/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAHairLinePathRenderer.h" #include "GrBatchFlushState.h" #include "GrBatchTest.h" #include "GrCaps.h" #include "GrContext.h" #include "GrDefaultGeoProcFactory.h" #include "GrIndexBuffer.h" #include "GrPathUtils.h" #include "GrPipelineBuilder.h" #include "GrProcessor.h" #include "GrResourceProvider.h" #include "GrVertexBuffer.h" #include "SkGeometry.h" #include "SkStroke.h" #include "SkTemplates.h" #include "batches/GrVertexBatch.h" #include "effects/GrBezierEffect.h" #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> // quadratics are rendered as 5-sided polys in order to bound the // AA stroke around the center-curve. See comments in push_quad_index_buffer and // bloat_quad. Quadratics and conics share an index buffer // lines are rendered as: // *______________* // |\ -_______ /| // | \ \ / | // | *--------* | // | / ______/ \ | // */_-__________\* // For: 6 vertices and 18 indices (for 6 triangles) // Each quadratic is rendered as a five sided polygon. This poly bounds // the quadratic's bounding triangle but has been expanded so that the // 1-pixel wide area around the curve is inside the poly. // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 // that is rendered would look like this: // b0 // b // // a0 c0 // a c // a1 c1 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0)) // specified by these 9 indices: static const uint16_t kQuadIdxBufPattern[] = { 0, 1, 2, 2, 4, 3, 1, 4, 2 }; static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern); static const int kQuadNumVertices = 5; static const int kQuadsNumInIdxBuffer = 256; GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) { GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); return resourceProvider->findOrCreateInstancedIndexBuffer( kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices, gQuadsIndexBufferKey); } // Each line segment is rendered as two quads and two triangles. // p0 and p1 have alpha = 1 while all other points have alpha = 0. // The four external points are offset 1 pixel perpendicular to the // line and half a pixel parallel to the line. // // p4 p5 // p0 p1 // p2 p3 // // Each is drawn as six triangles specified by these 18 indices: static const uint16_t kLineSegIdxBufPattern[] = { 0, 1, 3, 0, 3, 2, 0, 4, 5, 0, 5, 1, 0, 2, 4, 1, 5, 3 }; static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern); static const int kLineSegNumVertices = 6; static const int kLineSegsNumInIdxBuffer = 256; GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) { GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); return resourceProvider->findOrCreateInstancedIndexBuffer( kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices, gLinesIndexBufferKey); } // Takes 178th time of logf on Z600 / VC2010 static int get_float_exp(float x) { GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); #ifdef SK_DEBUG static bool tested; if (!tested) { tested = true; SkASSERT(get_float_exp(0.25f) == -2); SkASSERT(get_float_exp(0.3f) == -2); SkASSERT(get_float_exp(0.5f) == -1); SkASSERT(get_float_exp(1.f) == 0); SkASSERT(get_float_exp(2.f) == 1); SkASSERT(get_float_exp(2.5f) == 1); SkASSERT(get_float_exp(8.f) == 3); SkASSERT(get_float_exp(100.f) == 6); SkASSERT(get_float_exp(1000.f) == 9); SkASSERT(get_float_exp(1024.f) == 10); SkASSERT(get_float_exp(3000000.f) == 21); } #endif const int* iptr = (const int*)&x; return (((*iptr) & 0x7f800000) >> 23) - 127; } // Uses the max curvature function for quads to estimate // where to chop the conic. If the max curvature is not // found along the curve segment it will return 1 and // dst[0] is the original conic. If it returns 2 the dst[0] // and dst[1] are the two new conics. static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { SkScalar t = SkFindQuadMaxCurvature(src); if (t == 0) { if (dst) { dst[0].set(src, weight); } return 1; } else { if (dst) { SkConic conic; conic.set(src, weight); conic.chopAt(t, dst); } return 2; } } // Calls split_conic on the entire conic and then once more on each subsection. // Most cases will result in either 1 conic (chop point is not within t range) // or 3 points (split once and then one subsection is split again). static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { SkConic dstTemp[2]; int conicCnt = split_conic(src, dstTemp, weight); if (2 == conicCnt) { int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); } else { dst[0] = dstTemp[0]; } return conicCnt; } // returns 0 if quad/conic is degen or close to it // in this case approx the path with lines // otherwise returns 1 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) { static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance; static const SkScalar gDegenerateToLineTolSqd = SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { return 1; } *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); if (*dsqd < gDegenerateToLineTolSqd) { return 1; } if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { return 1; } return 0; } static int is_degen_quad_or_conic(const SkPoint p[3]) { SkScalar dsqd; return is_degen_quad_or_conic(p, &dsqd); } // we subdivide the quads to avoid huge overfill // if it returns -1 then should be drawn as lines static int num_quad_subdivs(const SkPoint p[3]) { SkScalar dsqd; if (is_degen_quad_or_conic(p, &dsqd)) { return -1; } // tolerance of triangle height in pixels // tuned on windows Quadro FX 380 / Z600 // trade off of fill vs cpu time on verts // maybe different when do this using gpu (geo or tess shaders) static const SkScalar gSubdivTol = 175 * SK_Scalar1; if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { return 0; } else { static const int kMaxSub = 4; // subdividing the quad reduces d by 4. so we want x = log4(d/tol) // = log4(d*d/tol*tol)/2 // = log2(d*d/tol*tol) // +1 since we're ignoring the mantissa contribution. int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; log = SkTMin(SkTMax(0, log), kMaxSub); return log; } } /** * Generates the lines and quads to be rendered. Lines are always recorded in * device space. We will do a device space bloat to account for the 1pixel * thickness. * Quads are recorded in device space unless m contains * perspective, then in they are in src space. We do this because we will * subdivide large quads to reduce over-fill. This subdivision has to be * performed before applying the perspective matrix. */ static int gather_lines_and_quads(const SkPath& path, const SkMatrix& m, const SkIRect& devClipBounds, GrAAHairLinePathRenderer::PtArray* lines, GrAAHairLinePathRenderer::PtArray* quads, GrAAHairLinePathRenderer::PtArray* conics, GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, GrAAHairLinePathRenderer::FloatArray* conicWeights) { SkPath::Iter iter(path, false); int totalQuadCount = 0; SkRect bounds; SkIRect ibounds; bool persp = m.hasPerspective(); for (;;) { SkPoint pathPts[4]; SkPoint devPts[4]; SkPath::Verb verb = iter.next(pathPts); switch (verb) { case SkPath::kConic_Verb: { SkConic dst[4]; // We chop the conics to create tighter clipping to hide error // that appears near max curvature of very thin conics. Thin // hyperbolas with high weight still show error. int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); for (int i = 0; i < conicCnt; ++i) { SkPoint* chopPnts = dst[i].fPts; m.mapPoints(devPts, chopPnts, 3); bounds.setBounds(devPts, 3); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { if (is_degen_quad_or_conic(devPts)) { SkPoint* pts = lines->push_back_n(4); pts[0] = devPts[0]; pts[1] = devPts[1]; pts[2] = devPts[1]; pts[3] = devPts[2]; } else { // when in perspective keep conics in src space SkPoint* cPts = persp ? chopPnts : devPts; SkPoint* pts = conics->push_back_n(3); pts[0] = cPts[0]; pts[1] = cPts[1]; pts[2] = cPts[2]; conicWeights->push_back() = dst[i].fW; } } } break; } case SkPath::kMove_Verb: break; case SkPath::kLine_Verb: m.mapPoints(devPts, pathPts, 2); bounds.setBounds(devPts, 2); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { SkPoint* pts = lines->push_back_n(2); pts[0] = devPts[0]; pts[1] = devPts[1]; } break; case SkPath::kQuad_Verb: { SkPoint choppedPts[5]; // Chopping the quad helps when the quad is either degenerate or nearly degenerate. // When it is degenerate it allows the approximation with lines to work since the // chop point (if there is one) will be at the parabola's vertex. In the nearly // degenerate the QuadUVMatrix computed for the points is almost singular which // can cause rendering artifacts. int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); for (int i = 0; i < n; ++i) { SkPoint* quadPts = choppedPts + i * 2; m.mapPoints(devPts, quadPts, 3); bounds.setBounds(devPts, 3); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { int subdiv = num_quad_subdivs(devPts); SkASSERT(subdiv >= -1); if (-1 == subdiv) { SkPoint* pts = lines->push_back_n(4); pts[0] = devPts[0]; pts[1] = devPts[1]; pts[2] = devPts[1]; pts[3] = devPts[2]; } else { // when in perspective keep quads in src space SkPoint* qPts = persp ? quadPts : devPts; SkPoint* pts = quads->push_back_n(3); pts[0] = qPts[0]; pts[1] = qPts[1]; pts[2] = qPts[2]; quadSubdivCnts->push_back() = subdiv; totalQuadCount += 1 << subdiv; } } } break; } case SkPath::kCubic_Verb: m.mapPoints(devPts, pathPts, 4); bounds.setBounds(devPts, 4); bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { PREALLOC_PTARRAY(32) q; // We convert cubics to quadratics (for now). // In perspective have to do conversion in src space. if (persp) { SkScalar tolScale = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds()); GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q); } else { GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q); } for (int i = 0; i < q.count(); i += 3) { SkPoint* qInDevSpace; // bounds has to be calculated in device space, but q is // in src space when there is perspective. if (persp) { m.mapPoints(devPts, &q[i], 3); bounds.setBounds(devPts, 3); qInDevSpace = devPts; } else { bounds.setBounds(&q[i], 3); qInDevSpace = &q[i]; } bounds.outset(SK_Scalar1, SK_Scalar1); bounds.roundOut(&ibounds); if (SkIRect::Intersects(devClipBounds, ibounds)) { int subdiv = num_quad_subdivs(qInDevSpace); SkASSERT(subdiv >= -1); if (-1 == subdiv) { SkPoint* pts = lines->push_back_n(4); // lines should always be in device coords pts[0] = qInDevSpace[0]; pts[1] = qInDevSpace[1]; pts[2] = qInDevSpace[1]; pts[3] = qInDevSpace[2]; } else { SkPoint* pts = quads->push_back_n(3); // q is already in src space when there is no // perspective and dev coords otherwise. pts[0] = q[0 + i]; pts[1] = q[1 + i]; pts[2] = q[2 + i]; quadSubdivCnts->push_back() = subdiv; totalQuadCount += 1 << subdiv; } } } } break; case SkPath::kClose_Verb: break; case SkPath::kDone_Verb: return totalQuadCount; } } } struct LineVertex { SkPoint fPos; float fCoverage; }; struct BezierVertex { SkPoint fPos; union { struct { SkScalar fK; SkScalar fL; SkScalar fM; } fConic; SkVector fQuadCoord; struct { SkScalar fBogus[4]; }; }; }; GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); static void intersect_lines(const SkPoint& ptA, const SkVector& normA, const SkPoint& ptB, const SkVector& normB, SkPoint* result) { SkScalar lineAW = -normA.dot(ptA); SkScalar lineBW = -normB.dot(ptB); SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - SkScalarMul(normA.fY, normB.fX); wInv = SkScalarInvert(wInv); result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); result->fX = SkScalarMul(result->fX, wInv); result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); result->fY = SkScalarMul(result->fY, wInv); } static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) { // this should be in the src space, not dev coords, when we have perspective GrPathUtils::QuadUVMatrix DevToUV(qpts); DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts); } static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) { SkASSERT(!toDevice == !toSrc); // original quad is specified by tri a,b,c SkPoint a = qpts[0]; SkPoint b = qpts[1]; SkPoint c = qpts[2]; if (toDevice) { toDevice->mapPoints(&a, 1); toDevice->mapPoints(&b, 1); toDevice->mapPoints(&c, 1); } // make a new poly where we replace a and c by a 1-pixel wide edges orthog // to edges ab and bc: // // before | after // | b0 // b | // | // | a0 c0 // a c | a1 c1 // // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, // respectively. BezierVertex& a0 = verts[0]; BezierVertex& a1 = verts[1]; BezierVertex& b0 = verts[2]; BezierVertex& c0 = verts[3]; BezierVertex& c1 = verts[4]; SkVector ab = b; ab -= a; SkVector ac = c; ac -= a; SkVector cb = b; cb -= c; // We should have already handled degenerates SkASSERT(ab.length() > 0 && cb.length() > 0); ab.normalize(); SkVector abN; abN.setOrthog(ab, SkVector::kLeft_Side); if (abN.dot(ac) > 0) { abN.negate(); } cb.normalize(); SkVector cbN; cbN.setOrthog(cb, SkVector::kLeft_Side); if (cbN.dot(ac) < 0) { cbN.negate(); } a0.fPos = a; a0.fPos += abN; a1.fPos = a; a1.fPos -= abN; c0.fPos = c; c0.fPos += cbN; c1.fPos = c; c1.fPos -= cbN; intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); if (toSrc) { toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices); } } // Equations based off of Loop-Blinn Quadratic GPU Rendering // Input Parametric: // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) // Output Implicit: // f(x, y, w) = f(P) = K^2 - LM // K = dot(k, P), L = dot(l, P), M = dot(m, P) // k, l, m are calculated in function GrPathUtils::getConicKLM static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices], const SkScalar weight) { SkScalar klm[9]; GrPathUtils::getConicKLM(p, weight, klm); for (int i = 0; i < kQuadNumVertices; ++i) { const SkPoint pnt = verts[i].fPos; verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; } } static void add_conics(const SkPoint p[3], const SkScalar weight, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert) { bloat_quad(p, toDevice, toSrc, *vert); set_conic_coeffs(p, *vert, weight); *vert += kQuadNumVertices; } static void add_quads(const SkPoint p[3], int subdiv, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert) { SkASSERT(subdiv >= 0); if (subdiv) { SkPoint newP[5]; SkChopQuadAtHalf(p, newP); add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert); add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert); } else { bloat_quad(p, toDevice, toSrc, *vert); set_uv_quad(p, *vert); *vert += kQuadNumVertices; } } static void add_line(const SkPoint p[2], const SkMatrix* toSrc, uint8_t coverage, LineVertex** vert) { const SkPoint& a = p[0]; const SkPoint& b = p[1]; SkVector ortho, vec = b; vec -= a; if (vec.setLength(SK_ScalarHalf)) { // Create a vector orthogonal to 'vec' and of unit length ortho.fX = 2.0f * vec.fY; ortho.fY = -2.0f * vec.fX; float floatCoverage = GrNormalizeByteToFloat(coverage); (*vert)[0].fPos = a; (*vert)[0].fCoverage = floatCoverage; (*vert)[1].fPos = b; (*vert)[1].fCoverage = floatCoverage; (*vert)[2].fPos = a - vec + ortho; (*vert)[2].fCoverage = 0; (*vert)[3].fPos = b + vec + ortho; (*vert)[3].fCoverage = 0; (*vert)[4].fPos = a - vec - ortho; (*vert)[4].fCoverage = 0; (*vert)[5].fPos = b + vec - ortho; (*vert)[5].fCoverage = 0; if (toSrc) { toSrc->mapPointsWithStride(&(*vert)->fPos, sizeof(LineVertex), kLineSegNumVertices); } } else { // just make it degenerate and likely offscreen for (int i = 0; i < kLineSegNumVertices; ++i) { (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); } } *vert += kLineSegNumVertices; } /////////////////////////////////////////////////////////////////////////////// bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { if (!args.fAntiAlias) { return false; } if (!IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr)) { return false; } if (SkPath::kLine_SegmentMask == args.fPath->getSegmentMasks() || args.fShaderCaps->shaderDerivativeSupport()) { return true; } return false; } template <class VertexType> bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount) { SkRect tolDevBounds = devBounds; // The bounds ought to be tight, but in perspective the below code runs the verts // through the view matrix to get back to dev coords, which can introduce imprecision. if (viewMatrix.hasPerspective()) { tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); } else { // Non-persp matrices cause this path renderer to draw in device space. SkASSERT(viewMatrix.isIdentity()); } SkRect actualBounds; VertexType* verts = reinterpret_cast<VertexType*>(vertices); bool first = true; for (int i = 0; i < vCount; ++i) { SkPoint pos = verts[i].fPos; // This is a hack to workaround the fact that we move some degenerate segments offscreen. if (SK_ScalarMax == pos.fX) { continue; } viewMatrix.mapPoints(&pos, 1); if (first) { actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); first = false; } else { actualBounds.growToInclude(pos.fX, pos.fY); } } if (!first) { return tolDevBounds.contains(actualBounds); } return true; } class AAHairlineBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { GrColor fColor; uint8_t fCoverage; SkMatrix fViewMatrix; SkPath fPath; SkIRect fDevClipBounds; }; static GrDrawBatch* Create(const Geometry& geometry) { return new AAHairlineBatch(geometry); } const char* name() const override { return "AAHairlineBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any color overrides if (!overrides.readsColor()) { fGeoData[0].fColor = GrColor_ILLEGAL; } overrides.getOverrideColorIfSet(&fGeoData[0].fColor); // setup batch properties fBatch.fColorIgnored = !overrides.readsColor(); fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = overrides.readsLocalCoords(); fBatch.fCoverageIgnored = !overrides.readsCoverage(); fBatch.fCoverage = fGeoData[0].fCoverage; } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } void onPrepareDraws(Target*) const override; typedef SkTArray<SkPoint, true> PtArray; typedef SkTArray<int, true> IntArray; typedef SkTArray<float, true> FloatArray; AAHairlineBatch(const Geometry& geometry) : INHERITED(ClassID()) { fGeoData.push_back(geometry); // compute bounds fBounds = geometry.fPath.getBounds(); geometry.fViewMatrix.mapRect(&fBounds); // This is b.c. hairlines are notionally infinitely thin so without expansion // two overlapping lines could be reordered even though they hit the same pixels. fBounds.outset(0.5f, 0.5f); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { AAHairlineBatch* that = t->cast<AAHairlineBatch>(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) { return false; } // We go to identity if we don't have perspective if (this->viewMatrix().hasPerspective() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } // TODO we can actually batch hairlines if they are the same color in a kind of bulk method // but we haven't implemented this yet // TODO investigate going to vertex color and coverage? if (this->coverage() != that->coverage()) { return false; } if (this->color() != that->color()) { return false; } SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); this->joinBounds(that->bounds()); return true; } GrColor color() const { return fBatch.fColor; } uint8_t coverage() const { return fBatch.fCoverage; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } struct BatchTracker { GrColor fColor; uint8_t fCoverage; SkRect fDevBounds; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; void AAHairlineBatch::onPrepareDraws(Target* target) const { // Setup the viewmatrix and localmatrix for the GrGeometryProcessor. SkMatrix invert; if (!this->viewMatrix().invert(&invert)) { return; } // we will transform to identity space if the viewmatrix does not have perspective bool hasPerspective = this->viewMatrix().hasPerspective(); const SkMatrix* geometryProcessorViewM = &SkMatrix::I(); const SkMatrix* geometryProcessorLocalM = &invert; const SkMatrix* toDevice = nullptr; const SkMatrix* toSrc = nullptr; if (hasPerspective) { geometryProcessorViewM = &this->viewMatrix(); geometryProcessorLocalM = &SkMatrix::I(); toDevice = &this->viewMatrix(); toSrc = &invert; } SkAutoTUnref<const GrGeometryProcessor> lineGP; { using namespace GrDefaultGeoProcFactory; Color color(this->color()); Coverage coverage(Coverage::kAttribute_Type); LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type); localCoords.fMatrix = geometryProcessorLocalM; lineGP.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords, *geometryProcessorViewM)); } SkAutoTUnref<const GrGeometryProcessor> quadGP( GrQuadEffect::Create(this->color(), *geometryProcessorViewM, kHairlineAA_GrProcessorEdgeType, target->caps(), *geometryProcessorLocalM, this->usesLocalCoords(), this->coverage())); SkAutoTUnref<const GrGeometryProcessor> conicGP( GrConicEffect::Create(this->color(), *geometryProcessorViewM, kHairlineAA_GrProcessorEdgeType, target->caps(), *geometryProcessorLocalM, this->usesLocalCoords(), this->coverage())); // This is hand inlined for maximum performance. PREALLOC_PTARRAY(128) lines; PREALLOC_PTARRAY(128) quads; PREALLOC_PTARRAY(128) conics; IntArray qSubdivs; FloatArray cWeights; int quadCount = 0; int instanceCount = fGeoData.count(); for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds, &lines, &quads, &conics, &qSubdivs, &cWeights); } int lineCount = lines.count() / 2; int conicCount = conics.count() / 3; // do lines first if (lineCount) { SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer( ref_lines_index_buffer(target->resourceProvider())); target->initDraw(lineGP, this->pipeline()); const GrVertexBuffer* vertexBuffer; int firstVertex; size_t vertexStride = lineGP->getVertexStride(); int vertexCount = kLineSegNumVertices * lineCount; LineVertex* verts = reinterpret_cast<LineVertex*>( target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex)); if (!verts|| !linesIndexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex)); for (int i = 0; i < lineCount; ++i) { add_line(&lines[2*i], toSrc, this->coverage(), &verts); } { GrVertices vertices; vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer, firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer); target->draw(vertices); } } if (quadCount || conicCount) { const GrVertexBuffer* vertexBuffer; int firstVertex; SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer( ref_quads_index_buffer(target->resourceProvider())); size_t vertexStride = sizeof(BezierVertex); int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount; void *vertices = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex); if (!vertices || !quadsIndexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } // Setup vertices BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices); int unsubdivQuadCnt = quads.count() / 3; for (int i = 0; i < unsubdivQuadCnt; ++i) { SkASSERT(qSubdivs[i] >= 0); add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts); } // Start Conics for (int i = 0; i < conicCount; ++i) { add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts); } if (quadCount > 0) { target->initDraw(quadGP, this->pipeline()); { GrVertices tempVerts; tempVerts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer, firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount, kQuadsNumInIdxBuffer); target->draw(tempVerts); firstVertex += quadCount * kQuadNumVertices; } } if (conicCount > 0) { target->initDraw(conicGP, this->pipeline()); { GrVertices tempVerts; tempVerts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer, firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount, kQuadsNumInIdxBuffer); target->draw(tempVerts); } } } } static GrDrawBatch* create_hairline_batch(GrColor color, const SkMatrix& viewMatrix, const SkPath& path, const GrStrokeInfo& stroke, const SkIRect& devClipBounds) { SkScalar hairlineCoverage; uint8_t newCoverage = 0xff; if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairlineCoverage)) { newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff); } AAHairlineBatch::Geometry geometry; geometry.fColor = color; geometry.fCoverage = newCoverage; geometry.fViewMatrix = viewMatrix; geometry.fPath = path; geometry.fDevClipBounds = devClipBounds; return AAHairlineBatch::Create(geometry); } bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fTarget->getAuditTrail(),"GrAAHairlinePathRenderer::onDrawPath"); SkIRect devClipBounds; GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget(); args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &devClipBounds); SkAutoTUnref<GrDrawBatch> batch(create_hairline_batch(args.fColor, *args.fViewMatrix, *args.fPath, *args.fStroke, devClipBounds)); args.fTarget->drawBatch(*args.fPipelineBuilder, batch); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) { GrColor color = GrRandomColor(random); SkMatrix viewMatrix = GrTest::TestMatrix(random); GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle); SkPath path = GrTest::TestPath(random); SkIRect devClipBounds; devClipBounds.setEmpty(); return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds); } #endif