#include <iostream> #include "opencv2/opencv_modules.hpp" #ifdef HAVE_OPENCV_XFEATURES2D #include <opencv2/features2d.hpp> #include <opencv2/xfeatures2d.hpp> #include <opencv2/imgcodecs.hpp> #include <opencv2/opencv.hpp> #include <vector> // If you find this code useful, please add a reference to the following paper in your work: // Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015 using namespace std; using namespace cv; const float inlier_threshold = 2.5f; // Distance threshold to identify inliers const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio int main(void) { Mat img1 = imread("../data/graf1.png", IMREAD_GRAYSCALE); Mat img2 = imread("../data/graf3.png", IMREAD_GRAYSCALE); Mat homography; FileStorage fs("../data/H1to3p.xml", FileStorage::READ); fs.getFirstTopLevelNode() >> homography; vector<KeyPoint> kpts1, kpts2; Mat desc1, desc2; Ptr<cv::ORB> orb_detector = cv::ORB::create(10000); Ptr<xfeatures2d::LATCH> latch = xfeatures2d::LATCH::create(); orb_detector->detect(img1, kpts1); latch->compute(img1, kpts1, desc1); orb_detector->detect(img2, kpts2); latch->compute(img2, kpts2, desc2); BFMatcher matcher(NORM_HAMMING); vector< vector<DMatch> > nn_matches; matcher.knnMatch(desc1, desc2, nn_matches, 2); vector<KeyPoint> matched1, matched2, inliers1, inliers2; vector<DMatch> good_matches; for (size_t i = 0; i < nn_matches.size(); i++) { DMatch first = nn_matches[i][0]; float dist1 = nn_matches[i][0].distance; float dist2 = nn_matches[i][1].distance; if (dist1 < nn_match_ratio * dist2) { matched1.push_back(kpts1[first.queryIdx]); matched2.push_back(kpts2[first.trainIdx]); } } for (unsigned i = 0; i < matched1.size(); i++) { Mat col = Mat::ones(3, 1, CV_64F); col.at<double>(0) = matched1[i].pt.x; col.at<double>(1) = matched1[i].pt.y; col = homography * col; col /= col.at<double>(2); double dist = sqrt(pow(col.at<double>(0) - matched2[i].pt.x, 2) + pow(col.at<double>(1) - matched2[i].pt.y, 2)); if (dist < inlier_threshold) { int new_i = static_cast<int>(inliers1.size()); inliers1.push_back(matched1[i]); inliers2.push_back(matched2[i]); good_matches.push_back(DMatch(new_i, new_i, 0)); } } Mat res; drawMatches(img1, inliers1, img2, inliers2, good_matches, res); imwrite("../../samples/data/latch_res.png", res); double inlier_ratio = inliers1.size() * 1.0 / matched1.size(); cout << "LATCH Matching Results" << endl; cout << "*******************************" << endl; cout << "# Keypoints 1: \t" << kpts1.size() << endl; cout << "# Keypoints 2: \t" << kpts2.size() << endl; cout << "# Matches: \t" << matched1.size() << endl; cout << "# Inliers: \t" << inliers1.size() << endl; cout << "# Inliers Ratio: \t" << inlier_ratio << endl; cout << endl; return 0; } #else int main() { std::cerr << "OpenCV was built without xfeatures2d module" << std::endl; return 0; } #endif