/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCoreBlitters.h" #include "SkColorPriv.h" #include "SkShader.h" #include "SkUtils.h" #include "SkXfermode.h" #include "SkBlitMask.h" /////////////////////////////////////////////////////////////////////////////// static void SkARGB32_Blit32(const SkPixmap& device, const SkMask& mask, const SkIRect& clip, SkPMColor srcColor) { U8CPU alpha = SkGetPackedA32(srcColor); unsigned flags = SkBlitRow::kSrcPixelAlpha_Flag32; if (alpha != 255) { flags |= SkBlitRow::kGlobalAlpha_Flag32; } SkBlitRow::Proc32 proc = SkBlitRow::Factory32(flags); int x = clip.fLeft; int y = clip.fTop; int width = clip.width(); int height = clip.height(); SkPMColor* dstRow = device.writable_addr32(x, y); const SkPMColor* srcRow = reinterpret_cast<const SkPMColor*>(mask.getAddr8(x, y)); do { proc(dstRow, srcRow, width, alpha); dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes()); srcRow = (const SkPMColor*)((const char*)srcRow + mask.fRowBytes); } while (--height != 0); } ////////////////////////////////////////////////////////////////////////////////////// SkARGB32_Blitter::SkARGB32_Blitter(const SkPixmap& device, const SkPaint& paint) : INHERITED(device) { SkColor color = paint.getColor(); fColor = color; fSrcA = SkColorGetA(color); unsigned scale = SkAlpha255To256(fSrcA); fSrcR = SkAlphaMul(SkColorGetR(color), scale); fSrcG = SkAlphaMul(SkColorGetG(color), scale); fSrcB = SkAlphaMul(SkColorGetB(color), scale); fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB); } const SkPixmap* SkARGB32_Blitter::justAnOpaqueColor(uint32_t* value) { if (255 == fSrcA) { *value = fPMColor; return &fDevice; } return nullptr; } #if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif void SkARGB32_Blitter::blitH(int x, int y, int width) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width()); uint32_t* device = fDevice.writable_addr32(x, y); SkBlitRow::Color32(device, device, width, fPMColor); } void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { if (fSrcA == 0) { return; } uint32_t color = fPMColor; uint32_t* device = fDevice.writable_addr32(x, y); unsigned opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } unsigned aa = antialias[0]; if (aa) { if ((opaqueMask & aa) == 255) { sk_memset32(device, color, count); } else { uint32_t sc = SkAlphaMulQ(color, SkAlpha255To256(aa)); SkBlitRow::Color32(device, device, count, sc); } } runs += count; antialias += count; device += count; } } void SkARGB32_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { uint32_t* device = fDevice.writable_addr32(x, y); SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);) device[0] = SkBlendARGB32(fPMColor, device[0], a0); device[1] = SkBlendARGB32(fPMColor, device[1], a1); } void SkARGB32_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) { uint32_t* device = fDevice.writable_addr32(x, y); SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);) device[0] = SkBlendARGB32(fPMColor, device[0], a0); device = (uint32_t*)((char*)device + fDevice.rowBytes()); device[0] = SkBlendARGB32(fPMColor, device[0], a1); } ////////////////////////////////////////////////////////////////////////////////////// #define solid_8_pixels(mask, dst, color) \ do { \ if (mask & 0x80) dst[0] = color; \ if (mask & 0x40) dst[1] = color; \ if (mask & 0x20) dst[2] = color; \ if (mask & 0x10) dst[3] = color; \ if (mask & 0x08) dst[4] = color; \ if (mask & 0x04) dst[5] = color; \ if (mask & 0x02) dst[6] = color; \ if (mask & 0x01) dst[7] = color; \ } while (0) #define SK_BLITBWMASK_NAME SkARGB32_BlitBW #define SK_BLITBWMASK_ARGS , SkPMColor color #define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color) #define SK_BLITBWMASK_GETADDR writable_addr32 #define SK_BLITBWMASK_DEVTYPE uint32_t #include "SkBlitBWMaskTemplate.h" #define blend_8_pixels(mask, dst, sc, dst_scale) \ do { \ if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); } \ if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); } \ if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); } \ if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); } \ if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); } \ if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); } \ if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); } \ if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); } \ } while (0) #define SK_BLITBWMASK_NAME SkARGB32_BlendBW #define SK_BLITBWMASK_ARGS , uint32_t sc, unsigned dst_scale #define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sc, dst_scale) #define SK_BLITBWMASK_GETADDR writable_addr32 #define SK_BLITBWMASK_DEVTYPE uint32_t #include "SkBlitBWMaskTemplate.h" void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkASSERT(fSrcA != 0xFF); if (fSrcA == 0) { return; } if (SkBlitMask::BlitColor(fDevice, mask, clip, fColor)) { return; } if (mask.fFormat == SkMask::kBW_Format) { SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA)); } else if (SkMask::kARGB32_Format == mask.fFormat) { SkARGB32_Blit32(fDevice, mask, clip, fPMColor); } } void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); if (SkBlitMask::BlitColor(fDevice, mask, clip, fColor)) { return; } if (mask.fFormat == SkMask::kBW_Format) { SkARGB32_BlitBW(fDevice, mask, clip, fPMColor); } else if (SkMask::kARGB32_Format == mask.fFormat) { SkARGB32_Blit32(fDevice, mask, clip, fPMColor); } } void SkARGB32_Opaque_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { uint32_t* device = fDevice.writable_addr32(x, y); SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);) device[0] = SkFastFourByteInterp(fPMColor, device[0], a0); device[1] = SkFastFourByteInterp(fPMColor, device[1], a1); } void SkARGB32_Opaque_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) { uint32_t* device = fDevice.writable_addr32(x, y); SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);) device[0] = SkFastFourByteInterp(fPMColor, device[0], a0); device = (uint32_t*)((char*)device + fDevice.rowBytes()); device[0] = SkFastFourByteInterp(fPMColor, device[0], a1); } /////////////////////////////////////////////////////////////////////////////// void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { if (alpha == 0 || fSrcA == 0) { return; } uint32_t* device = fDevice.writable_addr32(x, y); uint32_t color = fPMColor; if (alpha != 255) { color = SkAlphaMulQ(color, SkAlpha255To256(alpha)); } unsigned dst_scale = 255 - SkGetPackedA32(color); size_t rowBytes = fDevice.rowBytes(); while (--height >= 0) { device[0] = color + SkAlphaMulQ(device[0], dst_scale); device = (uint32_t*)((char*)device + rowBytes); } } void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height()); if (fSrcA == 0) { return; } uint32_t* device = fDevice.writable_addr32(x, y); uint32_t color = fPMColor; size_t rowBytes = fDevice.rowBytes(); while (--height >= 0) { SkBlitRow::Color32(device, device, width, color); device = (uint32_t*)((char*)device + rowBytes); } } #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( pop ) #endif /////////////////////////////////////////////////////////////////////// void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { uint32_t* device = fDevice.writable_addr32(x, y); SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT); for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } unsigned aa = antialias[0]; if (aa) { if (aa == 255) { sk_memset32(device, black, count); } else { SkPMColor src = aa << SK_A32_SHIFT; unsigned dst_scale = 256 - aa; int n = count; do { --n; device[n] = src + SkAlphaMulQ(device[n], dst_scale); } while (n > 0); } } runs += count; antialias += count; device += count; } } void SkARGB32_Black_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { uint32_t* device = fDevice.writable_addr32(x, y); SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);) device[0] = (a0 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a0); device[1] = (a1 << SK_A32_SHIFT) + SkAlphaMulQ(device[1], 256 - a1); } void SkARGB32_Black_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) { uint32_t* device = fDevice.writable_addr32(x, y); SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);) device[0] = (a0 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a0); device = (uint32_t*)((char*)device + fDevice.rowBytes()); device[0] = (a1 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a1); } /////////////////////////////////////////////////////////////////////////////// // Special version of SkBlitRow::Factory32 that knows we're in kSrc_Mode, // instead of kSrcOver_Mode static void blend_srcmode(SkPMColor* SK_RESTRICT device, const SkPMColor* SK_RESTRICT span, int count, U8CPU aa) { int aa256 = SkAlpha255To256(aa); for (int i = 0; i < count; ++i) { device[i] = SkFourByteInterp256(span[i], device[i], aa256); } } SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkPixmap& device, const SkPaint& paint, SkShader::Context* shaderContext) : INHERITED(device, paint, shaderContext) { fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor))); fXfermode = paint.getXfermode(); SkSafeRef(fXfermode); int flags = 0; if (!(shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag)) { flags |= SkBlitRow::kSrcPixelAlpha_Flag32; } // we call this on the output from the shader fProc32 = SkBlitRow::Factory32(flags); // we call this on the output from the shader + alpha from the aa buffer fProc32Blend = SkBlitRow::Factory32(flags | SkBlitRow::kGlobalAlpha_Flag32); fShadeDirectlyIntoDevice = false; if (fXfermode == nullptr) { if (shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag) { fShadeDirectlyIntoDevice = true; } } else { SkXfermode::Mode mode; if (fXfermode->asMode(&mode)) { if (SkXfermode::kSrc_Mode == mode) { fShadeDirectlyIntoDevice = true; fProc32Blend = blend_srcmode; } } } fConstInY = SkToBool(shaderContext->getFlags() & SkShader::kConstInY32_Flag); } SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() { SkSafeUnref(fXfermode); sk_free(fBuffer); } void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width()); uint32_t* device = fDevice.writable_addr32(x, y); if (fShadeDirectlyIntoDevice) { fShaderContext->shadeSpan(x, y, device, width); } else { SkPMColor* span = fBuffer; fShaderContext->shadeSpan(x, y, span, width); if (fXfermode) { fXfermode->xfer32(device, span, width, nullptr); } else { fProc32(device, span, width, 255); } } } void SkARGB32_Shader_Blitter::blitRect(int x, int y, int width, int height) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height()); uint32_t* device = fDevice.writable_addr32(x, y); size_t deviceRB = fDevice.rowBytes(); SkShader::Context* shaderContext = fShaderContext; SkPMColor* span = fBuffer; if (fConstInY) { if (fShadeDirectlyIntoDevice) { // shade the first row directly into the device shaderContext->shadeSpan(x, y, device, width); span = device; while (--height > 0) { device = (uint32_t*)((char*)device + deviceRB); memcpy(device, span, width << 2); } } else { shaderContext->shadeSpan(x, y, span, width); SkXfermode* xfer = fXfermode; if (xfer) { do { xfer->xfer32(device, span, width, nullptr); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { SkBlitRow::Proc32 proc = fProc32; do { proc(device, span, width, 255); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } return; } if (fShadeDirectlyIntoDevice) { void* ctx; SkShader::Context::ShadeProc shadeProc = shaderContext->asAShadeProc(&ctx); if (shadeProc) { do { shadeProc(ctx, x, y, device, width); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { do { shaderContext->shadeSpan(x, y, device, width); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } else { SkXfermode* xfer = fXfermode; if (xfer) { do { shaderContext->shadeSpan(x, y, span, width); xfer->xfer32(device, span, width, nullptr); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { SkBlitRow::Proc32 proc = fProc32; do { shaderContext->shadeSpan(x, y, span, width); proc(device, span, width, 255); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } } void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkPMColor* span = fBuffer; uint32_t* device = fDevice.writable_addr32(x, y); SkShader::Context* shaderContext = fShaderContext; if (fXfermode && !fShadeDirectlyIntoDevice) { for (;;) { SkXfermode* xfer = fXfermode; int count = *runs; if (count <= 0) break; int aa = *antialias; if (aa) { shaderContext->shadeSpan(x, y, span, count); if (aa == 255) { xfer->xfer32(device, span, count, nullptr); } else { // count is almost always 1 for (int i = count - 1; i >= 0; --i) { xfer->xfer32(&device[i], &span[i], 1, antialias); } } } device += count; runs += count; antialias += count; x += count; } } else if (fShadeDirectlyIntoDevice || (shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag)) { for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (aa) { if (aa == 255) { // cool, have the shader draw right into the device shaderContext->shadeSpan(x, y, device, count); } else { shaderContext->shadeSpan(x, y, span, count); fProc32Blend(device, span, count, aa); } } device += count; runs += count; antialias += count; x += count; } } else { for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (aa) { shaderContext->shadeSpan(x, y, span, count); if (aa == 255) { fProc32(device, span, count, 255); } else { fProc32Blend(device, span, count, aa); } } device += count; runs += count; antialias += count; x += count; } } } void SkARGB32_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { // we only handle kA8 with an xfermode if (fXfermode && (SkMask::kA8_Format != mask.fFormat)) { this->INHERITED::blitMask(mask, clip); return; } SkASSERT(mask.fBounds.contains(clip)); SkShader::Context* shaderContext = fShaderContext; SkBlitMask::RowProc proc = nullptr; if (!fXfermode) { unsigned flags = 0; if (shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag) { flags |= SkBlitMask::kSrcIsOpaque_RowFlag; } proc = SkBlitMask::RowFactory(kN32_SkColorType, mask.fFormat, (SkBlitMask::RowFlags)flags); if (nullptr == proc) { this->INHERITED::blitMask(mask, clip); return; } } const int x = clip.fLeft; const int width = clip.width(); int y = clip.fTop; int height = clip.height(); char* dstRow = (char*)fDevice.writable_addr32(x, y); const size_t dstRB = fDevice.rowBytes(); const uint8_t* maskRow = (const uint8_t*)mask.getAddr(x, y); const size_t maskRB = mask.fRowBytes; SkPMColor* span = fBuffer; if (fXfermode) { SkASSERT(SkMask::kA8_Format == mask.fFormat); SkXfermode* xfer = fXfermode; do { shaderContext->shadeSpan(x, y, span, width); xfer->xfer32(reinterpret_cast<SkPMColor*>(dstRow), span, width, maskRow); dstRow += dstRB; maskRow += maskRB; y += 1; } while (--height > 0); } else { do { shaderContext->shadeSpan(x, y, span, width); proc(reinterpret_cast<SkPMColor*>(dstRow), maskRow, span, width); dstRow += dstRB; maskRow += maskRB; y += 1; } while (--height > 0); } } void SkARGB32_Shader_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(x >= 0 && y >= 0 && y + height <= fDevice.height()); uint32_t* device = fDevice.writable_addr32(x, y); size_t deviceRB = fDevice.rowBytes(); SkShader::Context* shaderContext = fShaderContext; if (fConstInY) { SkPMColor c; shaderContext->shadeSpan(x, y, &c, 1); if (fShadeDirectlyIntoDevice) { if (255 == alpha) { do { *device = c; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { do { *device = SkFourByteInterp(c, *device, alpha); device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } else { SkXfermode* xfer = fXfermode; if (xfer) { do { xfer->xfer32(device, &c, 1, &alpha); device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend; do { proc(device, &c, 1, alpha); device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } return; } if (fShadeDirectlyIntoDevice) { void* ctx; SkShader::Context::ShadeProc shadeProc = shaderContext->asAShadeProc(&ctx); if (255 == alpha) { if (shadeProc) { do { shadeProc(ctx, x, y, device, 1); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { do { shaderContext->shadeSpan(x, y, device, 1); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } else { // alpha < 255 SkPMColor c; if (shadeProc) { do { shadeProc(ctx, x, y, &c, 1); *device = SkFourByteInterp(c, *device, alpha); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { do { shaderContext->shadeSpan(x, y, &c, 1); *device = SkFourByteInterp(c, *device, alpha); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } } else { SkPMColor* span = fBuffer; SkXfermode* xfer = fXfermode; if (xfer) { do { shaderContext->shadeSpan(x, y, span, 1); xfer->xfer32(device, span, 1, &alpha); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } else { SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend; do { shaderContext->shadeSpan(x, y, span, 1); proc(device, span, 1, alpha); y += 1; device = (uint32_t*)((char*)device + deviceRB); } while (--height > 0); } } }