/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DMSrcSink.h" #include "SkAndroidCodec.h" #include "SkCodec.h" #include "SkCodecImageGenerator.h" #include "SkCommonFlags.h" #include "SkData.h" #include "SkDocument.h" #include "SkError.h" #include "SkImageGenerator.h" #include "SkMallocPixelRef.h" #include "SkMultiPictureDraw.h" #include "SkNullCanvas.h" #include "SkOSFile.h" #include "SkOpts.h" #include "SkPictureData.h" #include "SkPictureRecorder.h" #include "SkRandom.h" #include "SkRecordDraw.h" #include "SkRecorder.h" #include "SkRemote.h" #include "SkSVGCanvas.h" #include "SkStream.h" #include "SkTLogic.h" #include "SkXMLWriter.h" #include "SkSwizzler.h" #include <functional> #ifdef SK_MOJO #include "SkMojo.mojom.h" #endif DEFINE_bool(multiPage, false, "For document-type backends, render the source" " into multiple pages"); DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?"); namespace DM { GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} Error GMSrc::draw(SkCanvas* canvas) const { SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); canvas->concat(gm->getInitialTransform()); gm->draw(canvas); return ""; } SkISize GMSrc::size() const { SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); return gm->getISize(); } Name GMSrc::name() const { SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); return gm->getName(); } void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); gm->modifyGrContextOptions(options); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ BRDSrc::BRDSrc(Path path, SkBitmapRegionDecoder::Strategy strategy, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize) : fPath(path) , fStrategy(strategy) , fMode(mode) , fDstColorType(dstColorType) , fSampleSize(sampleSize) {} bool BRDSrc::veto(SinkFlags flags) const { // No need to test to non-raster or indirect backends. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } static SkBitmapRegionDecoder* create_brd(Path path, SkBitmapRegionDecoder::Strategy strategy) { SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str())); if (!encoded) { return NULL; } return SkBitmapRegionDecoder::Create(encoded, strategy); } Error BRDSrc::draw(SkCanvas* canvas) const { SkColorType colorType = canvas->imageInfo().colorType(); if (kRGB_565_SkColorType == colorType && CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } switch (fDstColorType) { case CodecSrc::kGetFromCanvas_DstColorType: break; case CodecSrc::kIndex8_Always_DstColorType: colorType = kIndex_8_SkColorType; break; case CodecSrc::kGrayscale_Always_DstColorType: colorType = kGray_8_SkColorType; break; } SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath, fStrategy)); if (nullptr == brd.get()) { return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str())); } if (!brd->conversionSupported(colorType)) { return Error::Nonfatal("Cannot convert to color type."); } const uint32_t width = brd->width(); const uint32_t height = brd->height(); // Visually inspecting very small output images is not necessary. if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { return Error::Nonfatal("Scaling very small images is uninteresting."); } switch (fMode) { case kFullImage_Mode: { SkBitmap bitmap; if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height), fSampleSize, colorType, false)) { return "Cannot decode (full) region."; } if (colorType != bitmap.colorType()) { return Error::Nonfatal("Cannot convert to color type."); } canvas->drawBitmap(bitmap, 0, 0); return ""; } case kDivisor_Mode: { const uint32_t divisor = 2; if (width < divisor || height < divisor) { return Error::Nonfatal("Divisor is larger than image dimension."); } // Use a border to test subsets that extend outside the image. // We will not allow the border to be larger than the image dimensions. Allowing // these large borders causes off by one errors that indicate a problem with the // test suite, not a problem with the implementation. const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor); const uint32_t scaledBorder = SkTMin(5u, maxBorder); const uint32_t unscaledBorder = scaledBorder * fSampleSize; // We may need to clear the canvas to avoid uninitialized memory. // Assume we are scaling a 780x780 image with sampleSize = 8. // The output image should be 97x97. // Each subset will be 390x390. // Each scaled subset be 48x48. // Four scaled subsets will only fill a 96x96 image. // The bottom row and last column will not be touched. // This is an unfortunate result of our rounding rules when scaling. // Maybe we need to consider testing scaled subsets without trying to // combine them to match the full scaled image? Or maybe this is the // best we can do? canvas->clear(0); for (uint32_t x = 0; x < divisor; x++) { for (uint32_t y = 0; y < divisor; y++) { // Calculate the subset dimensions uint32_t subsetWidth = width / divisor; uint32_t subsetHeight = height / divisor; const int left = x * subsetWidth; const int top = y * subsetHeight; // Increase the size of the last subset in each row or column, when the // divisor does not divide evenly into the image dimensions subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; // Increase the size of the subset in order to have a border on each side const int decodeLeft = left - unscaledBorder; const int decodeTop = top - unscaledBorder; const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; SkBitmap bitmap; if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft, decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false)) { return "Cannot decode region."; } if (colorType != bitmap.colorType()) { return Error::Nonfatal("Cannot convert to color type."); } canvas->drawBitmapRect(bitmap, SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), SkRect::MakeXYWH((SkScalar) (left / fSampleSize), (SkScalar) (top / fSampleSize), (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), nullptr); } } return ""; } default: SkASSERT(false); return "Error: Should not be reached."; } } SkISize BRDSrc::size() const { SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath, fStrategy)); if (brd) { return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize), SkTMax(1, brd->height() / (int) fSampleSize)); } return SkISize::Make(0, 0); } static SkString get_scaled_name(const Path& path, float scale) { return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); } Name BRDSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, 1.0f / (float) fSampleSize); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static bool serial_from_path_name(const SkString& path) { if (!FLAGS_RAW_threading) { static const char* const exts[] = { "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw", "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW", }; const char* actualExt = strrchr(path.c_str(), '.'); if (actualExt) { actualExt++; for (auto* ext : exts) { if (0 == strcmp(ext, actualExt)) { return true; } } } } return false; } CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType, float scale) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fDstAlphaType(dstAlphaType) , fScale(scale) , fRunSerially(serial_from_path_name(path)) {} bool CodecSrc::veto(SinkFlags flags) const { // Test CodecImageGenerator on 8888, 565, and gpu if (kGen_Mode == fMode) { // For image generator, we want to test kDirect approaches for kRaster and kGPU, // while skipping everything else. return (flags.type != SinkFlags::kRaster && flags.type != SinkFlags::kGPU) || flags.approach != SinkFlags::kDirect; } // Test all other modes to direct raster backends (8888 and 565). return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } // FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339. // This allows us to still test unpremultiplied decodes. void premultiply_if_necessary(SkBitmap& bitmap) { if (kUnpremul_SkAlphaType != bitmap.alphaType()) { return; } switch (bitmap.colorType()) { case kN32_SkColorType: for (int y = 0; y < bitmap.height(); y++) { uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); SkOpts::RGBA_to_rgbA(row, row, bitmap.width()); } break; case kIndex_8_SkColorType: { SkColorTable* colorTable = bitmap.getColorTable(); SkPMColor* colorPtr = const_cast<SkPMColor*>(colorTable->readColors()); SkOpts::RGBA_to_rgbA(colorPtr, colorPtr, colorTable->count()); break; } default: // No need to premultiply kGray or k565 outputs. break; } // In the kIndex_8 case, the canvas won't even try to draw unless we mark the // bitmap as kPremul. bitmap.setAlphaType(kPremul_SkAlphaType); } bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType, CodecSrc::DstColorType dstColorType) { switch (dstColorType) { case CodecSrc::kIndex8_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType) { return false; } *decodeInfo = decodeInfo->makeColorType(kIndex_8_SkColorType); break; case CodecSrc::kGrayscale_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType || kOpaque_SkAlphaType != decodeInfo->alphaType()) { return false; } *decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType); break; default: if (kRGB_565_SkColorType == canvasColorType && kOpaque_SkAlphaType != decodeInfo->alphaType()) { return false; } *decodeInfo = decodeInfo->makeColorType(canvasColorType); break; } return true; } Error test_gen(SkCanvas* canvas, SkData* data) { SkAutoTDelete<SkImageGenerator> gen = SkCodecImageGenerator::NewFromEncodedCodec(data); if (!gen) { return "Could not create image generator."; } // FIXME: The gpu backend does not draw kGray sources correctly. (skbug.com/4822) // Currently, we will avoid creating a CodecSrc for this case (see DM.cpp). SkASSERT(kGray_8_SkColorType != gen->getInfo().colorType()); if (kOpaque_SkAlphaType != gen->getInfo().alphaType() && kRGB_565_SkColorType == canvas->imageInfo().colorType()) { return Error::Nonfatal("Skip testing non-opaque images to 565."); } SkAutoTDelete<SkImage> image(SkImage::NewFromGenerator(gen.detach(), nullptr)); if (!image) { return "Could not create image from codec image generator."; } canvas->drawImage(image, 0, 0); return ""; } Error CodecSrc::draw(SkCanvas* canvas) const { SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } // The CodecImageGenerator test does not share much code with the other tests, // so we will handle it in its own function. if (kGen_Mode == fMode) { return test_gen(canvas, encoded); } SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded)); if (nullptr == codec.get()) { return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo = codec->getInfo().makeAlphaType(fDstAlphaType); if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType)) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } // Try to scale the image if it is desired SkISize size = codec->getScaledDimensions(fScale); if (size == decodeInfo.dimensions() && 1.0f != fScale) { return Error::Nonfatal("Test without scaling is uninteresting."); } // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { return Error::Nonfatal("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); // Construct a color table for the decode if necessary SkAutoTUnref<SkColorTable> colorTable(nullptr); SkPMColor* colorPtr = nullptr; int* colorCountPtr = nullptr; int maxColors = 256; if (kIndex_8_SkColorType == decodeInfo.colorType()) { SkPMColor colors[256]; colorTable.reset(new SkColorTable(colors, maxColors)); colorPtr = const_cast<SkPMColor*>(colorTable->readColors()); colorCountPtr = &maxColors; } SkBitmap bitmap; SkPixelRefFactory* factory = nullptr; SkMallocPixelRef::ZeroedPRFactory zeroFactory; SkCodec::Options options; if (kCodecZeroInit_Mode == fMode) { factory = &zeroFactory; options.fZeroInitialized = SkCodec::kYes_ZeroInitialized; } if (!bitmap.tryAllocPixels(decodeInfo, factory, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(), decodeInfo.width(), decodeInfo.height()); } switch (fMode) { case kCodecZeroInit_Mode: case kCodec_Mode: { switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options, colorPtr, colorCountPtr)) { case SkCodec::kSuccess: // We consider incomplete to be valid, since we should still decode what is // available. case SkCodec::kIncompleteInput: break; default: // Everything else is considered a failure. return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } premultiply_if_necessary(bitmap); canvas->drawBitmap(bitmap, 0, 0); break; } case kScanline_Mode: { if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, colorCountPtr)) { return "Could not start scanline decoder"; } void* dst = bitmap.getAddr(0, 0); size_t rowBytes = bitmap.rowBytes(); uint32_t height = decodeInfo.height(); switch (codec->getScanlineOrder()) { case SkCodec::kTopDown_SkScanlineOrder: case SkCodec::kBottomUp_SkScanlineOrder: case SkCodec::kNone_SkScanlineOrder: // We do not need to check the return value. On an incomplete // image, memory will be filled with a default value. codec->getScanlines(dst, height, rowBytes); break; case SkCodec::kOutOfOrder_SkScanlineOrder: { for (int y = 0; y < decodeInfo.height(); y++) { int dstY = codec->outputScanline(y); void* dstPtr = bitmap.getAddr(0, dstY); // We complete the loop, even if this call begins to fail // due to an incomplete image. This ensures any uninitialized // memory will be filled with the proper value. codec->getScanlines(dstPtr, 1, bitmap.rowBytes()); } break; } } premultiply_if_necessary(bitmap); canvas->drawBitmap(bitmap, 0, 0); break; } case kStripe_Mode: { const int height = decodeInfo.height(); // This value is chosen arbitrarily. We exercise more cases by choosing a value that // does not align with image blocks. const int stripeHeight = 37; const int numStripes = (height + stripeHeight - 1) / stripeHeight; // Decode odd stripes if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, colorCountPtr)) { return "Could not start scanline decoder"; } // This mode was designed to test the new skip scanlines API in libjpeg-turbo. // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting // to run this test for image types that do not have this scanline ordering. if (SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) { return Error::Nonfatal("kStripe test is only interesting for kTopDown codecs."); } for (int i = 0; i < numStripes; i += 2) { // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); codec->skipScanlines(linesToSkip); // Read a stripe const int startY = (i + 1) * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); if (linesToRead > 0) { codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); } } // Decode even stripes const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr, colorPtr, colorCountPtr); if (SkCodec::kSuccess != startResult) { return "Failed to restart scanline decoder with same parameters."; } for (int i = 0; i < numStripes; i += 2) { // Read a stripe const int startY = i * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); if (linesToSkip > 0) { codec->skipScanlines(linesToSkip); } } premultiply_if_necessary(bitmap); canvas->drawBitmap(bitmap, 0, 0); break; } case kCroppedScanline_Mode: { const int width = decodeInfo.width(); const int height = decodeInfo.height(); // This value is chosen because, as we move across the image, it will sometimes // align with the jpeg block sizes and it will sometimes not. This allows us // to test interestingly different code paths in the implementation. const int tileSize = 36; SkCodec::Options opts; SkIRect subset; for (int x = 0; x < width; x += tileSize) { subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height); opts.fSubset = ⊂ if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &opts, colorPtr, colorCountPtr)) { return "Could not start scanline decoder."; } codec->getScanlines(bitmap.getAddr(x, 0), height, bitmap.rowBytes()); } premultiply_if_necessary(bitmap); canvas->drawBitmap(bitmap, 0, 0); break; } case kSubset_Mode: { // Arbitrarily choose a divisor. int divisor = 2; // Total width/height of the image. const int W = codec->getInfo().width(); const int H = codec->getInfo().height(); if (divisor > W || divisor > H) { return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big " "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), W, H)); } // subset dimensions // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. const int w = SkAlign2(W / divisor); const int h = SkAlign2(H / divisor); SkIRect subset; SkCodec::Options opts; opts.fSubset = ⊂ SkBitmap subsetBm; // We will reuse pixel memory from bitmap. void* pixels = bitmap.getPixels(); // Keep track of left and top (for drawing subsetBm into canvas). We could use // fScale * x and fScale * y, but we want integers such that the next subset will start // where the last one ended. So we'll add decodeInfo.width() and height(). int left = 0; for (int x = 0; x < W; x += w) { int top = 0; for (int y = 0; y < H; y+= h) { // Do not make the subset go off the edge of the image. const int preScaleW = SkTMin(w, W - x); const int preScaleH = SkTMin(h, H - y); subset.setXYWH(x, y, preScaleW, preScaleH); // And scale // FIXME: Should we have a version of getScaledDimensions that takes a subset // into account? decodeInfo = decodeInfo.makeWH( SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)), SkTMax(1, SkScalarRoundToInt(preScaleH * fScale))); size_t rowBytes = decodeInfo.minRowBytes(); if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(), nullptr, nullptr)) { return SkStringPrintf("could not install pixels for %s.", fPath.c_str()); } const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes, &opts, colorPtr, colorCountPtr); switch (result) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: break; default: return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) " "from %s with dimensions (%d x %d)\t error %d", x, y, decodeInfo.width(), decodeInfo.height(), fPath.c_str(), W, H, result); } premultiply_if_necessary(subsetBm); canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top)); // translate by the scaled height. top += decodeInfo.height(); } // translate by the scaled width. left += decodeInfo.width(); } return ""; } default: SkASSERT(false); return "Invalid fMode"; } return ""; } SkISize CodecSrc::size() const { SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded)); if (nullptr == codec) { return SkISize::Make(0, 0); } return codec->getScaledDimensions(fScale); } Name CodecSrc::name() const { if (1.0f == fScale) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, fScale); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ AndroidCodecSrc::AndroidCodecSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType, int sampleSize) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fDstAlphaType(dstAlphaType) , fSampleSize(sampleSize) , fRunSerially(serial_from_path_name(path)) {} bool AndroidCodecSrc::veto(SinkFlags flags) const { // No need to test decoding to non-raster or indirect backend. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Error AndroidCodecSrc::draw(SkCanvas* canvas) const { SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded)); if (nullptr == codec.get()) { return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo = codec->getInfo().makeAlphaType(fDstAlphaType); if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType)) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } // Scale the image if it is desired. SkISize size = codec->getSampledDimensions(fSampleSize); // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { return Error::Nonfatal("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); // Construct a color table for the decode if necessary SkAutoTUnref<SkColorTable> colorTable(nullptr); SkPMColor* colorPtr = nullptr; int* colorCountPtr = nullptr; int maxColors = 256; if (kIndex_8_SkColorType == decodeInfo.colorType()) { SkPMColor colors[256]; colorTable.reset(new SkColorTable(colors, maxColors)); colorPtr = const_cast<SkPMColor*>(colorTable->readColors()); colorCountPtr = &maxColors; } SkBitmap bitmap; if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(), decodeInfo.width(), decodeInfo.height()); } // Create options for the codec. SkAndroidCodec::AndroidOptions options; options.fColorPtr = colorPtr; options.fColorCount = colorCountPtr; options.fSampleSize = fSampleSize; switch (fMode) { case kFullImage_Mode: { switch (codec->getAndroidPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options)) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: break; default: return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } premultiply_if_necessary(bitmap); canvas->drawBitmap(bitmap, 0, 0); return ""; } case kDivisor_Mode: { const int width = codec->getInfo().width(); const int height = codec->getInfo().height(); const int divisor = 2; if (width < divisor || height < divisor) { return Error::Nonfatal("Divisor is larger than image dimension."); } // Keep track of the final decoded dimensions. int finalScaledWidth = 0; int finalScaledHeight = 0; for (int x = 0; x < divisor; x++) { for (int y = 0; y < divisor; y++) { // Calculate the subset dimensions int subsetWidth = width / divisor; int subsetHeight = height / divisor; const int left = x * subsetWidth; const int top = y * subsetHeight; // Increase the size of the last subset in each row or column, when the // divisor does not divide evenly into the image dimensions subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; SkIRect subset = SkIRect::MakeXYWH(left, top, subsetWidth, subsetHeight); if (!codec->getSupportedSubset(&subset)) { return "Could not get supported subset to decode."; } options.fSubset = ⊂ const int scaledWidthOffset = subset.left() / fSampleSize; const int scaledHeightOffset = subset.top() / fSampleSize; void* pixels = bitmap.getAddr(scaledWidthOffset, scaledHeightOffset); SkISize scaledSubsetSize = codec->getSampledSubsetDimensions(fSampleSize, subset); SkImageInfo subsetDecodeInfo = decodeInfo.makeWH(scaledSubsetSize.width(), scaledSubsetSize.height()); if (x + 1 == divisor && y + 1 == divisor) { finalScaledWidth = scaledWidthOffset + scaledSubsetSize.width(); finalScaledHeight = scaledHeightOffset + scaledSubsetSize.height(); } switch (codec->getAndroidPixels(subsetDecodeInfo, pixels, bitmap.rowBytes(), &options)) { case SkCodec::kSuccess: case SkCodec::kIncompleteInput: break; default: return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } } } SkRect rect = SkRect::MakeXYWH(0, 0, (SkScalar) finalScaledWidth, (SkScalar) finalScaledHeight); premultiply_if_necessary(bitmap); canvas->drawBitmapRect(bitmap, rect, rect, nullptr); return ""; } default: SkASSERT(false); return "Error: Should not be reached."; } } SkISize AndroidCodecSrc::size() const { SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded)); if (nullptr == codec) { return SkISize::Make(0, 0); } return codec->getSampledDimensions(fSampleSize); } Name AndroidCodecSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, 1.0f / (float) fSampleSize); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static const SkRect kSKPViewport = {0,0, 1000,1000}; SKPSrc::SKPSrc(Path path) : fPath(path) {} Error SKPSrc::draw(SkCanvas* canvas) const { SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream)); if (!pic) { return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str()); } stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it. canvas->clipRect(kSKPViewport); canvas->drawPicture(pic); return ""; } SkISize SKPSrc::size() const { SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkISize::Make(0,0); } SkPictInfo info; if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) { return SkISize::Make(0,0); } SkRect viewport = kSKPViewport; if (!viewport.intersect(info.fCullRect)) { return SkISize::Make(0,0); } return viewport.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas()); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); GPUSink::GPUSink(GrContextFactory::GLContextType ct, GrContextFactory::GLContextOptions options, int samples, bool diText, bool threaded) : fContextType(ct) , fContextOptions(options) , fSampleCount(samples) , fUseDIText(diText) , fThreaded(threaded) {} void PreAbandonGpuContextErrorHandler(SkError, void*) {} DEFINE_bool(imm, false, "Run gpu configs in immediate mode."); DEFINE_bool(batchClip, false, "Clip each GrBatch to its device bounds for testing."); DEFINE_bool(batchBounds, false, "Draw a wireframe bounds of each GrBatch."); DEFINE_int32(batchLookback, -1, "Maximum GrBatch lookback for combining, negative means default."); Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { GrContextOptions grOptions; grOptions.fImmediateMode = FLAGS_imm; grOptions.fClipBatchToBounds = FLAGS_batchClip; grOptions.fDrawBatchBounds = FLAGS_batchBounds; grOptions.fMaxBatchLookback = FLAGS_batchLookback; src.modifyGrContextOptions(&grOptions); GrContextFactory factory(grOptions); const SkISize size = src.size(); const SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType); #if SK_SUPPORT_GPU const int maxDimension = factory.getContextInfo(fContextType, fContextOptions). fGrContext->caps()->maxTextureSize(); if (maxDimension < SkTMax(size.width(), size.height())) { return Error::Nonfatal("Src too large to create a texture.\n"); } #endif SkAutoTUnref<SkSurface> surface( NewGpuSurface(&factory, fContextType, fContextOptions, info, fSampleCount, fUseDIText)); if (!surface) { return "Could not create a surface."; } if (FLAGS_preAbandonGpuContext) { SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr); factory.abandonContexts(); } SkCanvas* canvas = surface->getCanvas(); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); if (FLAGS_gpuStats) { canvas->getGrContext()->dumpCacheStats(log); canvas->getGrContext()->dumpGpuStats(log); } dst->allocPixels(info); canvas->readPixels(dst, 0, 0); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { // Print the given DM:Src to a document, breaking on 8.5x11 pages. SkASSERT(doc); int width = src.size().width(), height = src.size().height(); if (FLAGS_multiPage) { const int kLetterWidth = 612, // 8.5 * 72 kLetterHeight = 792; // 11 * 72 const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth), SkIntToScalar(kLetterHeight)); int xPages = ((width - 1) / kLetterWidth) + 1; int yPages = ((height - 1) / kLetterHeight) + 1; for (int y = 0; y < yPages; ++y) { for (int x = 0; x < xPages; ++x) { int w = SkTMin(kLetterWidth, width - (x * kLetterWidth)); int h = SkTMin(kLetterHeight, height - (y * kLetterHeight)); SkCanvas* canvas = doc->beginPage(SkIntToScalar(w), SkIntToScalar(h)); if (!canvas) { return "SkDocument::beginPage(w,h) returned nullptr"; } canvas->clipRect(letter); canvas->translate(-letter.width() * x, -letter.height() * y); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } } } else { SkCanvas* canvas = doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); if (!canvas) { return "SkDocument::beginPage(w,h) returned nullptr"; } Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } if (!doc->close()) { return "SkDocument::close() returned false"; } dst->flush(); return ""; } PDFSink::PDFSink(const char* rasterizer) : fRasterizer(rasterizer) {} Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst)); if (!doc) { return "SkDocument::CreatePDF() returned nullptr"; } SkTArray<SkDocument::Attribute> info; info.emplace_back(SkString("Title"), src.name()); info.emplace_back(SkString("Subject"), SkString("rendering correctness test")); info.emplace_back(SkString("Creator"), SkString("Skia/DM")); info.emplace_back(SkString("Keywords"), SkStringPrintf("Rasterizer:%s;", fRasterizer)); doc->setMetadata(&info[0], info.count(), nullptr, nullptr); return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ XPSSink::XPSSink() {} Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst)); if (!doc) { return "SkDocument::CreateXPS() returned nullptr"; } return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref<SkPicture> pic(recorder.endRecording()); pic->serialize(dst); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SVGSink::SVGSink() {} Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst)); SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create( SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), xmlWriter)); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { const SkISize size = src.size(); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); SkMallocPixelRef::ZeroedPRFactory factory; dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType), &factory, nullptr/*colortable*/); SkCanvas canvas(*dst); return src.draw(&canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. // Several examples below. template <typename Fn> static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, SkISize size, const Fn& draw) { class ProxySrc : public Src { public: ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {} Error draw(SkCanvas* canvas) const override { return fDraw(canvas); } Name name() const override { sk_throw(); return ""; } // Won't be called. SkISize size() const override { return fSize; } private: SkISize fSize; const Fn& fDraw; }; return sink->draw(ProxySrc(size, draw), bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output."); // Is *bitmap identical to what you get drawing src into sink? static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) { // We can only check raster outputs. // (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.) if (FLAGS_check && bitmap) { SkBitmap reference; SkString log; Error err = sink->draw(src, &reference, nullptr, &log); // If we can draw into this Sink via some pipeline, we should be able to draw directly. SkASSERT(err.isEmpty()); if (!err.isEmpty()) { return err; } // The dimensions are a property of the Src only, and so should be identical. SkASSERT(reference.getSize() == bitmap->getSize()); if (reference.getSize() != bitmap->getSize()) { return "Dimensions don't match reference"; } // All SkBitmaps in DM are pre-locked and tight, so this comparison is easy. if (0 != memcmp(reference.getPixels(), bitmap->getPixels(), reference.getSize())) { return "Pixels don't match reference"; } } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { SkRect bounds = SkRect::MakeIWH(srcW, srcH); matrix->mapRect(&bounds); matrix->postTranslate(-bounds.x(), -bounds.y()); return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())); } ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { SkMatrix matrix = fMatrix; SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->concat(matrix); return src.draw(canvas); }); } // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. // This should be pixel-preserving. ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { Error err = fSink->draw(src, bitmap, stream, log); if (!err.isEmpty()) { return err; } SkMatrix inverse; if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { return "Cannot upright --matrix."; } SkMatrix upright = SkMatrix::I(); upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); SkBitmap uprighted; SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); SkCanvas canvas(uprighted); canvas.concat(upright); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas.drawBitmap(*bitmap, 0, 0, &paint); *bitmap = uprighted; bitmap->lockPixels(); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaRemote::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* target) { SkAutoTDelete<SkRemote::Encoder> decoder(SkRemote::NewDecoder(target)); SkAutoTDelete<SkRemote::Encoder> cache(fCache ? SkRemote::NewCachingEncoder(decoder) : nullptr); SkAutoTDelete<SkCanvas> canvas(SkRemote::NewCanvas(cache ? cache : decoder)); return src.draw(canvas); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaSerialization::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } SkAutoTUnref<SkPicture> pic(recorder.endRecording()); // Serialize it and then deserialize it. SkDynamicMemoryWStream wStream; pic->serialize(&wStream); SkAutoTDelete<SkStream> rStream(wStream.detachAsStream()); SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream)); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->drawPicture(deserialized); return check_against_reference(bitmap, src, fSink); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) : Via(sink) , fW(w) , fH(h) , fFactory(factory) {} Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()), fFactory.get())); if (!err.isEmpty()) { return err; } SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture()); return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) { const int xTiles = (size.width() + fW - 1) / fW, yTiles = (size.height() + fH - 1) / fH; SkMultiPictureDraw mpd(xTiles*yTiles); SkTDArray<SkSurface*> surfaces; surfaces.setReserve(xTiles*yTiles); SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { // This lets our ultimate Sink determine the best kind of surface. // E.g., if it's a GpuSink, the surfaces and images are textures. SkSurface* s = canvas->newSurface(info); if (!s) { s = SkSurface::NewRaster(info); // Some canvases can't create surfaces. } surfaces.push(s); SkCanvas* c = s->getCanvas(); c->translate(SkIntToScalar(-i * fW), SkIntToScalar(-j * fH)); // Line up the canvas with this tile. mpd.add(c, pic); } } mpd.draw(); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot()); canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); } } surfaces.unrefAll(); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkPictureRecorder recorder; SkAutoTUnref<SkPicture> pic; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } pic.reset(recorder.endRecordingAsPicture()); canvas->drawPicture(pic); return check_against_reference(bitmap, src, fSink); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Draw the Src into two pictures, then draw the second picture into the wrapped Sink. // This tests that any shortcuts we may take while recording that second picture are legal. Error ViaSecondPicture::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkPictureRecorder recorder; SkAutoTUnref<SkPicture> pic; for (int i = 0; i < 2; i++) { Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } pic.reset(recorder.endRecordingAsPicture()); } canvas->drawPicture(pic); return check_against_reference(bitmap, src, fSink); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Draw the Src twice. This can help exercise caching. Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error { for (int i = 0; i < 2; i++) { SkAutoCanvasRestore acr(canvas, true/*save now*/); canvas->clear(SK_ColorTRANSPARENT); Error err = src.draw(canvas); if (err.isEmpty()) { return err; } } return check_against_reference(bitmap, src, fSink); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #ifdef SK_MOJO Error ViaMojo::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { SkPictureRecorder recorder; SkRect size = SkRect::Make(SkIRect::MakeSize(src.size())); Error err = src.draw(recorder.beginRecording(size)); if (!err.isEmpty()) { return err; } SkAutoTUnref<SkPicture> skPicture(recorder.endRecording()); SkASSERT(skPicture); SkDynamicMemoryWStream buffer; skPicture->serialize(&buffer); skPicture.reset(); SkMojo::FlattenedPicturePtr mojoPicture = SkMojo::FlattenedPicture::New(); mojoPicture->data.resize(buffer.bytesWritten()); buffer.copyTo(mojoPicture->data.data()); buffer.reset(); SkASSERT(mojoPicture.get() && mojoPicture->data); size_t flatSize = mojoPicture->GetSerializedSize(); SkAutoMalloc storage(flatSize); if (!mojoPicture->Serialize(storage.get(), flatSize)) { return "SkMojo::FlattenedPicture::Serialize failed"; } mojoPicture = SkMojo::FlattenedPicture::New(); mojoPicture->Deserialize(storage.get()); storage.free(); if (!mojoPicture) { return "SkMojo::FlattenedPicture::Deserialize failed"; } SkMemoryStream tmpStream(mojoPicture->data.data(), mojoPicture->data.size()); skPicture.reset(SkPicture::CreateFromStream(&tmpStream)); mojoPicture.reset(); auto fn = [&](SkCanvas* canvas) -> Error { canvas->drawPicture(skPicture.get()); return check_against_reference(bitmap, src, fSink); }; return draw_to_canvas(fSink, bitmap, stream, log, src.size(), fn); } #else // not SK_MOJO Error ViaMojo::draw(const Src&, SkBitmap*, SkWStream*, SkString*) const { return "Mojo is missing!"; } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas. // Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op. // This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures. struct DrawsAsSingletonPictures { SkCanvas* fCanvas; const SkDrawableList& fDrawables; template <typename T> void draw(const T& op, SkCanvas* canvas) { // We must pass SkMatrix::I() as our initial matrix. // By default SkRecords::Draw() uses the canvas' matrix as its initial matrix, // which would have the funky effect of applying transforms over and over. SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I()); d(op); } // Draws get their own picture. template <typename T> SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) { SkPictureRecorder rec; this->draw(op, rec.beginRecording(SkRect::MakeLargest())); SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture()); fCanvas->drawPicture(pic); } // We'll just issue non-draws directly. template <typename T> skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) { this->draw(op, fCanvas); } }; // Record Src into a picture, then record it into a macro picture with a sub-picture for each draw. // Then play back that macro picture into our wrapped sink. Error ViaSingletonPictures::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { // Use low-level (Skia-private) recording APIs so we can read the SkRecord. SkRecord skr; SkRecorder recorder(&skr, size.width(), size.height()); Error err = src.draw(&recorder); if (!err.isEmpty()) { return err; } // Record our macro-picture, with each draw op as its own sub-picture. SkPictureRecorder macroRec; SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height())); SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList()); const SkDrawableList empty; DrawsAsSingletonPictures drawsAsSingletonPictures = { macroCanvas, drawables ? *drawables : empty, }; for (int i = 0; i < skr.count(); i++) { skr.visit<void>(i, drawsAsSingletonPictures); } SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture()); canvas->drawPicture(macroPic); return check_against_reference(bitmap, src, fSink); }); } } // namespace DM