/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_neon_DEFINED #define SkNx_neon_DEFINED #define SKNX_IS_FAST // ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it: // - roundtrip through integers via truncation // - subtract 1 if that's too big (possible for negative values). // This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big. static inline float32x4_t armv7_vrndmq_f32(float32x4_t v) { auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); auto too_big = vcgtq_f32(roundtrip, v); return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1))); } // Well, this is absurd. The shifts require compile-time constant arguments. #define SHIFT8(op, v, bits) switch(bits) { \ case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \ case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \ case 7: return op(v, 7); \ } return fVec #define SHIFT16(op, v, bits) if (bits < 8) { SHIFT8(op, v, bits); } switch(bits) { \ case 8: return op(v, 8); case 9: return op(v, 9); \ case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \ case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \ } return fVec #define SHIFT32(op, v, bits) if (bits < 16) { SHIFT16(op, v, bits); } switch(bits) { \ case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \ case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \ case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \ case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \ case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \ case 31: return op(v, 31); } return fVec template <> class SkNx<2, float> { public: SkNx(float32x2_t vec) : fVec(vec) {} SkNx() {} SkNx(float val) : fVec(vdup_n_f32(val)) {} static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); } SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; } void store(void* ptr) const { vst1_f32((float*)ptr, fVec); } SkNx approxInvert() const { float32x2_t est0 = vrecpe_f32(fVec), est1 = vmul_f32(vrecps_f32(est0, fVec), est0); return est1; } SkNx invert() const { float32x2_t est1 = this->approxInvert().fVec, est2 = vmul_f32(vrecps_f32(est1, fVec), est1); return est2; } SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); } SkNx operator / (const SkNx& o) const { #if defined(SK_CPU_ARM64) return vdiv_f32(fVec, o.fVec); #else return vmul_f32(fVec, o.invert().fVec); #endif } SkNx operator == (const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); } SkNx operator < (const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); } SkNx operator > (const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); } SkNx operator <= (const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); } SkNx operator >= (const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); } SkNx operator != (const SkNx& o) const { return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); } static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); } static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); } SkNx rsqrt0() const { return vrsqrte_f32(fVec); } SkNx rsqrt1() const { float32x2_t est0 = this->rsqrt0().fVec; return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); } SkNx rsqrt2() const { float32x2_t est1 = this->rsqrt1().fVec; return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); } SkNx sqrt() const { #if defined(SK_CPU_ARM64) return vsqrt_f32(fVec); #else return *this * this->rsqrt2(); #endif } float operator[](int k) const { SkASSERT(0 <= k && k < 2); union { float32x2_t v; float fs[2]; } pun = {fVec}; return pun.fs[k&1]; } bool allTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) && vget_lane_u32(v,1); } bool anyTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) || vget_lane_u32(v,1); } float32x2_t fVec; }; template <> class SkNx<4, float> { public: SkNx(float32x4_t vec) : fVec(vec) {} SkNx() {} SkNx(float val) : fVec(vdupq_n_f32(val)) {} static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); } SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); } SkNx approxInvert() const { float32x4_t est0 = vrecpeq_f32(fVec), est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); return est1; } SkNx invert() const { float32x4_t est1 = this->approxInvert().fVec, est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1); return est2; } SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); } SkNx operator / (const SkNx& o) const { #if defined(SK_CPU_ARM64) return vdivq_f32(fVec, o.fVec); #else return vmulq_f32(fVec, o.invert().fVec); #endif } SkNx operator==(const SkNx& o) const { return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec)); } SkNx operator <(const SkNx& o) const { return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec)); } SkNx operator >(const SkNx& o) const { return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec)); } SkNx operator<=(const SkNx& o) const { return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec)); } SkNx operator>=(const SkNx& o) const { return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec)); } SkNx operator!=(const SkNx& o) const { return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); } static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); } static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); } SkNx abs() const { return vabsq_f32(fVec); } SkNx floor() const { #if defined(SK_CPU_ARM64) return vrndmq_f32(fVec); #else return armv7_vrndmq_f32(fVec); #endif } SkNx rsqrt0() const { return vrsqrteq_f32(fVec); } SkNx rsqrt1() const { float32x4_t est0 = this->rsqrt0().fVec; return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); } SkNx rsqrt2() const { float32x4_t est1 = this->rsqrt1().fVec; return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); } SkNx sqrt() const { #if defined(SK_CPU_ARM64) return vsqrtq_f32(fVec); #else return *this * this->rsqrt2(); #endif } float operator[](int k) const { SkASSERT(0 <= k && k < 4); union { float32x4_t v; float fs[4]; } pun = {fVec}; return pun.fs[k&3]; } bool allTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); } bool anyTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec); } float32x4_t fVec; }; // It's possible that for our current use cases, representing this as // half a uint16x8_t might be better than representing it as a uint16x4_t. // It'd make conversion to Sk4b one step simpler. template <> class SkNx<4, uint16_t> { public: SkNx(const uint16x4_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {} static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); } SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) { fVec = (uint16x4_t) { a,b,c,d }; } void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); } SkNx operator << (int bits) const { SHIFT16(vshl_n_u16, fVec, bits); } SkNx operator >> (int bits) const { SHIFT16(vshr_n_u16, fVec, bits); } static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); } uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { uint16x4_t v; uint16_t us[4]; } pun = {fVec}; return pun.us[k&3]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbsl_u16(fVec, t.fVec, e.fVec); } uint16x4_t fVec; }; template <> class SkNx<8, uint16_t> { public: SkNx(const uint16x8_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {} static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); } SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) { fVec = (uint16x8_t) { a,b,c,d, e,f,g,h }; } void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); } SkNx operator << (int bits) const { SHIFT16(vshlq_n_u16, fVec, bits); } SkNx operator >> (int bits) const { SHIFT16(vshrq_n_u16, fVec, bits); } static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); } uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 8); union { uint16x8_t v; uint16_t us[8]; } pun = {fVec}; return pun.us[k&7]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u16(fVec, t.fVec, e.fVec); } uint16x8_t fVec; }; template <> class SkNx<4, uint8_t> { public: SkNx(const uint8x8_t& vec) : fVec(vec) {} SkNx() {} static SkNx Load(const void* ptr) { return (uint8x8_t)vld1_dup_u32((const uint32_t*)ptr); } void store(void* ptr) const { return vst1_lane_u32((uint32_t*)ptr, (uint32x2_t)fVec, 0); } // TODO as needed uint8x8_t fVec; }; template <> class SkNx<16, uint8_t> { public: SkNx(const uint8x16_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {} static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); } SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) { fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p }; } void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); } SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); } SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); } static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); } SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); } uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 16); union { uint8x16_t v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&15]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u8(fVec, t.fVec, e.fVec); } uint8x16_t fVec; }; #undef SHIFT32 #undef SHIFT16 #undef SHIFT8 template<> inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { return vqmovn_u32(vcvtq_u32_f32(src.fVec)); } template<> inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { return vcvtq_f32_u32(vmovl_u16(src.fVec)); } template<> inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { uint32x4_t _32 = vcvtq_u32_f32(src.fVec); uint16x4_t _16 = vqmovn_u32(_32); return vqmovn_u16(vcombine_u16(_16, _16)); } template<> inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { uint16x8_t _16 = vmovl_u8 (src.fVec) ; uint32x4_t _32 = vmovl_u16(vget_low_u16(_16)); return vcvtq_f32_u32(_32); } static inline void Sk4f_ToBytes(uint8_t bytes[16], const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) { vst1q_u8(bytes, vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec), (uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0], vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec), (uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]); } template<> inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { return vget_low_u16(vmovl_u8(src.fVec)); } template<> inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { return vmovn_u16(vcombine_u16(src.fVec, src.fVec)); } #endif//SkNx_neon_DEFINED