerably simpler) // and all the packing and unpacking is handled automatically. template <typename Fn> struct Adapt { Fn fn; __m128i operator()(__m128i d, __m128i s, __m128i c) { auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }; return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), fn(hi(d), hi(s), hi(c))); } m64i operator()(const m64i& d, const m64i& s, const m64i& c) { auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; auto r = fn(lo(d), lo(s), lo(c)); return _mm_packus_epi16(r, r); } }; template <typename Fn> static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } // These helpers all work exclusively with unpacked 8-bit values, // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. // Divide by 255 with rounding. // (x+127)/255 == ((x+128)*257)>>16. // Sometimes we can be more efficient by breaking this into two parts. static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } // (x*y+127)/255, a byte multiply. static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); } // (255 * x). static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); } // (255 - x). static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); } // ARGB argb -> AAAA aaaa static __m128i alphas(__m128i px) { const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. const int _ = ~0; return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); } // SrcOver, with a constant source and full coverage. static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { // We want to calculate s + (d * inv(alphas(s)) + 127)/255. // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), s_255_128 = div255_part1(mul255(s)), A = inv(alphas(s)); const uint8_t cov = 0xff; loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); })); } // SrcOver, with a constant source and variable coverage. // If the source is opaque, SrcOver becomes Src. static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, const SkAlpha* cov, size_t covRB, SkColor color, int w, int h) { if (SkColorGetA(color) == 0xFF) { const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); while (h --> 0) { loop(w, dst, (const SkPMColor*)dst, src, cov, adapt([](__m128i d, __m128i s, __m128i c) { // Src blend mode: a simple lerp from d to s by c. // TODO: try a pmaddubsw version? return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16( c ,s))); })); dst += dstRB / sizeof(*dst); cov += covRB / sizeof(*cov); } } else { const SkPMColor src = SkPreMultiplyColor(color); while (h --> 0) { loop(w, dst, (const SkPMColor*)dst, src, cov, adapt([](__m128i d, __m128i s, __m128i c) { // SrcOver blend mode, with coverage folded into source alpha. __m128i sc = scale(s,c), AC = inv(alphas(sc)); return _mm_add_epi16(sc, scale(d,AC)); })); dst += dstRB / sizeof(*dst); cov += covRB / sizeof(*cov); } } } } // namespace sk_sse41 #endif namespace SkOpts { void Init_sse41() { box_blur_xx = sk_sse41::box_blur_xx; box_blur_xy = sk_sse41::box_blur_xy; box_blur_yx = sk_sse41::box_blur_yx; #ifndef SK_SUPPORT_LEGACY_X86_BLITS blit_row_color32 = sk_sse41::blit_row_color32; blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; #endif } }