/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrAAConvexTessellator_DEFINED #define GrAAConvexTessellator_DEFINED #include "SkColor.h" #include "SkPaint.h" #include "SkPoint.h" #include "SkScalar.h" #include "SkTDArray.h" class SkCanvas; class SkMatrix; class SkPath; //#define GR_AA_CONVEX_TESSELLATOR_VIZ 1 // device space distance which we inset / outset points in order to create the soft antialiased edge static const SkScalar kAntialiasingRadius = 0.5f; class GrAAConvexTessellator; // The AAConvexTessellator holds the global pool of points and the triangulation // that connects them. It also drives the tessellation process. // The outward facing normals of the original polygon are stored (in 'fNorms') to service // computeDepthFromEdge requests. class GrAAConvexTessellator { public: GrAAConvexTessellator(SkScalar strokeWidth = -1.0f, SkPaint::Join join = SkPaint::Join::kBevel_Join, SkScalar miterLimit = 0.0f) : fSide(SkPoint::kOn_Side) , fStrokeWidth(strokeWidth) , fJoin(join) , fMiterLimit(miterLimit) { } SkPoint::Side side() const { return fSide; } bool tessellate(const SkMatrix& m, const SkPath& path); // The next five should only be called after tessellate to extract the result int numPts() const { return fPts.count(); } int numIndices() const { return fIndices.count(); } const SkPoint& lastPoint() const { return fPts.top(); } const SkPoint& point(int index) const { return fPts[index]; } int index(int index) const { return fIndices[index]; } SkScalar coverage(int index) const { return fCoverages[index]; } #if GR_AA_CONVEX_TESSELLATOR_VIZ void draw(SkCanvas* canvas) const; #endif // The tessellator can be reused for multiple paths by rewinding in between void rewind(); private: // CandidateVerts holds the vertices for the next ring while they are // being generated. Its main function is to de-dup the points. class CandidateVerts { public: void setReserve(int numPts) { fPts.setReserve(numPts); } void rewind() { fPts.rewind(); } int numPts() const { return fPts.count(); } const SkPoint& lastPoint() const { return fPts.top().fPt; } const SkPoint& firstPoint() const { return fPts[0].fPt; } const SkPoint& point(int index) const { return fPts[index].fPt; } int originatingIdx(int index) const { return fPts[index].fOriginatingIdx; } int origEdge(int index) const { return fPts[index].fOrigEdgeId; } bool needsToBeNew(int index) const { return fPts[index].fNeedsToBeNew; } int addNewPt(const SkPoint& newPt, int originatingIdx, int origEdge, bool needsToBeNew) { struct PointData* pt = fPts.push(); pt->fPt = newPt; pt->fOrigEdgeId = origEdge; pt->fOriginatingIdx = originatingIdx; pt->fNeedsToBeNew = needsToBeNew; return fPts.count() - 1; } int fuseWithPrior(int origEdgeId) { fPts.top().fOrigEdgeId = origEdgeId; fPts.top().fOriginatingIdx = -1; fPts.top().fNeedsToBeNew = true; return fPts.count() - 1; } int fuseWithNext() { fPts[0].fOriginatingIdx = -1; fPts[0].fNeedsToBeNew = true; return 0; } int fuseWithBoth() { if (fPts.count() > 1) { fPts.pop(); } fPts[0].fOriginatingIdx = -1; fPts[0].fNeedsToBeNew = true; return 0; } private: struct PointData { SkPoint fPt; int fOriginatingIdx; int fOrigEdgeId; bool fNeedsToBeNew; }; SkTDArray<struct PointData> fPts; }; // The Ring holds a set of indices into the global pool that together define // a single polygon inset. class Ring { public: void setReserve(int numPts) { fPts.setReserve(numPts); } void rewind() { fPts.rewind(); } int numPts() const { return fPts.count(); } void addIdx(int index, int origEdgeId) { struct PointData* pt = fPts.push(); pt->fIndex = index; pt->fOrigEdgeId = origEdgeId; } // init should be called after all the indices have been added (via addIdx) void init(const GrAAConvexTessellator& tess); void init(const SkTDArray<SkVector>& norms, const SkTDArray<SkVector>& bisectors); const SkPoint& norm(int index) const { return fPts[index].fNorm; } const SkPoint& bisector(int index) const { return fPts[index].fBisector; } int index(int index) const { return fPts[index].fIndex; } int origEdgeID(int index) const { return fPts[index].fOrigEdgeId; } void setOrigEdgeId(int index, int id) { fPts[index].fOrigEdgeId = id; } #if GR_AA_CONVEX_TESSELLATOR_VIZ void draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const; #endif private: void computeNormals(const GrAAConvexTessellator& result); void computeBisectors(const GrAAConvexTessellator& tess); SkDEBUGCODE(bool isConvex(const GrAAConvexTessellator& tess) const;) struct PointData { SkPoint fNorm; SkPoint fBisector; int fIndex; int fOrigEdgeId; }; SkTDArray<PointData> fPts; }; bool movable(int index) const { return fMovable[index]; } // Movable points are those that can be slid along their bisector. // Basically, a point is immovable if it is part of the original // polygon or it results from the fusing of two bisectors. int addPt(const SkPoint& pt, SkScalar depth, SkScalar coverage, bool movable, bool isCurve); void popLastPt(); void popFirstPtShuffle(); void updatePt(int index, const SkPoint& pt, SkScalar depth, SkScalar coverage); void addTri(int i0, int i1, int i2); void reservePts(int count) { fPts.setReserve(count); fCoverages.setReserve(count); fMovable.setReserve(count); } SkScalar computeDepthFromEdge(int edgeIdx, const SkPoint& p) const; bool computePtAlongBisector(int startIdx, const SkPoint& bisector, int edgeIdx, SkScalar desiredDepth, SkPoint* result) const; void lineTo(SkPoint p, bool isCurve); void lineTo(const SkMatrix& m, SkPoint p, bool isCurve); void quadTo(SkPoint pts[3]); void quadTo(const SkMatrix& m, SkPoint pts[3]); void cubicTo(const SkMatrix& m, SkPoint pts[4]); void conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w); void terminate(const Ring& lastRing); // return false on failure/degenerate path bool extractFromPath(const SkMatrix& m, const SkPath& path); void computeBisectors(); void fanRing(const Ring& ring); Ring* getNextRing(Ring* lastRing); void createOuterRing(const Ring& previousRing, SkScalar outset, SkScalar coverage, Ring* nextRing); bool createInsetRings(Ring& previousRing, SkScalar initialDepth, SkScalar initialCoverage, SkScalar targetDepth, SkScalar targetCoverage, Ring** finalRing); bool createInsetRing(const Ring& lastRing, Ring* nextRing, SkScalar initialDepth, SkScalar initialCoverage, SkScalar targetDepth, SkScalar targetCoverage, bool forceNew); void validate() const; // fPts, fCoverages & fMovable should always have the same # of elements SkTDArray<SkPoint> fPts; SkTDArray<SkScalar> fCoverages; // movable points are those that can be slid further along their bisector SkTDArray<bool> fMovable; // The outward facing normals for the original polygon SkTDArray<SkVector> fNorms; // The inward facing bisector at each point in the original polygon. Only // needed for exterior ring creation and then handed off to the initial ring. SkTDArray<SkVector> fBisectors; // Tracks whether a given point is interior to a curve. Such points are // assumed to have shallow curvature. SkTDArray<bool> fIsCurve; SkPoint::Side fSide; // winding of the original polygon // The triangulation of the points SkTDArray<int> fIndices; Ring fInitialRing; #if GR_AA_CONVEX_TESSELLATOR_VIZ // When visualizing save all the rings SkTDArray<Ring*> fRings; #else Ring fRings[2]; #endif CandidateVerts fCandidateVerts; // < 0 means filling rather than stroking SkScalar fStrokeWidth; SkPaint::Join fJoin; SkScalar fMiterLimit; SkTDArray<SkPoint> fPointBuffer; }; #endif