/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAStrokeRectBatch.h" #include "GrBatchFlushState.h" #include "GrDefaultGeoProcFactory.h" #include "GrResourceKey.h" #include "GrResourceProvider.h" GR_DECLARE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); static void set_inset_fan(SkPoint* pts, size_t stride, const SkRect& r, SkScalar dx, SkScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } static const GrGeometryProcessor* create_stroke_rect_gp(bool tweakAlphaForCoverage, const SkMatrix& viewMatrix, bool usesLocalCoords, bool coverageIgnored) { using namespace GrDefaultGeoProcFactory; Color color(Color::kAttribute_Type); Coverage::Type coverageType; // TODO remove coverage if coverage is ignored /*if (coverageIgnored) { coverageType = Coverage::kNone_Type; } else*/ if (tweakAlphaForCoverage) { coverageType = Coverage::kSolid_Type; } else { coverageType = Coverage::kAttribute_Type; } Coverage coverage(coverageType); LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type); return CreateForDeviceSpace(color, coverage, localCoords, viewMatrix); } class AAStrokeRectBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID // TODO support AA rotated stroke rects by copying around view matrices struct Geometry { SkRect fDevOutside; SkRect fDevOutsideAssist; SkRect fDevInside; GrColor fColor; bool fDegenerate; }; static AAStrokeRectBatch* Create(const SkMatrix& viewMatrix, bool miterStroke) { return new AAStrokeRectBatch(viewMatrix, miterStroke); } const char* name() const override { return "AAStrokeRect"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } bool canAppend(const SkMatrix& viewMatrix, bool miterStroke) { return fViewMatrix.cheapEqualTo(viewMatrix) && fMiterStroke == miterStroke; } void append(GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool degenerate) { Geometry& geometry = fGeoData.push_back(); geometry.fColor = color; geometry.fDevOutside = devOutside; geometry.fDevOutsideAssist = devOutsideAssist; geometry.fDevInside = devInside; geometry.fDegenerate = degenerate; } void appendAndUpdateBounds(GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool degenerate) { this->append(color, devOutside, devOutsideAssist, devInside, degenerate); SkRect bounds; this->updateBounds(&bounds, fGeoData.back()); this->joinBounds(bounds); } void init() { this->updateBounds(&fBounds, fGeoData[0]); } private: void updateBounds(SkRect* bounds, const Geometry& geo) { // If we have miterstroke then we inset devOutside and outset devOutsideAssist, so we need // the join for proper bounds *bounds = geo.fDevOutside; bounds->join(geo.fDevOutsideAssist); } void onPrepareDraws(Target*) const override; void initBatchTracker(const GrXPOverridesForBatch&) override; AAStrokeRectBatch(const SkMatrix& viewMatrix,bool miterStroke) : INHERITED(ClassID()) { fViewMatrix = viewMatrix; fMiterStroke = miterStroke; } static const int kMiterIndexCnt = 3 * 24; static const int kMiterVertexCnt = 16; static const int kNumMiterRectsInIndexBuffer = 256; static const int kBevelIndexCnt = 48 + 36 + 24; static const int kBevelVertexCnt = 24; static const int kNumBevelRectsInIndexBuffer = 256; static const GrIndexBuffer* GetIndexBuffer(GrResourceProvider* resourceProvider, bool miterStroke); GrColor color() const { return fBatch.fColor; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } bool colorIgnored() const { return fBatch.fColorIgnored; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } const Geometry& geometry() const { return fGeoData[0]; } const SkMatrix& viewMatrix() const { return fViewMatrix; } bool miterStroke() const { return fMiterStroke; } bool onCombineIfPossible(GrBatch* t, const GrCaps&) override; void generateAAStrokeRectGeometry(void* vertices, size_t offset, size_t vertexStride, int outerVertexNum, int innerVertexNum, GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate, bool tweakAlphaForCoverage) const; struct BatchTracker { GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; bool fCanTweakAlphaForCoverage; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; SkMatrix fViewMatrix; bool fMiterStroke; typedef GrVertexBatch INHERITED; }; void AAStrokeRectBatch::initBatchTracker(const GrXPOverridesForBatch& overrides) { // Handle any color overrides if (!overrides.readsColor()) { fGeoData[0].fColor = GrColor_ILLEGAL; } overrides.getOverrideColorIfSet(&fGeoData[0].fColor); // setup batch properties fBatch.fColorIgnored = !overrides.readsColor(); fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = overrides.readsLocalCoords(); fBatch.fCoverageIgnored = !overrides.readsCoverage(); fBatch.fCanTweakAlphaForCoverage = overrides.canTweakAlphaForCoverage(); } void AAStrokeRectBatch::onPrepareDraws(Target* target) const { bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); SkAutoTUnref<const GrGeometryProcessor> gp(create_stroke_rect_gp(canTweakAlphaForCoverage, this->viewMatrix(), this->usesLocalCoords(), this->coverageIgnored())); if (!gp) { SkDebugf("Couldn't create GrGeometryProcessor\n"); return; } target->initDraw(gp, this->pipeline()); size_t vertexStride = gp->getVertexStride(); SkASSERT(canTweakAlphaForCoverage ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); int innerVertexNum = 4; int outerVertexNum = this->miterStroke() ? 4 : 8; int verticesPerInstance = (outerVertexNum + innerVertexNum) * 2; int indicesPerInstance = this->miterStroke() ? kMiterIndexCnt : kBevelIndexCnt; int instanceCount = fGeoData.count(); const SkAutoTUnref<const GrIndexBuffer> indexBuffer( GetIndexBuffer(target->resourceProvider(), this->miterStroke())); InstancedHelper helper; void* vertices = helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, verticesPerInstance, indicesPerInstance, instanceCount); if (!vertices || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; this->generateAAStrokeRectGeometry(vertices, i * verticesPerInstance * vertexStride, vertexStride, outerVertexNum, innerVertexNum, args.fColor, args.fDevOutside, args.fDevOutsideAssist, args.fDevInside, fMiterStroke, args.fDegenerate, canTweakAlphaForCoverage); } helper.recordDraw(target); } const GrIndexBuffer* AAStrokeRectBatch::GetIndexBuffer(GrResourceProvider* resourceProvider, bool miterStroke) { if (miterStroke) { static const uint16_t gMiterIndices[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gMiterIndices) == kMiterIndexCnt); GR_DEFINE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); return resourceProvider->findOrCreateInstancedIndexBuffer(gMiterIndices, kMiterIndexCnt, kNumMiterRectsInIndexBuffer, kMiterVertexCnt, gMiterIndexBufferKey); } else { /** * As in miter-stroke, index = a + b, and a is the current index, b is the shift * from the first index. The index layout: * outer AA line: 0~3, 4~7 * outer edge: 8~11, 12~15 * inner edge: 16~19 * inner AA line: 20~23 * Following comes a bevel-stroke rect and its indices: * * 4 7 * ********************************* * * ______________________________ * * * / 12 15 \ * * * / \ * * 0 * |8 16_____________________19 11 | * 3 * * | | | | * * * | | **************** | | * * * | | * 20 23 * | | * * * | | * * | | * * * | | * 21 22 * | | * * * | | **************** | | * * * | |____________________| | * * 1 * |9 17 18 10| * 2 * * \ / * * * \13 __________________________14/ * * * * * ********************************** * 5 6 */ static const uint16_t gBevelIndices[] = { // Draw outer AA, from outer AA line to outer edge, shift is 0. 0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0, 1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0, 5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0, 6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0, 2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0, 3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0, 7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0, 4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0, // Draw the stroke, from outer edge to inner edge, shift is 8. 0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8, 1 + 8, 5 + 8, 9 + 8, 5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8, 6 + 8, 2 + 8, 10 + 8, 2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8, 3 + 8, 7 + 8, 11 + 8, 7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8, 4 + 8, 0 + 8, 8 + 8, // Draw the inner AA, from inner edge to inner AA line, shift is 16. 0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16, 1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16, 2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16, 3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16, }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gBevelIndices) == kBevelIndexCnt); GR_DEFINE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); return resourceProvider->findOrCreateInstancedIndexBuffer(gBevelIndices, kBevelIndexCnt, kNumBevelRectsInIndexBuffer, kBevelVertexCnt, gBevelIndexBufferKey); } } bool AAStrokeRectBatch::onCombineIfPossible(GrBatch* t, const GrCaps& caps) { AAStrokeRectBatch* that = t->cast<AAStrokeRectBatch>(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } // TODO batch across miterstroke changes if (this->miterStroke() != that->miterStroke()) { return false; } // We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses // local coords then we won't be able to batch. We could actually upload the viewmatrix // using vertex attributes in these cases, but haven't investigated that if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } // In the event of two batches, one who can tweak, one who cannot, we just fall back to // not tweaking if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { fBatch.fCanTweakAlphaForCoverage = false; } if (this->color() != that->color()) { fBatch.fColor = GrColor_ILLEGAL; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); this->joinBounds(that->bounds()); return true; } static void setup_scale(int* scale, SkScalar inset) { if (inset < SK_ScalarHalf) { *scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(*scale >= 0 && *scale <= 255); } else { *scale = 0xff; } } void AAStrokeRectBatch::generateAAStrokeRectGeometry(void* vertices, size_t offset, size_t vertexStride, int outerVertexNum, int innerVertexNum, GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate, bool tweakAlphaForCoverage) const { intptr_t verts = reinterpret_cast<intptr_t>(vertices) + offset; // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following pointers refer to the four rects, from outermost to innermost. SkPoint* fan0Pos = reinterpret_cast<SkPoint*>(verts); SkPoint* fan1Pos = reinterpret_cast<SkPoint*>(verts + outerVertexNum * vertexStride); SkPoint* fan2Pos = reinterpret_cast<SkPoint*>(verts + 2 * outerVertexNum * vertexStride); SkPoint* fan3Pos = reinterpret_cast<SkPoint*>(verts + (2 * outerVertexNum + innerVertexNum) * vertexStride); #ifndef SK_IGNORE_THIN_STROKED_RECT_FIX // TODO: this only really works if the X & Y margins are the same all around // the rect (or if they are all >= 1.0). SkScalar inset; if (!degenerate) { inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight); inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft); inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop); if (miterStroke) { inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom); } else { inset = SK_ScalarHalf * SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom); } SkASSERT(inset >= 0); } else { // TODO use real devRect here inset = SkMinScalar(devOutside.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, SkTMax(devOutside.height(), devOutsideAssist.height())); } #else SkScalar inset; if (!degenerate) { inset = SK_ScalarHalf; } else { // TODO use real devRect here inset = SkMinScalar(devOutside.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, SkTMax(devOutside.height(), devOutsideAssist.height())); } #endif if (miterStroke) { // outermost set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); // inner two set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset); if (!degenerate) { set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { // When the interior rect has become degenerate we smoosh to a single point SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom); fan2Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); fan3Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); } } else { SkPoint* fan0AssistPos = reinterpret_cast<SkPoint*>(verts + 4 * vertexStride); SkPoint* fan1AssistPos = reinterpret_cast<SkPoint*>(verts + (outerVertexNum + 4) * vertexStride); // outermost set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan0AssistPos, vertexStride, devOutsideAssist, -SK_ScalarHalf, -SK_ScalarHalf); // outer one of the inner two set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset); set_inset_fan(fan1AssistPos, vertexStride, devOutsideAssist, inset, inset); if (!degenerate) { // inner one of the inner two set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { // When the interior rect has become degenerate we smoosh to a single point SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom); fan2Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); fan3Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); } } // Make verts point to vertex color and then set all the color and coverage vertex attrs // values. The outermost rect has 0 coverage verts += sizeof(SkPoint); for (int i = 0; i < outerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = 0; } else { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = 0; } } // scale is the coverage for the the inner two rects. int scale; setup_scale(&scale, inset); float innerCoverage = GrNormalizeByteToFloat(scale); GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); verts += outerVertexNum * vertexStride; for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage; } } // The innermost rect has 0 coverage, unless we are degenerate, in which case we must apply the // scaled coverage verts += (outerVertexNum + innerVertexNum) * vertexStride; if (!degenerate) { innerCoverage = 0; scaledColor = 0; } for (int i = 0; i < innerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage; } } } inline static bool is_miter(const SkStrokeRec& stroke) { // For hairlines, make bevel and round joins appear the same as mitered ones. // small miter limit means right angles show bevel... if ((stroke.getWidth() > 0) && (stroke.getJoin() != SkPaint::kMiter_Join || stroke.getMiter() < SK_ScalarSqrt2)) { return false; } return true; } static void compute_rects(SkRect* devOutside, SkRect* devOutsideAssist, SkRect* devInside, bool* isDegenerate, const SkMatrix& viewMatrix, const SkRect& rect, SkScalar strokeWidth, bool miterStroke) { SkRect devRect; viewMatrix.mapRect(&devRect, rect); SkVector devStrokeSize; if (strokeWidth > 0) { devStrokeSize.set(strokeWidth, strokeWidth); viewMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); *devOutside = devRect; *devOutsideAssist = devRect; *devInside = devRect; devOutside->outset(rx, ry); devInside->inset(rx, ry); // If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we // make a degenerate inside rect to avoid double hitting. We will also jam all of the points // together when we render these rects. SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } *isDegenerate = spare <= 0; if (*isDegenerate) { devInside->fLeft = devInside->fRight = devRect.centerX(); devInside->fTop = devInside->fBottom = devRect.centerY(); } // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outside of the octagon. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside->inset(0, ry); devOutsideAssist->outset(0, ry); } } namespace GrAAStrokeRectBatch { GrDrawBatch* Create(GrColor color, const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate) { AAStrokeRectBatch* batch = AAStrokeRectBatch::Create(viewMatrix, miterStroke); batch->append(color, devOutside, devOutsideAssist, devInside, degenerate); batch->init(); return batch; } GrDrawBatch* Create(GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke) { bool isMiterStroke = is_miter(stroke); AAStrokeRectBatch* batch = AAStrokeRectBatch::Create(viewMatrix, isMiterStroke); SkRect devOutside, devOutsideAssist, devInside; bool isDegenerate; compute_rects(&devOutside, &devOutsideAssist, &devInside, &isDegenerate, viewMatrix, rect, stroke.getWidth(), isMiterStroke); batch->append(color, devOutside, devOutsideAssist, devInside, isDegenerate); batch->init(); return batch; } bool Append(GrBatch* origBatch, GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke) { AAStrokeRectBatch* batch = origBatch->cast<AAStrokeRectBatch>(); // we can't batch across vm changes bool isMiterStroke = is_miter(stroke); if (!batch->canAppend(viewMatrix, isMiterStroke)) { return false; } SkRect devOutside, devOutsideAssist, devInside; bool isDegenerate; compute_rects(&devOutside, &devOutsideAssist, &devInside, &isDegenerate, viewMatrix, rect, stroke.getWidth(), isMiterStroke); batch->appendAndUpdateBounds(color, devOutside, devOutsideAssist, devInside, isDegenerate); return true; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS #include "GrBatchTest.h" DRAW_BATCH_TEST_DEFINE(AAStrokeRectBatch) { bool miterStroke = random->nextBool(); // Create mock stroke rect SkRect outside = GrTest::TestRect(random); SkScalar minDim = SkMinScalar(outside.width(), outside.height()); SkScalar strokeWidth = minDim * 0.1f; SkRect outsideAssist = outside; outsideAssist.outset(strokeWidth, strokeWidth); SkRect inside = outside; inside.inset(strokeWidth, strokeWidth); GrColor color = GrRandomColor(random); return GrAAStrokeRectBatch::Create(color, GrTest::TestMatrix(random), outside, outsideAssist, inside, miterStroke, inside.isFinite() && inside.isEmpty()); } #endif