/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" /****************************************************************************************\ * Image Alignment (ECC algorithm) * \****************************************************************************************/ using namespace cv; static void image_jacobian_homo_ECC(const Mat& src1, const Mat& src2, const Mat& src3, const Mat& src4, const Mat& src5, Mat& dst) { CV_Assert(src1.size() == src2.size()); CV_Assert(src1.size() == src3.size()); CV_Assert(src1.size() == src4.size()); CV_Assert( src1.rows == dst.rows); CV_Assert(dst.cols == (src1.cols*8)); CV_Assert(dst.type() == CV_32FC1); CV_Assert(src5.isContinuous()); const float* hptr = src5.ptr<float>(0); const float h0_ = hptr[0]; const float h1_ = hptr[3]; const float h2_ = hptr[6]; const float h3_ = hptr[1]; const float h4_ = hptr[4]; const float h5_ = hptr[7]; const float h6_ = hptr[2]; const float h7_ = hptr[5]; const int w = src1.cols; //create denominator for all points as a block Mat den_ = src3*h2_ + src4*h5_ + 1.0;//check the time of this! otherwise use addWeighted //create projected points Mat hatX_ = -src3*h0_ - src4*h3_ - h6_; divide(hatX_, den_, hatX_); Mat hatY_ = -src3*h1_ - src4*h4_ - h7_; divide(hatY_, den_, hatY_); //instead of dividing each block with den, //just pre-devide the block of gradients (it's more efficient) Mat src1Divided_; Mat src2Divided_; divide(src1, den_, src1Divided_); divide(src2, den_, src2Divided_); //compute Jacobian blocks (8 blocks) dst.colRange(0, w) = src1Divided_.mul(src3);//1 dst.colRange(w,2*w) = src2Divided_.mul(src3);//2 Mat temp_ = (hatX_.mul(src1Divided_)+hatY_.mul(src2Divided_)); dst.colRange(2*w,3*w) = temp_.mul(src3);//3 hatX_.release(); hatY_.release(); dst.colRange(3*w, 4*w) = src1Divided_.mul(src4);//4 dst.colRange(4*w, 5*w) = src2Divided_.mul(src4);//5 dst.colRange(5*w, 6*w) = temp_.mul(src4);//6 src1Divided_.copyTo(dst.colRange(6*w, 7*w));//7 src2Divided_.copyTo(dst.colRange(7*w, 8*w));//8 } static void image_jacobian_euclidean_ECC(const Mat& src1, const Mat& src2, const Mat& src3, const Mat& src4, const Mat& src5, Mat& dst) { CV_Assert( src1.size()==src2.size()); CV_Assert( src1.size()==src3.size()); CV_Assert( src1.size()==src4.size()); CV_Assert( src1.rows == dst.rows); CV_Assert(dst.cols == (src1.cols*3)); CV_Assert(dst.type() == CV_32FC1); CV_Assert(src5.isContinuous()); const float* hptr = src5.ptr<float>(0); const float h0 = hptr[0];//cos(theta) const float h1 = hptr[3];//sin(theta) const int w = src1.cols; //create -sin(theta)*X -cos(theta)*Y for all points as a block -> hatX Mat hatX = -(src3*h1) - (src4*h0); //create cos(theta)*X -sin(theta)*Y for all points as a block -> hatY Mat hatY = (src3*h0) - (src4*h1); //compute Jacobian blocks (3 blocks) dst.colRange(0, w) = (src1.mul(hatX))+(src2.mul(hatY));//1 src1.copyTo(dst.colRange(w, 2*w));//2 src2.copyTo(dst.colRange(2*w, 3*w));//3 } static void image_jacobian_affine_ECC(const Mat& src1, const Mat& src2, const Mat& src3, const Mat& src4, Mat& dst) { CV_Assert(src1.size() == src2.size()); CV_Assert(src1.size() == src3.size()); CV_Assert(src1.size() == src4.size()); CV_Assert(src1.rows == dst.rows); CV_Assert(dst.cols == (6*src1.cols)); CV_Assert(dst.type() == CV_32FC1); const int w = src1.cols; //compute Jacobian blocks (6 blocks) dst.colRange(0,w) = src1.mul(src3);//1 dst.colRange(w,2*w) = src2.mul(src3);//2 dst.colRange(2*w,3*w) = src1.mul(src4);//3 dst.colRange(3*w,4*w) = src2.mul(src4);//4 src1.copyTo(dst.colRange(4*w,5*w));//5 src2.copyTo(dst.colRange(5*w,6*w));//6 } static void image_jacobian_translation_ECC(const Mat& src1, const Mat& src2, Mat& dst) { CV_Assert( src1.size()==src2.size()); CV_Assert( src1.rows == dst.rows); CV_Assert(dst.cols == (src1.cols*2)); CV_Assert(dst.type() == CV_32FC1); const int w = src1.cols; //compute Jacobian blocks (2 blocks) src1.copyTo(dst.colRange(0, w)); src2.copyTo(dst.colRange(w, 2*w)); } static void project_onto_jacobian_ECC(const Mat& src1, const Mat& src2, Mat& dst) { /* this functions is used for two types of projections. If src1.cols ==src.cols it does a blockwise multiplication (like in the outer product of vectors) of the blocks in matrices src1 and src2 and dst has size (number_of_blcks x number_of_blocks), otherwise dst is a vector of size (number_of_blocks x 1) since src2 is "multiplied"(dot) with each block of src1. The number_of_blocks is equal to the number of parameters we are lloking for (i.e. rtanslation:2, euclidean: 3, affine: 6, homography: 8) */ CV_Assert(src1.rows == src2.rows); CV_Assert((src1.cols % src2.cols) == 0); int w; float* dstPtr = dst.ptr<float>(0); if (src1.cols !=src2.cols){//dst.cols==1 w = src2.cols; for (int i=0; i<dst.rows; i++){ dstPtr[i] = (float) src2.dot(src1.colRange(i*w,(i+1)*w)); } } else { CV_Assert(dst.cols == dst.rows); //dst is square (and symmetric) w = src2.cols/dst.cols; Mat mat; for (int i=0; i<dst.rows; i++){ mat = Mat(src1.colRange(i*w, (i+1)*w)); dstPtr[i*(dst.rows+1)] = (float) pow(norm(mat),2); //diagonal elements for (int j=i+1; j<dst.cols; j++){ //j starts from i+1 dstPtr[i*dst.cols+j] = (float) mat.dot(src2.colRange(j*w, (j+1)*w)); dstPtr[j*dst.cols+i] = dstPtr[i*dst.cols+j]; //due to symmetry } } } } static void update_warping_matrix_ECC (Mat& map_matrix, const Mat& update, const int motionType) { CV_Assert (map_matrix.type() == CV_32FC1); CV_Assert (update.type() == CV_32FC1); CV_Assert (motionType == MOTION_TRANSLATION || motionType == MOTION_EUCLIDEAN || motionType == MOTION_AFFINE || motionType == MOTION_HOMOGRAPHY); if (motionType == MOTION_HOMOGRAPHY) CV_Assert (map_matrix.rows == 3 && update.rows == 8); else if (motionType == MOTION_AFFINE) CV_Assert(map_matrix.rows == 2 && update.rows == 6); else if (motionType == MOTION_EUCLIDEAN) CV_Assert (map_matrix.rows == 2 && update.rows == 3); else CV_Assert (map_matrix.rows == 2 && update.rows == 2); CV_Assert (update.cols == 1); CV_Assert( map_matrix.isContinuous()); CV_Assert( update.isContinuous() ); float* mapPtr = map_matrix.ptr<float>(0); const float* updatePtr = update.ptr<float>(0); if (motionType == MOTION_TRANSLATION){ mapPtr[2] += updatePtr[0]; mapPtr[5] += updatePtr[1]; } if (motionType == MOTION_AFFINE) { mapPtr[0] += updatePtr[0]; mapPtr[3] += updatePtr[1]; mapPtr[1] += updatePtr[2]; mapPtr[4] += updatePtr[3]; mapPtr[2] += updatePtr[4]; mapPtr[5] += updatePtr[5]; } if (motionType == MOTION_HOMOGRAPHY) { mapPtr[0] += updatePtr[0]; mapPtr[3] += updatePtr[1]; mapPtr[6] += updatePtr[2]; mapPtr[1] += updatePtr[3]; mapPtr[4] += updatePtr[4]; mapPtr[7] += updatePtr[5]; mapPtr[2] += updatePtr[6]; mapPtr[5] += updatePtr[7]; } if (motionType == MOTION_EUCLIDEAN) { double new_theta = updatePtr[0]; if (mapPtr[3]>0) new_theta += acos(mapPtr[0]); if (mapPtr[3]<0) new_theta -= acos(mapPtr[0]); mapPtr[2] += updatePtr[1]; mapPtr[5] += updatePtr[2]; mapPtr[0] = mapPtr[4] = (float) cos(new_theta); mapPtr[3] = (float) sin(new_theta); mapPtr[1] = -mapPtr[3]; } } double cv::findTransformECC(InputArray templateImage, InputArray inputImage, InputOutputArray warpMatrix, int motionType, TermCriteria criteria, InputArray inputMask) { Mat src = templateImage.getMat();//template iamge Mat dst = inputImage.getMat(); //input image (to be warped) Mat map = warpMatrix.getMat(); //warp (transformation) CV_Assert(!src.empty()); CV_Assert(!dst.empty()); if( ! (src.type()==dst.type())) CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" ); //accept only 1-channel images if( src.type() != CV_8UC1 && src.type()!= CV_32FC1) CV_Error( Error::StsUnsupportedFormat, "Images must have 8uC1 or 32fC1 type"); if( map.type() != CV_32FC1) CV_Error( Error::StsUnsupportedFormat, "warpMatrix must be single-channel floating-point matrix"); CV_Assert (map.cols == 3); CV_Assert (map.rows == 2 || map.rows ==3); CV_Assert (motionType == MOTION_AFFINE || motionType == MOTION_HOMOGRAPHY || motionType == MOTION_EUCLIDEAN || motionType == MOTION_TRANSLATION); if (motionType == MOTION_HOMOGRAPHY){ CV_Assert (map.rows ==3); } CV_Assert (criteria.type & TermCriteria::COUNT || criteria.type & TermCriteria::EPS); const int numberOfIterations = (criteria.type & TermCriteria::COUNT) ? criteria.maxCount : 200; const double termination_eps = (criteria.type & TermCriteria::EPS) ? criteria.epsilon : -1; int paramTemp = 6;//default: affine switch (motionType){ case MOTION_TRANSLATION: paramTemp = 2; break; case MOTION_EUCLIDEAN: paramTemp = 3; break; case MOTION_HOMOGRAPHY: paramTemp = 8; break; } const int numberOfParameters = paramTemp; const int ws = src.cols; const int hs = src.rows; const int wd = dst.cols; const int hd = dst.rows; Mat Xcoord = Mat(1, ws, CV_32F); Mat Ycoord = Mat(hs, 1, CV_32F); Mat Xgrid = Mat(hs, ws, CV_32F); Mat Ygrid = Mat(hs, ws, CV_32F); float* XcoPtr = Xcoord.ptr<float>(0); float* YcoPtr = Ycoord.ptr<float>(0); int j; for (j=0; j<ws; j++) XcoPtr[j] = (float) j; for (j=0; j<hs; j++) YcoPtr[j] = (float) j; repeat(Xcoord, hs, 1, Xgrid); repeat(Ycoord, 1, ws, Ygrid); Xcoord.release(); Ycoord.release(); Mat templateZM = Mat(hs, ws, CV_32F);// to store the (smoothed)zero-mean version of template Mat templateFloat = Mat(hs, ws, CV_32F);// to store the (smoothed) template Mat imageFloat = Mat(hd, wd, CV_32F);// to store the (smoothed) input image Mat imageWarped = Mat(hs, ws, CV_32F);// to store the warped zero-mean input image Mat imageMask = Mat(hs, ws, CV_8U); //to store the final mask Mat inputMaskMat = inputMask.getMat(); //to use it for mask warping Mat preMask; if(inputMask.empty()) preMask = Mat::ones(hd, wd, CV_8U); else threshold(inputMask, preMask, 0, 1, THRESH_BINARY); //gaussian filtering is optional src.convertTo(templateFloat, templateFloat.type()); GaussianBlur(templateFloat, templateFloat, Size(5, 5), 0, 0); Mat preMaskFloat; preMask.convertTo(preMaskFloat, CV_32F); GaussianBlur(preMaskFloat, preMaskFloat, Size(5, 5), 0, 0); // Change threshold. preMaskFloat *= (0.5/0.95); // Rounding conversion. preMaskFloat.convertTo(preMask, preMask.type()); preMask.convertTo(preMaskFloat, preMaskFloat.type()); dst.convertTo(imageFloat, imageFloat.type()); GaussianBlur(imageFloat, imageFloat, Size(5, 5), 0, 0); // needed matrices for gradients and warped gradients Mat gradientX = Mat::zeros(hd, wd, CV_32FC1); Mat gradientY = Mat::zeros(hd, wd, CV_32FC1); Mat gradientXWarped = Mat(hs, ws, CV_32FC1); Mat gradientYWarped = Mat(hs, ws, CV_32FC1); // calculate first order image derivatives Matx13f dx(-0.5f, 0.0f, 0.5f); filter2D(imageFloat, gradientX, -1, dx); filter2D(imageFloat, gradientY, -1, dx.t()); gradientX = gradientX.mul(preMaskFloat); gradientY = gradientY.mul(preMaskFloat); // matrices needed for solving linear equation system for maximizing ECC Mat jacobian = Mat(hs, ws*numberOfParameters, CV_32F); Mat hessian = Mat(numberOfParameters, numberOfParameters, CV_32F); Mat hessianInv = Mat(numberOfParameters, numberOfParameters, CV_32F); Mat imageProjection = Mat(numberOfParameters, 1, CV_32F); Mat templateProjection = Mat(numberOfParameters, 1, CV_32F); Mat imageProjectionHessian = Mat(numberOfParameters, 1, CV_32F); Mat errorProjection = Mat(numberOfParameters, 1, CV_32F); Mat deltaP = Mat(numberOfParameters, 1, CV_32F);//transformation parameter correction Mat error = Mat(hs, ws, CV_32F);//error as 2D matrix const int imageFlags = INTER_LINEAR + WARP_INVERSE_MAP; const int maskFlags = INTER_NEAREST + WARP_INVERSE_MAP; // iteratively update map_matrix double rho = -1; double last_rho = - termination_eps; for (int i = 1; (i <= numberOfIterations) && (fabs(rho-last_rho)>= termination_eps); i++) { // warp-back portion of the inputImage and gradients to the coordinate space of the templateImage if (motionType != MOTION_HOMOGRAPHY) { warpAffine(imageFloat, imageWarped, map, imageWarped.size(), imageFlags); warpAffine(gradientX, gradientXWarped, map, gradientXWarped.size(), imageFlags); warpAffine(gradientY, gradientYWarped, map, gradientYWarped.size(), imageFlags); warpAffine(preMask, imageMask, map, imageMask.size(), maskFlags); } else { warpPerspective(imageFloat, imageWarped, map, imageWarped.size(), imageFlags); warpPerspective(gradientX, gradientXWarped, map, gradientXWarped.size(), imageFlags); warpPerspective(gradientY, gradientYWarped, map, gradientYWarped.size(), imageFlags); warpPerspective(preMask, imageMask, map, imageMask.size(), maskFlags); } Scalar imgMean, imgStd, tmpMean, tmpStd; meanStdDev(imageWarped, imgMean, imgStd, imageMask); meanStdDev(templateFloat, tmpMean, tmpStd, imageMask); subtract(imageWarped, imgMean, imageWarped, imageMask);//zero-mean input templateZM = Mat::zeros(templateZM.rows, templateZM.cols, templateZM.type()); subtract(templateFloat, tmpMean, templateZM, imageMask);//zero-mean template const double tmpNorm = std::sqrt(countNonZero(imageMask)*(tmpStd.val[0])*(tmpStd.val[0])); const double imgNorm = std::sqrt(countNonZero(imageMask)*(imgStd.val[0])*(imgStd.val[0])); // calculate jacobian of image wrt parameters switch (motionType){ case MOTION_AFFINE: image_jacobian_affine_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, jacobian); break; case MOTION_HOMOGRAPHY: image_jacobian_homo_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, map, jacobian); break; case MOTION_TRANSLATION: image_jacobian_translation_ECC(gradientXWarped, gradientYWarped, jacobian); break; case MOTION_EUCLIDEAN: image_jacobian_euclidean_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, map, jacobian); break; } // calculate Hessian and its inverse project_onto_jacobian_ECC(jacobian, jacobian, hessian); hessianInv = hessian.inv(); const double correlation = templateZM.dot(imageWarped); // calculate enhanced correlation coefficiont (ECC)->rho last_rho = rho; rho = correlation/(imgNorm*tmpNorm); if (cvIsNaN(rho)) { CV_Error(Error::StsNoConv, "NaN encountered."); } // project images into jacobian project_onto_jacobian_ECC( jacobian, imageWarped, imageProjection); project_onto_jacobian_ECC(jacobian, templateZM, templateProjection); // calculate the parameter lambda to account for illumination variation imageProjectionHessian = hessianInv*imageProjection; const double lambda_n = (imgNorm*imgNorm) - imageProjection.dot(imageProjectionHessian); const double lambda_d = correlation - templateProjection.dot(imageProjectionHessian); if (lambda_d <= 0.0) { rho = -1; CV_Error(Error::StsNoConv, "The algorithm stopped before its convergence. The correlation is going to be minimized. Images may be uncorrelated or non-overlapped"); } const double lambda = (lambda_n/lambda_d); // estimate the update step delta_p error = lambda*templateZM - imageWarped; project_onto_jacobian_ECC(jacobian, error, errorProjection); deltaP = hessianInv * errorProjection; // update warping matrix update_warping_matrix_ECC( map, deltaP, motionType); } // return final correlation coefficient return rho; } /* End of file. */