/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrResourceCache.h" #include "GrGpuResourceCacheAccess.h" #include "GrTracing.h" #include "SkChecksum.h" #include "SkGr.h" #include "SkMessageBus.h" #include "SkTSort.h" DECLARE_SKMESSAGEBUS_MESSAGE(GrUniqueKeyInvalidatedMessage); ////////////////////////////////////////////////////////////////////////////// GrScratchKey::ResourceType GrScratchKey::GenerateResourceType() { static int32_t gType = INHERITED::kInvalidDomain + 1; int32_t type = sk_atomic_inc(&gType); if (type > SK_MaxU16) { SkFAIL("Too many Resource Types"); } return static_cast<ResourceType>(type); } GrUniqueKey::Domain GrUniqueKey::GenerateDomain() { static int32_t gDomain = INHERITED::kInvalidDomain + 1; int32_t domain = sk_atomic_inc(&gDomain); if (domain > SK_MaxU16) { SkFAIL("Too many GrUniqueKey Domains"); } return static_cast<Domain>(domain); } uint32_t GrResourceKeyHash(const uint32_t* data, size_t size) { return SkChecksum::Murmur3(data, size); } ////////////////////////////////////////////////////////////////////////////// class GrResourceCache::AutoValidate : ::SkNoncopyable { public: AutoValidate(GrResourceCache* cache) : fCache(cache) { cache->validate(); } ~AutoValidate() { fCache->validate(); } private: GrResourceCache* fCache; }; ////////////////////////////////////////////////////////////////////////////// GrResourceCache::GrResourceCache(const GrCaps* caps) : fTimestamp(0) , fMaxCount(kDefaultMaxCount) , fMaxBytes(kDefaultMaxSize) , fMaxUnusedFlushes(kDefaultMaxUnusedFlushes) #if GR_CACHE_STATS , fHighWaterCount(0) , fHighWaterBytes(0) , fBudgetedHighWaterCount(0) , fBudgetedHighWaterBytes(0) #endif , fBytes(0) , fBudgetedCount(0) , fBudgetedBytes(0) , fOverBudgetCB(nullptr) , fOverBudgetData(nullptr) , fFlushTimestamps(nullptr) , fLastFlushTimestampIndex(0) , fPreferVRAMUseOverFlushes(caps->preferVRAMUseOverFlushes()) { SkDEBUGCODE(fCount = 0;) SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr;) this->resetFlushTimestamps(); } GrResourceCache::~GrResourceCache() { this->releaseAll(); delete[] fFlushTimestamps; } void GrResourceCache::setLimits(int count, size_t bytes, int maxUnusedFlushes) { fMaxCount = count; fMaxBytes = bytes; fMaxUnusedFlushes = maxUnusedFlushes; this->resetFlushTimestamps(); this->purgeAsNeeded(); } void GrResourceCache::resetFlushTimestamps() { delete[] fFlushTimestamps; // We assume this number is a power of two when wrapping indices into the timestamp array. fMaxUnusedFlushes = SkNextPow2(fMaxUnusedFlushes); // Since our implementation is to store the timestamps of the last fMaxUnusedFlushes flush calls // we just turn the feature off if that array would be large. static const int kMaxSupportedTimestampHistory = 128; if (fMaxUnusedFlushes > kMaxSupportedTimestampHistory) { fFlushTimestamps = nullptr; return; } fFlushTimestamps = new uint32_t[fMaxUnusedFlushes]; fLastFlushTimestampIndex = 0; // Set all the historical flush timestamps to initially be at the beginning of time (timestamp // 0). sk_bzero(fFlushTimestamps, fMaxUnusedFlushes * sizeof(uint32_t)); } void GrResourceCache::insertResource(GrGpuResource* resource) { SkASSERT(resource); SkASSERT(!this->isInCache(resource)); SkASSERT(!resource->wasDestroyed()); SkASSERT(!resource->isPurgeable()); // We must set the timestamp before adding to the array in case the timestamp wraps and we wind // up iterating over all the resources that already have timestamps. resource->cacheAccess().setTimestamp(this->getNextTimestamp()); this->addToNonpurgeableArray(resource); size_t size = resource->gpuMemorySize(); SkDEBUGCODE(++fCount;) fBytes += size; #if GR_CACHE_STATS fHighWaterCount = SkTMax(this->getResourceCount(), fHighWaterCount); fHighWaterBytes = SkTMax(fBytes, fHighWaterBytes); #endif if (SkBudgeted::kYes == resource->resourcePriv().isBudgeted()) { ++fBudgetedCount; fBudgetedBytes += size; TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used", fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes); #if GR_CACHE_STATS fBudgetedHighWaterCount = SkTMax(fBudgetedCount, fBudgetedHighWaterCount); fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes); #endif } if (resource->resourcePriv().getScratchKey().isValid()) { SkASSERT(!resource->cacheAccess().isExternal()); fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource); } this->purgeAsNeeded(); } void GrResourceCache::removeResource(GrGpuResource* resource) { this->validate(); SkASSERT(this->isInCache(resource)); if (resource->isPurgeable()) { fPurgeableQueue.remove(resource); } else { this->removeFromNonpurgeableArray(resource); } size_t size = resource->gpuMemorySize(); SkDEBUGCODE(--fCount;) fBytes -= size; if (SkBudgeted::kYes == resource->resourcePriv().isBudgeted()) { --fBudgetedCount; fBudgetedBytes -= size; TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used", fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes); } if (resource->resourcePriv().getScratchKey().isValid()) { fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource); } if (resource->getUniqueKey().isValid()) { fUniqueHash.remove(resource->getUniqueKey()); } this->validate(); } void GrResourceCache::abandonAll() { AutoValidate av(this); while (fNonpurgeableResources.count()) { GrGpuResource* back = *(fNonpurgeableResources.end() - 1); SkASSERT(!back->wasDestroyed()); back->cacheAccess().abandon(); } while (fPurgeableQueue.count()) { GrGpuResource* top = fPurgeableQueue.peek(); SkASSERT(!top->wasDestroyed()); top->cacheAccess().abandon(); } SkASSERT(!fScratchMap.count()); SkASSERT(!fUniqueHash.count()); SkASSERT(!fCount); SkASSERT(!this->getResourceCount()); SkASSERT(!fBytes); SkASSERT(!fBudgetedCount); SkASSERT(!fBudgetedBytes); } void GrResourceCache::releaseAll() { AutoValidate av(this); while(fNonpurgeableResources.count()) { GrGpuResource* back = *(fNonpurgeableResources.end() - 1); SkASSERT(!back->wasDestroyed()); back->cacheAccess().release(); } while (fPurgeableQueue.count()) { GrGpuResource* top = fPurgeableQueue.peek(); SkASSERT(!top->wasDestroyed()); top->cacheAccess().release(); } SkASSERT(!fScratchMap.count()); SkASSERT(!fUniqueHash.count()); SkASSERT(!fCount); SkASSERT(!this->getResourceCount()); SkASSERT(!fBytes); SkASSERT(!fBudgetedCount); SkASSERT(!fBudgetedBytes); } class GrResourceCache::AvailableForScratchUse { public: AvailableForScratchUse(bool rejectPendingIO) : fRejectPendingIO(rejectPendingIO) { } bool operator()(const GrGpuResource* resource) const { if (resource->internalHasRef() || !resource->cacheAccess().isScratch()) { return false; } return !fRejectPendingIO || !resource->internalHasPendingIO(); } private: bool fRejectPendingIO; }; GrGpuResource* GrResourceCache::findAndRefScratchResource(const GrScratchKey& scratchKey, size_t resourceSize, uint32_t flags) { SkASSERT(scratchKey.isValid()); GrGpuResource* resource; if (flags & (kPreferNoPendingIO_ScratchFlag | kRequireNoPendingIO_ScratchFlag)) { resource = fScratchMap.find(scratchKey, AvailableForScratchUse(true)); if (resource) { this->refAndMakeResourceMRU(resource); this->validate(); return resource; } else if (flags & kRequireNoPendingIO_ScratchFlag) { return nullptr; } // We would prefer to consume more available VRAM rather than flushing // immediately, but on ANGLE this can lead to starving of the GPU. if (fPreferVRAMUseOverFlushes && this->wouldFit(resourceSize)) { // kPrefer is specified, we didn't find a resource without pending io, // but there is still space in our budget for the resource so force // the caller to allocate a new resource. return nullptr; } } resource = fScratchMap.find(scratchKey, AvailableForScratchUse(false)); if (resource) { this->refAndMakeResourceMRU(resource); this->validate(); } return resource; } void GrResourceCache::willRemoveScratchKey(const GrGpuResource* resource) { SkASSERT(resource->resourcePriv().getScratchKey().isValid()); fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource); } void GrResourceCache::removeUniqueKey(GrGpuResource* resource) { // Someone has a ref to this resource in order to have removed the key. When the ref count // reaches zero we will get a ref cnt notification and figure out what to do with it. if (resource->getUniqueKey().isValid()) { SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey())); fUniqueHash.remove(resource->getUniqueKey()); } resource->cacheAccess().removeUniqueKey(); this->validate(); } void GrResourceCache::changeUniqueKey(GrGpuResource* resource, const GrUniqueKey& newKey) { SkASSERT(resource); SkASSERT(this->isInCache(resource)); // Remove the entry for this resource if it already has a unique key. if (resource->getUniqueKey().isValid()) { SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey())); fUniqueHash.remove(resource->getUniqueKey()); SkASSERT(nullptr == fUniqueHash.find(resource->getUniqueKey())); } // If another resource has the new key, remove its key then install the key on this resource. if (newKey.isValid()) { if (GrGpuResource* old = fUniqueHash.find(newKey)) { // If the old resource using the key is purgeable and is unreachable, then remove it. if (!old->resourcePriv().getScratchKey().isValid() && old->isPurgeable()) { // release may call validate() which will assert that resource is in fUniqueHash // if it has a valid key. So in debug reset the key here before we assign it. SkDEBUGCODE(resource->cacheAccess().removeUniqueKey();) old->cacheAccess().release(); } else { fUniqueHash.remove(newKey); old->cacheAccess().removeUniqueKey(); } } SkASSERT(nullptr == fUniqueHash.find(newKey)); resource->cacheAccess().setUniqueKey(newKey); fUniqueHash.add(resource); } else { resource->cacheAccess().removeUniqueKey(); } this->validate(); } void GrResourceCache::refAndMakeResourceMRU(GrGpuResource* resource) { SkASSERT(resource); SkASSERT(this->isInCache(resource)); if (resource->isPurgeable()) { // It's about to become unpurgeable. fPurgeableQueue.remove(resource); this->addToNonpurgeableArray(resource); } resource->ref(); resource->cacheAccess().setTimestamp(this->getNextTimestamp()); this->validate(); } void GrResourceCache::notifyCntReachedZero(GrGpuResource* resource, uint32_t flags) { SkASSERT(resource); SkASSERT(!resource->wasDestroyed()); SkASSERT(flags); SkASSERT(this->isInCache(resource)); // This resource should always be in the nonpurgeable array when this function is called. It // will be moved to the queue if it is newly purgeable. SkASSERT(fNonpurgeableResources[*resource->cacheAccess().accessCacheIndex()] == resource); if (SkToBool(ResourceAccess::kRefCntReachedZero_RefNotificationFlag & flags)) { #ifdef SK_DEBUG // When the timestamp overflows validate() is called. validate() checks that resources in // the nonpurgeable array are indeed not purgeable. However, the movement from the array to // the purgeable queue happens just below in this function. So we mark it as an exception. if (resource->isPurgeable()) { fNewlyPurgeableResourceForValidation = resource; } #endif resource->cacheAccess().setTimestamp(this->getNextTimestamp()); SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr); } if (!SkToBool(ResourceAccess::kAllCntsReachedZero_RefNotificationFlag & flags)) { SkASSERT(!resource->isPurgeable()); return; } SkASSERT(resource->isPurgeable()); this->removeFromNonpurgeableArray(resource); fPurgeableQueue.insert(resource); if (SkBudgeted::kNo == resource->resourcePriv().isBudgeted()) { // Check whether this resource could still be used as a scratch resource. if (!resource->cacheAccess().isExternal() && resource->resourcePriv().getScratchKey().isValid()) { // We won't purge an existing resource to make room for this one. if (fBudgetedCount < fMaxCount && fBudgetedBytes + resource->gpuMemorySize() <= fMaxBytes) { resource->resourcePriv().makeBudgeted(); return; } } } else { // Purge the resource immediately if we're over budget // Also purge if the resource has neither a valid scratch key nor a unique key. bool noKey = !resource->resourcePriv().getScratchKey().isValid() && !resource->getUniqueKey().isValid(); if (!this->overBudget() && !noKey) { return; } } SkDEBUGCODE(int beforeCount = this->getResourceCount();) resource->cacheAccess().release(); // We should at least free this resource, perhaps dependent resources as well. SkASSERT(this->getResourceCount() < beforeCount); this->validate(); } void GrResourceCache::didChangeGpuMemorySize(const GrGpuResource* resource, size_t oldSize) { // SkASSERT(!fPurging); GrPathRange increases size during flush. :( SkASSERT(resource); SkASSERT(this->isInCache(resource)); ptrdiff_t delta = resource->gpuMemorySize() - oldSize; fBytes += delta; #if GR_CACHE_STATS fHighWaterBytes = SkTMax(fBytes, fHighWaterBytes); #endif if (SkBudgeted::kYes == resource->resourcePriv().isBudgeted()) { fBudgetedBytes += delta; TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used", fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes); #if GR_CACHE_STATS fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes); #endif } this->purgeAsNeeded(); this->validate(); } void GrResourceCache::didChangeBudgetStatus(GrGpuResource* resource) { SkASSERT(resource); SkASSERT(this->isInCache(resource)); size_t size = resource->gpuMemorySize(); if (SkBudgeted::kYes == resource->resourcePriv().isBudgeted()) { ++fBudgetedCount; fBudgetedBytes += size; #if GR_CACHE_STATS fBudgetedHighWaterBytes = SkTMax(fBudgetedBytes, fBudgetedHighWaterBytes); fBudgetedHighWaterCount = SkTMax(fBudgetedCount, fBudgetedHighWaterCount); #endif this->purgeAsNeeded(); } else { --fBudgetedCount; fBudgetedBytes -= size; } TRACE_COUNTER2(TRACE_DISABLED_BY_DEFAULT("skia.gpu.cache"), "skia budget", "used", fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes); this->validate(); } void GrResourceCache::purgeAsNeeded() { SkTArray<GrUniqueKeyInvalidatedMessage> invalidKeyMsgs; fInvalidUniqueKeyInbox.poll(&invalidKeyMsgs); if (invalidKeyMsgs.count()) { this->processInvalidUniqueKeys(invalidKeyMsgs); } if (fFlushTimestamps) { // Assuming kNumFlushesToDeleteUnusedResource is a power of 2. SkASSERT(SkIsPow2(fMaxUnusedFlushes)); int oldestFlushIndex = (fLastFlushTimestampIndex + 1) & (fMaxUnusedFlushes - 1); uint32_t oldestAllowedTimestamp = fFlushTimestamps[oldestFlushIndex]; while (fPurgeableQueue.count()) { uint32_t oldestResourceTimestamp = fPurgeableQueue.peek()->cacheAccess().timestamp(); if (oldestAllowedTimestamp < oldestResourceTimestamp) { break; } GrGpuResource* resource = fPurgeableQueue.peek(); SkASSERT(resource->isPurgeable()); resource->cacheAccess().release(); } } bool stillOverbudget = this->overBudget(); while (stillOverbudget && fPurgeableQueue.count()) { GrGpuResource* resource = fPurgeableQueue.peek(); SkASSERT(resource->isPurgeable()); resource->cacheAccess().release(); stillOverbudget = this->overBudget(); } this->validate(); if (stillOverbudget) { // Despite the purge we're still over budget. Call our over budget callback. If this frees // any resources then we'll get notified and take appropriate action. (*fOverBudgetCB)(fOverBudgetData); this->validate(); } } void GrResourceCache::purgeAllUnlocked() { // We could disable maintaining the heap property here, but it would add a lot of complexity. // Moreover, this is rarely called. while (fPurgeableQueue.count()) { GrGpuResource* resource = fPurgeableQueue.peek(); SkASSERT(resource->isPurgeable()); resource->cacheAccess().release(); } this->validate(); } void GrResourceCache::processInvalidUniqueKeys( const SkTArray<GrUniqueKeyInvalidatedMessage>& msgs) { for (int i = 0; i < msgs.count(); ++i) { GrGpuResource* resource = this->findAndRefUniqueResource(msgs[i].key()); if (resource) { resource->resourcePriv().removeUniqueKey(); resource->unref(); // If this resource is now purgeable, the cache will be notified. } } } void GrResourceCache::addToNonpurgeableArray(GrGpuResource* resource) { int index = fNonpurgeableResources.count(); *fNonpurgeableResources.append() = resource; *resource->cacheAccess().accessCacheIndex() = index; } void GrResourceCache::removeFromNonpurgeableArray(GrGpuResource* resource) { int* index = resource->cacheAccess().accessCacheIndex(); // Fill the whole we will create in the array with the tail object, adjust its index, and // then pop the array GrGpuResource* tail = *(fNonpurgeableResources.end() - 1); SkASSERT(fNonpurgeableResources[*index] == resource); fNonpurgeableResources[*index] = tail; *tail->cacheAccess().accessCacheIndex() = *index; fNonpurgeableResources.pop(); SkDEBUGCODE(*index = -1); } uint32_t GrResourceCache::getNextTimestamp() { // If we wrap then all the existing resources will appear older than any resources that get // a timestamp after the wrap. if (0 == fTimestamp) { int count = this->getResourceCount(); if (count) { // Reset all the timestamps. We sort the resources by timestamp and then assign // sequential timestamps beginning with 0. This is O(n*lg(n)) but it should be extremely // rare. SkTDArray<GrGpuResource*> sortedPurgeableResources; sortedPurgeableResources.setReserve(fPurgeableQueue.count()); while (fPurgeableQueue.count()) { *sortedPurgeableResources.append() = fPurgeableQueue.peek(); fPurgeableQueue.pop(); } struct Less { bool operator()(GrGpuResource* a, GrGpuResource* b) { return CompareTimestamp(a,b); } }; Less less; SkTQSort(fNonpurgeableResources.begin(), fNonpurgeableResources.end() - 1, less); // Pick resources out of the purgeable and non-purgeable arrays based on lowest // timestamp and assign new timestamps. int currP = 0; int currNP = 0; while (currP < sortedPurgeableResources.count() && currNP < fNonpurgeableResources.count()) { uint32_t tsP = sortedPurgeableResources[currP]->cacheAccess().timestamp(); uint32_t tsNP = fNonpurgeableResources[currNP]->cacheAccess().timestamp(); SkASSERT(tsP != tsNP); if (tsP < tsNP) { sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++); } else { // Correct the index in the nonpurgeable array stored on the resource post-sort. *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP; fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++); } } // The above loop ended when we hit the end of one array. Finish the other one. while (currP < sortedPurgeableResources.count()) { sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++); } while (currNP < fNonpurgeableResources.count()) { *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP; fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++); } // Rebuild the queue. for (int i = 0; i < sortedPurgeableResources.count(); ++i) { fPurgeableQueue.insert(sortedPurgeableResources[i]); } this->validate(); SkASSERT(count == this->getResourceCount()); // count should be the next timestamp we return. SkASSERT(fTimestamp == SkToU32(count)); // The historical timestamps of flushes are now invalid. this->resetFlushTimestamps(); } } return fTimestamp++; } void GrResourceCache::notifyFlushOccurred() { if (fFlushTimestamps) { SkASSERT(SkIsPow2(fMaxUnusedFlushes)); fLastFlushTimestampIndex = (fLastFlushTimestampIndex + 1) & (fMaxUnusedFlushes - 1); // get the timestamp before accessing fFlushTimestamps because getNextTimestamp will // reallocate fFlushTimestamps on timestamp overflow. uint32_t timestamp = this->getNextTimestamp(); fFlushTimestamps[fLastFlushTimestampIndex] = timestamp; this->purgeAsNeeded(); } } void GrResourceCache::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const { for (int i = 0; i < fNonpurgeableResources.count(); ++i) { fNonpurgeableResources[i]->dumpMemoryStatistics(traceMemoryDump); } for (int i = 0; i < fPurgeableQueue.count(); ++i) { fPurgeableQueue.at(i)->dumpMemoryStatistics(traceMemoryDump); } } #ifdef SK_DEBUG void GrResourceCache::validate() const { // Reduce the frequency of validations for large resource counts. static SkRandom gRandom; int mask = (SkNextPow2(fCount + 1) >> 5) - 1; if (~mask && (gRandom.nextU() & mask)) { return; } struct Stats { size_t fBytes; int fBudgetedCount; size_t fBudgetedBytes; int fLocked; int fScratch; int fCouldBeScratch; int fContent; const ScratchMap* fScratchMap; const UniqueHash* fUniqueHash; Stats(const GrResourceCache* cache) { memset(this, 0, sizeof(*this)); fScratchMap = &cache->fScratchMap; fUniqueHash = &cache->fUniqueHash; } void update(GrGpuResource* resource) { fBytes += resource->gpuMemorySize(); if (!resource->isPurgeable()) { ++fLocked; } if (resource->cacheAccess().isScratch()) { SkASSERT(!resource->getUniqueKey().isValid()); ++fScratch; SkASSERT(fScratchMap->countForKey(resource->resourcePriv().getScratchKey())); SkASSERT(!resource->cacheAccess().isExternal()); } else if (resource->resourcePriv().getScratchKey().isValid()) { SkASSERT(SkBudgeted::kNo == resource->resourcePriv().isBudgeted() || resource->getUniqueKey().isValid()); ++fCouldBeScratch; SkASSERT(fScratchMap->countForKey(resource->resourcePriv().getScratchKey())); SkASSERT(!resource->cacheAccess().isExternal()); } const GrUniqueKey& uniqueKey = resource->getUniqueKey(); if (uniqueKey.isValid()) { ++fContent; SkASSERT(fUniqueHash->find(uniqueKey) == resource); SkASSERT(!resource->cacheAccess().isExternal()); SkASSERT(SkBudgeted::kYes == resource->resourcePriv().isBudgeted()); } if (SkBudgeted::kYes == resource->resourcePriv().isBudgeted()) { ++fBudgetedCount; fBudgetedBytes += resource->gpuMemorySize(); } } }; Stats stats(this); for (int i = 0; i < fNonpurgeableResources.count(); ++i) { SkASSERT(!fNonpurgeableResources[i]->isPurgeable() || fNewlyPurgeableResourceForValidation == fNonpurgeableResources[i]); SkASSERT(*fNonpurgeableResources[i]->cacheAccess().accessCacheIndex() == i); SkASSERT(!fNonpurgeableResources[i]->wasDestroyed()); stats.update(fNonpurgeableResources[i]); } for (int i = 0; i < fPurgeableQueue.count(); ++i) { SkASSERT(fPurgeableQueue.at(i)->isPurgeable()); SkASSERT(*fPurgeableQueue.at(i)->cacheAccess().accessCacheIndex() == i); SkASSERT(!fPurgeableQueue.at(i)->wasDestroyed()); stats.update(fPurgeableQueue.at(i)); } SkASSERT(fCount == this->getResourceCount()); SkASSERT(fBudgetedCount <= fCount); SkASSERT(fBudgetedBytes <= fBytes); SkASSERT(stats.fBytes == fBytes); SkASSERT(stats.fBudgetedBytes == fBudgetedBytes); SkASSERT(stats.fBudgetedCount == fBudgetedCount); #if GR_CACHE_STATS SkASSERT(fBudgetedHighWaterCount <= fHighWaterCount); SkASSERT(fBudgetedHighWaterBytes <= fHighWaterBytes); SkASSERT(fBytes <= fHighWaterBytes); SkASSERT(fCount <= fHighWaterCount); SkASSERT(fBudgetedBytes <= fBudgetedHighWaterBytes); SkASSERT(fBudgetedCount <= fBudgetedHighWaterCount); #endif SkASSERT(stats.fContent == fUniqueHash.count()); SkASSERT(stats.fScratch + stats.fCouldBeScratch == fScratchMap.count()); // This assertion is not currently valid because we can be in recursive notifyCntReachedZero() // calls. This will be fixed when subresource registration is explicit. // bool overBudget = budgetedBytes > fMaxBytes || budgetedCount > fMaxCount; // SkASSERT(!overBudget || locked == count || fPurging); } bool GrResourceCache::isInCache(const GrGpuResource* resource) const { int index = *resource->cacheAccess().accessCacheIndex(); if (index < 0) { return false; } if (index < fPurgeableQueue.count() && fPurgeableQueue.at(index) == resource) { return true; } if (index < fNonpurgeableResources.count() && fNonpurgeableResources[index] == resource) { return true; } SkDEBUGFAIL("Resource index should be -1 or the resource should be in the cache."); return false; } #endif