/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDisplacementMapEffect.h" #include "SkDevice.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkUnPreMultiply.h" #include "SkColorPriv.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrDrawContext.h" #include "GrCoordTransform.h" #include "GrInvariantOutput.h" #include "SkGr.h" #include "effects/GrTextureDomain.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #endif namespace { #define kChannelSelectorKeyBits 3; // Max value is 4, so 3 bits are required at most template<SkDisplacementMapEffect::ChannelSelectorType type> uint32_t getValue(SkColor, const SkUnPreMultiply::Scale*) { SkDEBUGFAIL("Unknown channel selector"); return 0; } template<> uint32_t getValue<SkDisplacementMapEffect::kR_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale* table) { return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedR32(l)); } template<> uint32_t getValue<SkDisplacementMapEffect::kG_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale* table) { return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedG32(l)); } template<> uint32_t getValue<SkDisplacementMapEffect::kB_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale* table) { return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedB32(l)); } template<> uint32_t getValue<SkDisplacementMapEffect::kA_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale*) { return SkGetPackedA32(l); } template<SkDisplacementMapEffect::ChannelSelectorType typeX, SkDisplacementMapEffect::ChannelSelectorType typeY> void computeDisplacement(const SkVector& scale, SkBitmap* dst, SkBitmap* displ, const SkIPoint& offset, SkBitmap* src, const SkIRect& bounds) { static const SkScalar Inv8bit = SkScalarInvert(255); const int srcW = src->width(); const int srcH = src->height(); const SkVector scaleForColor = SkVector::Make(SkScalarMul(scale.fX, Inv8bit), SkScalarMul(scale.fY, Inv8bit)); const SkVector scaleAdj = SkVector::Make(SK_ScalarHalf - SkScalarMul(scale.fX, SK_ScalarHalf), SK_ScalarHalf - SkScalarMul(scale.fY, SK_ScalarHalf)); const SkUnPreMultiply::Scale* table = SkUnPreMultiply::GetScaleTable(); SkPMColor* dstPtr = dst->getAddr32(0, 0); for (int y = bounds.top(); y < bounds.bottom(); ++y) { const SkPMColor* displPtr = displ->getAddr32(bounds.left() + offset.fX, y + offset.fY); for (int x = bounds.left(); x < bounds.right(); ++x, ++displPtr) { const SkScalar displX = SkScalarMul(scaleForColor.fX, SkIntToScalar(getValue<typeX>(*displPtr, table))) + scaleAdj.fX; const SkScalar displY = SkScalarMul(scaleForColor.fY, SkIntToScalar(getValue<typeY>(*displPtr, table))) + scaleAdj.fY; // Truncate the displacement values const int srcX = x + SkScalarTruncToInt(displX); const int srcY = y + SkScalarTruncToInt(displY); *dstPtr++ = ((srcX < 0) || (srcX >= srcW) || (srcY < 0) || (srcY >= srcH)) ? 0 : *(src->getAddr32(srcX, srcY)); } } } template<SkDisplacementMapEffect::ChannelSelectorType typeX> void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, SkBitmap* dst, SkBitmap* displ, const SkIPoint& offset, SkBitmap* src, const SkIRect& bounds) { switch (yChannelSelector) { case SkDisplacementMapEffect::kR_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kR_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kG_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kB_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kA_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown Y channel selector"); } } void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, SkBitmap* dst, SkBitmap* displ, const SkIPoint& offset, SkBitmap* src, const SkIRect& bounds) { switch (xChannelSelector) { case SkDisplacementMapEffect::kR_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kR_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kG_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kB_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kA_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown X channel selector"); } } bool channel_selector_type_is_valid(SkDisplacementMapEffect::ChannelSelectorType cst) { switch (cst) { case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: case SkDisplacementMapEffect::kR_ChannelSelectorType: case SkDisplacementMapEffect::kG_ChannelSelectorType: case SkDisplacementMapEffect::kB_ChannelSelectorType: case SkDisplacementMapEffect::kA_ChannelSelectorType: return true; default: break; } return false; } } // end namespace /////////////////////////////////////////////////////////////////////////////// SkImageFilter* SkDisplacementMapEffect::Create(ChannelSelectorType xChannelSelector, ChannelSelectorType yChannelSelector, SkScalar scale, SkImageFilter* displacement, SkImageFilter* color, const CropRect* cropRect) { if (!channel_selector_type_is_valid(xChannelSelector) || !channel_selector_type_is_valid(yChannelSelector)) { return nullptr; } SkImageFilter* inputs[2] = { displacement, color }; return new SkDisplacementMapEffect(xChannelSelector, yChannelSelector, scale, inputs, cropRect); } SkDisplacementMapEffect::SkDisplacementMapEffect(ChannelSelectorType xChannelSelector, ChannelSelectorType yChannelSelector, SkScalar scale, SkImageFilter* inputs[2], const CropRect* cropRect) : INHERITED(2, inputs, cropRect) , fXChannelSelector(xChannelSelector) , fYChannelSelector(yChannelSelector) , fScale(scale) { } SkDisplacementMapEffect::~SkDisplacementMapEffect() { } SkFlattenable* SkDisplacementMapEffect::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 2); ChannelSelectorType xsel = (ChannelSelectorType)buffer.readInt(); ChannelSelectorType ysel = (ChannelSelectorType)buffer.readInt(); SkScalar scale = buffer.readScalar(); return Create(xsel, ysel, scale, common.getInput(0), common.getInput(1), &common.cropRect()); } void SkDisplacementMapEffect::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeInt((int) fXChannelSelector); buffer.writeInt((int) fYChannelSelector); buffer.writeScalar(fScale); } bool SkDisplacementMapEffect::onFilterImageDeprecated(Proxy* proxy, const SkBitmap& src, const Context& ctx, SkBitmap* dst, SkIPoint* offset) const { SkBitmap displ = src, color = src; SkIPoint colorOffset = SkIPoint::Make(0, 0), displOffset = SkIPoint::Make(0, 0); if (!this->filterInputDeprecated(1, proxy, src, ctx, &color, &colorOffset) || !this->filterInputDeprecated(0, proxy, src, ctx, &displ, &displOffset)) { return false; } if ((displ.colorType() != kN32_SkColorType) || (color.colorType() != kN32_SkColorType)) { return false; } SkIRect bounds; // Since computeDisplacement does bounds checking on color pixel access, we don't need to pad // the color bitmap to bounds here. SkIRect srcBounds = color.bounds(); srcBounds.offset(colorOffset); if (!this->applyCropRect(ctx, srcBounds, &bounds)) { return false; } SkIRect displBounds; if (!this->applyCropRectDeprecated(ctx, proxy, displ, &displOffset, &displBounds, &displ)) { return false; } if (!bounds.intersect(displBounds)) { return false; } SkAutoLockPixels alp_displacement(displ), alp_color(color); if (!displ.getPixels() || !color.getPixels()) { return false; } SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds.width(), bounds.height())); if (!device) { return false; } *dst = device->accessBitmap(false); SkAutoLockPixels alp_dst(*dst); SkVector scale = SkVector::Make(fScale, fScale); ctx.ctm().mapVectors(&scale, 1); SkIRect colorBounds = bounds; colorBounds.offset(-colorOffset); computeDisplacement(fXChannelSelector, fYChannelSelector, scale, dst, &displ, colorOffset - displOffset, &color, colorBounds); offset->fX = bounds.left(); offset->fY = bounds.top(); return true; } void SkDisplacementMapEffect::computeFastBounds(const SkRect& src, SkRect* dst) const { if (this->getColorInput()) { this->getColorInput()->computeFastBounds(src, dst); } else { *dst = src; } dst->outset(SkScalarAbs(fScale) * SK_ScalarHalf, SkScalarAbs(fScale) * SK_ScalarHalf); } void SkDisplacementMapEffect::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst, MapDirection) const { *dst = src; SkVector scale = SkVector::Make(fScale, fScale); ctm.mapVectors(&scale, 1); dst->outset(SkScalarCeilToInt(SkScalarAbs(scale.fX) * SK_ScalarHalf), SkScalarCeilToInt(SkScalarAbs(scale.fY) * SK_ScalarHalf)); } bool SkDisplacementMapEffect::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst, MapDirection direction) const { // Recurse only into color input. if (this->getColorInput()) { return this->getColorInput()->filterBounds(src, ctm, dst, direction); } *dst = src; return true; } #ifndef SK_IGNORE_TO_STRING void SkDisplacementMapEffect::toString(SkString* str) const { str->appendf("SkDisplacementMapEffect: ("); str->appendf("scale: %f ", fScale); str->appendf("displacement: ("); if (this->getDisplacementInput()) { this->getDisplacementInput()->toString(str); } str->appendf(") color: ("); if (this->getColorInput()) { this->getColorInput()->toString(str); } str->appendf("))"); } #endif /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU class GrGLDisplacementMapEffect : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fScaleUni; GrTextureDomain::GLDomain fGLDomain; typedef GrGLSLFragmentProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class GrDisplacementMapEffect : public GrFragmentProcessor { public: static GrFragmentProcessor* Create( SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, SkVector scale, GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color, const SkISize& colorDimensions) { return new GrDisplacementMapEffect(xChannelSelector, yChannelSelector, scale, displacement, offsetMatrix, color, colorDimensions); } virtual ~GrDisplacementMapEffect(); SkDisplacementMapEffect::ChannelSelectorType xChannelSelector() const { return fXChannelSelector; } SkDisplacementMapEffect::ChannelSelectorType yChannelSelector() const { return fYChannelSelector; } const SkVector& scale() const { return fScale; } const char* name() const override { return "DisplacementMap"; } const GrTextureDomain& domain() const { return fDomain; } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GrGLDisplacementMapEffect; } void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GrGLDisplacementMapEffect::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor&) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; GrDisplacementMapEffect(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color, const SkISize& colorDimensions); GR_DECLARE_FRAGMENT_PROCESSOR_TEST; GrCoordTransform fDisplacementTransform; GrTextureAccess fDisplacementAccess; GrCoordTransform fColorTransform; GrTextureDomain fDomain; GrTextureAccess fColorAccess; SkDisplacementMapEffect::ChannelSelectorType fXChannelSelector; SkDisplacementMapEffect::ChannelSelectorType fYChannelSelector; SkVector fScale; typedef GrFragmentProcessor INHERITED; }; bool SkDisplacementMapEffect::filterImageGPUDeprecated(Proxy* proxy, const SkBitmap& src, const Context& ctx, SkBitmap* result, SkIPoint* offset) const { SkBitmap colorBM = src; SkIPoint colorOffset = SkIPoint::Make(0, 0); if (!this->filterInputGPUDeprecated(1, proxy, src, ctx, &colorBM, &colorOffset)) { return false; } SkBitmap displacementBM = src; SkIPoint displacementOffset = SkIPoint::Make(0, 0); if (!this->filterInputGPUDeprecated(0, proxy, src, ctx, &displacementBM, &displacementOffset)) { return false; } SkIRect srcBounds = colorBM.bounds(); srcBounds.offset(colorOffset); SkIRect bounds; // Since GrDisplacementMapEffect does bounds checking on color pixel access, we don't need to // pad the color bitmap to bounds here. if (!this->applyCropRect(ctx, srcBounds, &bounds)) { return false; } SkIRect displBounds; if (!this->applyCropRectDeprecated(ctx, proxy, displacementBM, &displacementOffset, &displBounds, &displacementBM)) { return false; } if (!bounds.intersect(displBounds)) { return false; } GrTexture* color = colorBM.getTexture(); GrTexture* displacement = displacementBM.getTexture(); GrContext* context = color->getContext(); GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = bounds.width(); desc.fHeight = bounds.height(); desc.fConfig = kSkia8888_GrPixelConfig; SkAutoTUnref<GrTexture> dst(context->textureProvider()->createApproxTexture(desc)); if (!dst) { return false; } SkVector scale = SkVector::Make(fScale, fScale); ctx.ctm().mapVectors(&scale, 1); GrPaint paint; SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displacement); offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displacementOffset.fX), SkIntToScalar(colorOffset.fY - displacementOffset.fY)); paint.addColorFragmentProcessor( GrDisplacementMapEffect::Create(fXChannelSelector, fYChannelSelector, scale, displacement, offsetMatrix, color, colorBM.dimensions()))->unref(); paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); SkIRect colorBounds = bounds; colorBounds.offset(-colorOffset); SkMatrix matrix; matrix.setTranslate(-SkIntToScalar(colorBounds.x()), -SkIntToScalar(colorBounds.y())); SkAutoTUnref<GrDrawContext> drawContext(context->drawContext(dst->asRenderTarget())); if (!drawContext) { return false; } drawContext->drawRect(GrClip::WideOpen(), paint, matrix, SkRect::Make(colorBounds)); offset->fX = bounds.left(); offset->fY = bounds.top(); GrWrapTextureInBitmap(dst, bounds.width(), bounds.height(), false, result); return true; } /////////////////////////////////////////////////////////////////////////////// GrDisplacementMapEffect::GrDisplacementMapEffect( SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color, const SkISize& colorDimensions) : fDisplacementTransform(kLocal_GrCoordSet, offsetMatrix, displacement, GrTextureParams::kNone_FilterMode) , fDisplacementAccess(displacement) , fColorTransform(kLocal_GrCoordSet, color, GrTextureParams::kNone_FilterMode) , fDomain(GrTextureDomain::MakeTexelDomain(color, SkIRect::MakeSize(colorDimensions)), GrTextureDomain::kDecal_Mode) , fColorAccess(color) , fXChannelSelector(xChannelSelector) , fYChannelSelector(yChannelSelector) , fScale(scale) { this->initClassID<GrDisplacementMapEffect>(); this->addCoordTransform(&fDisplacementTransform); this->addTextureAccess(&fDisplacementAccess); this->addCoordTransform(&fColorTransform); this->addTextureAccess(&fColorAccess); } GrDisplacementMapEffect::~GrDisplacementMapEffect() { } bool GrDisplacementMapEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrDisplacementMapEffect& s = sBase.cast<GrDisplacementMapEffect>(); return fXChannelSelector == s.fXChannelSelector && fYChannelSelector == s.fYChannelSelector && fScale == s.fScale; } void GrDisplacementMapEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { // Any displacement offset bringing a pixel out of bounds will output a color of (0,0,0,0), // so the only way we'd get a constant alpha is if the input color image has a constant alpha // and no displacement offset push any texture coordinates out of bounds OR if the constant // alpha is 0. Since this isn't trivial to compute at this point, let's assume the output is // not of constant color when a displacement effect is applied. inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDisplacementMapEffect); const GrFragmentProcessor* GrDisplacementMapEffect::TestCreate(GrProcessorTestData* d) { int texIdxDispl = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; int texIdxColor = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; static const int kMaxComponent = 4; SkDisplacementMapEffect::ChannelSelectorType xChannelSelector = static_cast<SkDisplacementMapEffect::ChannelSelectorType>( d->fRandom->nextRangeU(1, kMaxComponent)); SkDisplacementMapEffect::ChannelSelectorType yChannelSelector = static_cast<SkDisplacementMapEffect::ChannelSelectorType>( d->fRandom->nextRangeU(1, kMaxComponent)); SkVector scale = SkVector::Make(d->fRandom->nextRangeScalar(0, 100.0f), d->fRandom->nextRangeScalar(0, 100.0f)); SkISize colorDimensions; colorDimensions.fWidth = d->fRandom->nextRangeU(0, d->fTextures[texIdxColor]->width()); colorDimensions.fHeight = d->fRandom->nextRangeU(0, d->fTextures[texIdxColor]->height()); return GrDisplacementMapEffect::Create(xChannelSelector, yChannelSelector, scale, d->fTextures[texIdxDispl], SkMatrix::I(), d->fTextures[texIdxColor], colorDimensions); } /////////////////////////////////////////////////////////////////////////////// void GrGLDisplacementMapEffect::emitCode(EmitArgs& args) { const GrDisplacementMapEffect& displacementMap = args.fFp.cast<GrDisplacementMapEffect>(); const GrTextureDomain& domain = displacementMap.domain(); fScaleUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "Scale"); const char* scaleUni = args.fUniformHandler->getUniformCStr(fScaleUni); const char* dColor = "dColor"; const char* cCoords = "cCoords"; const char* nearZero = "1e-6"; // Since 6.10352e−5 is the smallest half float, use // a number smaller than that to approximate 0, but // leave room for 32-bit float GPU rounding errors. GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("\t\tvec4 %s = ", dColor); fragBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(), args.fCoords[0].getType()); fragBuilder->codeAppend(";\n"); // Unpremultiply the displacement fragBuilder->codeAppendf( "\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);", dColor, dColor, nearZero, dColor, dColor); SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1); fragBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.", cCoords, coords2D.c_str(), scaleUni, dColor); switch (displacementMap.xChannelSelector()) { case SkDisplacementMapEffect::kR_ChannelSelectorType: fragBuilder->codeAppend("r"); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: fragBuilder->codeAppend("g"); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: fragBuilder->codeAppend("b"); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: fragBuilder->codeAppend("a"); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown X channel selector"); } switch (displacementMap.yChannelSelector()) { case SkDisplacementMapEffect::kR_ChannelSelectorType: fragBuilder->codeAppend("r"); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: fragBuilder->codeAppend("g"); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: fragBuilder->codeAppend("b"); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: fragBuilder->codeAppend("a"); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown Y channel selector"); } fragBuilder->codeAppend("-vec2(0.5));\t\t"); fGLDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fGLSLCaps, domain, args.fOutputColor, SkString(cCoords), args.fSamplers[1]); fragBuilder->codeAppend(";\n"); } void GrGLDisplacementMapEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) { const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>(); GrTexture* colorTex = displacementMap.texture(1); SkScalar scaleX = displacementMap.scale().fX / colorTex->width(); SkScalar scaleY = displacementMap.scale().fY / colorTex->height(); pdman.set2f(fScaleUni, SkScalarToFloat(scaleX), colorTex->origin() == kTopLeft_GrSurfaceOrigin ? SkScalarToFloat(scaleY) : SkScalarToFloat(-scaleY)); fGLDomain.setData(pdman, displacementMap.domain(), colorTex->origin()); } void GrGLDisplacementMapEffect::GenKey(const GrProcessor& proc, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>(); uint32_t xKey = displacementMap.xChannelSelector(); uint32_t yKey = displacementMap.yChannelSelector() << kChannelSelectorKeyBits; b->add32(xKey | yKey); } #endif