/* // Sample demonstrating interoperability of OpenCV UMat with Direct X surface // At first, the data obtained from video file or camera and // placed onto Direct X surface, // following mapping of this Direct X surface to OpenCV UMat and call cv::Blur // function. The result is mapped back to Direct X surface and rendered through // Direct X API. */ #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <d3d11.h> #include "opencv2/core.hpp" #include "opencv2/core/directx.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/videoio.hpp" #include "d3dsample.hpp" #pragma comment (lib, "d3d11.lib") using namespace std; using namespace cv; class D3D11WinApp : public D3DSample { public: D3D11WinApp(int width, int height, std::string& window_name, cv::VideoCapture& cap) : D3DSample(width, height, window_name, cap) {} ~D3D11WinApp() {} int create(void) { // base initialization D3DSample::create(); // initialize DirectX HRESULT r; DXGI_SWAP_CHAIN_DESC scd; ZeroMemory(&scd, sizeof(DXGI_SWAP_CHAIN_DESC)); scd.BufferCount = 1; // one back buffer scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // use 32-bit color scd.BufferDesc.Width = m_width; // set the back buffer width scd.BufferDesc.Height = m_height; // set the back buffer height scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // how swap chain is to be used scd.OutputWindow = m_hWnd; // the window to be used scd.SampleDesc.Count = 1; // how many multisamples scd.Windowed = TRUE; // windowed/full-screen mode scd.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; scd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; // allow full-screen switching r = ::D3D11CreateDeviceAndSwapChain( NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, 0, NULL, 0, D3D11_SDK_VERSION, &scd, &m_pD3D11SwapChain, &m_pD3D11Dev, NULL, &m_pD3D11Ctx); if (FAILED(r)) { return -1; } r = m_pD3D11SwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&m_pBackBuffer); if (FAILED(r)) { return -1; } r = m_pD3D11Dev->CreateRenderTargetView(m_pBackBuffer, NULL, &m_pRenderTarget); if (FAILED(r)) { return -1; } m_pD3D11Ctx->OMSetRenderTargets(1, &m_pRenderTarget, NULL); D3D11_VIEWPORT viewport; ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT)); viewport.Width = (float)m_width; viewport.Height = (float)m_height; viewport.MinDepth = 0.0f; viewport.MaxDepth = 0.0f; m_pD3D11Ctx->RSSetViewports(1, &viewport); D3D11_TEXTURE2D_DESC desc = { 0 }; desc.Width = m_width; desc.Height = m_height; desc.MipLevels = 1; desc.ArraySize = 1; desc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; desc.SampleDesc.Count = 1; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.Usage = D3D11_USAGE_DYNAMIC; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; r = m_pD3D11Dev->CreateTexture2D(&desc, NULL, &m_pSurface); if (FAILED(r)) { std::cerr << "Can't create texture with input image" << std::endl; return -1; } // initialize OpenCL context of OpenCV lib from DirectX if (cv::ocl::haveOpenCL()) { m_oclCtx = cv::directx::ocl::initializeContextFromD3D11Device(m_pD3D11Dev); } m_oclDevName = cv::ocl::useOpenCL() ? cv::ocl::Context::getDefault().device(0).name() : "No OpenCL device"; return 0; } // create() // get media data on DX surface for further processing int get_surface(ID3D11Texture2D** ppSurface) { HRESULT r; if (!m_cap.read(m_frame_bgr)) return -1; cv::cvtColor(m_frame_bgr, m_frame_rgba, CV_RGB2BGRA); UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(m_pSurface, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex); if (FAILED(r)) { return r; } cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, (int)mappedTex.RowPitch); // copy video frame data to surface m_frame_rgba.copyTo(m); m_pD3D11Ctx->Unmap(m_pSurface, subResource); *ppSurface = m_pSurface; return 0; } // get_surface() // process and render media data int render() { try { if (m_shutdown) return 0; HRESULT r; ID3D11Texture2D* pSurface; r = get_surface(&pSurface); if (FAILED(r)) { return -1; } switch (m_mode) { case MODE_NOP: // no processing break; case MODE_CPU: { // process video frame on CPU UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(m_pSurface, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex); if (FAILED(r)) { return r; } cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, (int)mappedTex.RowPitch); if (!m_disableProcessing) { // blur D3D10 surface with OpenCV on CPU cv::blur(m, m, cv::Size(15, 15), cv::Point(-7, -7)); } m_pD3D11Ctx->Unmap(m_pSurface, subResource); break; } case MODE_GPU: { // process video frame on GPU cv::UMat u; cv::directx::convertFromD3D11Texture2D(pSurface, u); if (!m_disableProcessing) { // blur D3D9 surface with OpenCV on GPU with OpenCL cv::blur(u, u, cv::Size(15, 15), cv::Point(-7, -7)); } cv::directx::convertToD3D11Texture2D(u, pSurface); break; } } // switch print_info(pSurface, m_mode, getFps(), m_oclDevName); // traditional DX render pipeline: // BitBlt surface to backBuffer and flip backBuffer to frontBuffer m_pD3D11Ctx->CopyResource(m_pBackBuffer, pSurface); // present the back buffer contents to the display // switch the back buffer and the front buffer r = m_pD3D11SwapChain->Present(0, 0); if (FAILED(r)) { return -1; } } // try catch (cv::Exception& e) { std::cerr << "Exception: " << e.what() << std::endl; return 10; } return 0; } // render() void print_info(ID3D11Texture2D* pSurface, int mode, float fps, cv::String oclDevName) { HRESULT r; UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(pSurface, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex); if (FAILED(r)) { return; } cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, (int)mappedTex.RowPitch); cv::String strMode = cv::format("%s", m_modeStr[mode].c_str()); cv::String strFPS = cv::format("%2.1f", fps); cv::String strDevName = cv::format("%s", oclDevName.c_str()); cv::putText(m, strMode, cv::Point(0, 16), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(m, strFPS, cv::Point(0, 32), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(m, strDevName, cv::Point(0, 48), 1, 0.8, cv::Scalar(0, 0, 0)); m_pD3D11Ctx->Unmap(pSurface, subResource); return; } // printf_info() int cleanup(void) { SAFE_RELEASE(m_pSurface); SAFE_RELEASE(m_pBackBuffer); SAFE_RELEASE(m_pD3D11SwapChain); SAFE_RELEASE(m_pRenderTarget); SAFE_RELEASE(m_pD3D11Dev); SAFE_RELEASE(m_pD3D11Ctx); D3DSample::cleanup(); return 0; } // cleanup() private: ID3D11Device* m_pD3D11Dev; IDXGISwapChain* m_pD3D11SwapChain; ID3D11DeviceContext* m_pD3D11Ctx; ID3D11Texture2D* m_pBackBuffer; ID3D11Texture2D* m_pSurface; ID3D11RenderTargetView* m_pRenderTarget; cv::ocl::Context m_oclCtx; cv::String m_oclPlatformName; cv::String m_oclDevName; }; // main func int main(int argc, char** argv) { std::string title = "D3D11 interop sample"; return d3d_app<D3D11WinApp>(argc, argv, title); }