/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/ts/ocl_test.hpp" namespace cvtest { namespace ocl { using namespace cv; int test_loop_times = 1; // TODO Read from command line / environment #ifdef HAVE_OPENCL #define DUMP_PROPERTY_XML(propertyName, propertyValue) \ do { \ std::stringstream ssName, ssValue;\ ssName << propertyName;\ ssValue << (propertyValue); \ ::testing::Test::RecordProperty(ssName.str(), ssValue.str()); \ } while (false) #define DUMP_MESSAGE_STDOUT(msg) \ do { \ std::cout << msg << std::endl; \ } while (false) static std::string bytesToStringRepr(size_t value) { size_t b = value % 1024; value /= 1024; size_t kb = value % 1024; value /= 1024; size_t mb = value % 1024; value /= 1024; size_t gb = value; std::ostringstream stream; if (gb > 0) stream << gb << " GB "; if (mb > 0) stream << mb << " MB "; if (kb > 0) stream << kb << " kB "; if (b > 0) stream << b << " B"; return stream.str(); } void dumpOpenCLDevice() { using namespace cv::ocl; try { if (!useOpenCL()) { DUMP_MESSAGE_STDOUT("OpenCL is disabled"); DUMP_PROPERTY_XML("cv_ocl", "disabled"); return; } std::vector<PlatformInfo> platforms; cv::ocl::getPlatfomsInfo(platforms); if (platforms.size() > 0) { DUMP_MESSAGE_STDOUT("OpenCL Platforms: "); for (size_t i = 0; i < platforms.size(); i++) { const PlatformInfo* platform = &platforms[i]; DUMP_MESSAGE_STDOUT(" " << platform->name().c_str()); Device current_device; for (int j = 0; j < platform->deviceNumber(); j++) { platform->getDevice(current_device, j); const char* deviceTypeStr = current_device.type() == Device::TYPE_CPU ? ("CPU") : (current_device.type() == Device::TYPE_GPU ? current_device.hostUnifiedMemory() ? "iGPU" : "dGPU" : "unknown"); DUMP_MESSAGE_STDOUT( " " << deviceTypeStr << ": " << current_device.name().c_str() << " (" << current_device.version().c_str() << ")"); DUMP_PROPERTY_XML( cv::format("cv_ocl_platform_%d_device_%d", (int)i, (int)j ), cv::format("(Platform=%s)(Type=%s)(Name=%s)(Version=%s)", platform->name().c_str(), deviceTypeStr, current_device.name().c_str(), current_device.version().c_str()) ); } } } else { DUMP_MESSAGE_STDOUT("OpenCL is not available"); DUMP_PROPERTY_XML("cv_ocl", "not available"); return; } const Device& device = Device::getDefault(); if (!device.available()) CV_ErrorNoReturn(CV_OpenCLInitError, "OpenCL device is not available"); DUMP_MESSAGE_STDOUT("Current OpenCL device: "); #if 0 DUMP_MESSAGE_STDOUT(" Platform = "<< device.getPlatform().name()); DUMP_PROPERTY_XML("cv_ocl_current_platformName", device.getPlatform().name()); #endif const char* deviceTypeStr = device.type() == Device::TYPE_CPU ? ("CPU") : (device.type() == Device::TYPE_GPU ? device.hostUnifiedMemory() ? "iGPU" : "dGPU" : "unknown"); DUMP_MESSAGE_STDOUT(" Type = "<< deviceTypeStr); DUMP_PROPERTY_XML("cv_ocl_current_deviceType", deviceTypeStr); DUMP_MESSAGE_STDOUT(" Name = "<< device.name()); DUMP_PROPERTY_XML("cv_ocl_current_deviceName", device.name()); DUMP_MESSAGE_STDOUT(" Version = " << device.version()); DUMP_PROPERTY_XML("cv_ocl_current_deviceVersion", device.version()); DUMP_MESSAGE_STDOUT(" Compute units = "<< device.maxComputeUnits()); DUMP_PROPERTY_XML("cv_ocl_current_maxComputeUnits", device.maxComputeUnits()); DUMP_MESSAGE_STDOUT(" Max work group size = "<< device.maxWorkGroupSize()); DUMP_PROPERTY_XML("cv_ocl_current_maxWorkGroupSize", device.maxWorkGroupSize()); std::string localMemorySizeStr = bytesToStringRepr(device.localMemSize()); DUMP_MESSAGE_STDOUT(" Local memory size = " << localMemorySizeStr); DUMP_PROPERTY_XML("cv_ocl_current_localMemSize", device.localMemSize()); std::string maxMemAllocSizeStr = bytesToStringRepr(device.maxMemAllocSize()); DUMP_MESSAGE_STDOUT(" Max memory allocation size = "<< maxMemAllocSizeStr); DUMP_PROPERTY_XML("cv_ocl_current_maxMemAllocSize", device.maxMemAllocSize()); const char* doubleSupportStr = device.doubleFPConfig() > 0 ? "Yes" : "No"; DUMP_MESSAGE_STDOUT(" Double support = "<< doubleSupportStr); DUMP_PROPERTY_XML("cv_ocl_current_haveDoubleSupport", device.doubleFPConfig() > 0); const char* isUnifiedMemoryStr = device.hostUnifiedMemory() ? "Yes" : "No"; DUMP_MESSAGE_STDOUT(" Host unified memory = "<< isUnifiedMemoryStr); DUMP_PROPERTY_XML("cv_ocl_current_hostUnifiedMemory", device.hostUnifiedMemory()); const char* haveAmdBlasStr = haveAmdBlas() ? "Yes" : "No"; DUMP_MESSAGE_STDOUT(" Has AMD Blas = "<< haveAmdBlasStr); DUMP_PROPERTY_XML("cv_ocl_current_AmdBlas", haveAmdBlas()); const char* haveAmdFftStr = haveAmdFft() ? "Yes" : "No"; DUMP_MESSAGE_STDOUT(" Has AMD Fft = "<< haveAmdFftStr); DUMP_PROPERTY_XML("cv_ocl_current_AmdFft", haveAmdFft()); DUMP_MESSAGE_STDOUT(" Preferred vector width char = "<< device.preferredVectorWidthChar()); DUMP_PROPERTY_XML("cv_ocl_current_preferredVectorWidthChar", device.preferredVectorWidthChar()); DUMP_MESSAGE_STDOUT(" Preferred vector width short = "<< device.preferredVectorWidthShort()); DUMP_PROPERTY_XML("cv_ocl_current_preferredVectorWidthShort", device.preferredVectorWidthShort()); DUMP_MESSAGE_STDOUT(" Preferred vector width int = "<< device.preferredVectorWidthInt()); DUMP_PROPERTY_XML("cv_ocl_current_preferredVectorWidthInt", device.preferredVectorWidthInt()); DUMP_MESSAGE_STDOUT(" Preferred vector width long = "<< device.preferredVectorWidthLong()); DUMP_PROPERTY_XML("cv_ocl_current_preferredVectorWidthLong", device.preferredVectorWidthLong()); DUMP_MESSAGE_STDOUT(" Preferred vector width float = "<< device.preferredVectorWidthFloat()); DUMP_PROPERTY_XML("cv_ocl_current_preferredVectorWidthFloat", device.preferredVectorWidthFloat()); DUMP_MESSAGE_STDOUT(" Preferred vector width double = "<< device.preferredVectorWidthDouble()); DUMP_PROPERTY_XML("cv_ocl_current_preferredVectorWidthDouble", device.preferredVectorWidthDouble()); } catch (...) { DUMP_MESSAGE_STDOUT("Exception. Can't dump OpenCL info"); DUMP_MESSAGE_STDOUT("OpenCL device not available"); DUMP_PROPERTY_XML("cv_ocl", "not available"); } } #undef DUMP_MESSAGE_STDOUT #undef DUMP_PROPERTY_XML #endif Mat TestUtils::readImage(const String &fileName, int flags) { return cv::imread(cvtest::TS::ptr()->get_data_path() + fileName, flags); } Mat TestUtils::readImageType(const String &fname, int type) { Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); if (CV_MAT_CN(type) == 4) { Mat temp; cv::cvtColor(src, temp, cv::COLOR_BGR2BGRA); swap(src, temp); } src.convertTo(src, CV_MAT_DEPTH(type)); return src; } double TestUtils::checkNorm1(InputArray m, InputArray mask) { return cvtest::norm(m.getMat(), NORM_INF, mask.getMat()); } double TestUtils::checkNorm2(InputArray m1, InputArray m2, InputArray mask) { return cvtest::norm(m1.getMat(), m2.getMat(), NORM_INF, mask.getMat()); } double TestUtils::checkSimilarity(InputArray m1, InputArray m2) { Mat diff; matchTemplate(m1.getMat(), m2.getMat(), diff, CV_TM_CCORR_NORMED); return std::abs(diff.at<float>(0, 0) - 1.f); } double TestUtils::checkRectSimilarity(const Size & sz, std::vector<Rect>& ob1, std::vector<Rect>& ob2) { double final_test_result = 0.0; size_t sz1 = ob1.size(); size_t sz2 = ob2.size(); if (sz1 != sz2) return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1); else { if (sz1 == 0 && sz2 == 0) return 0; cv::Mat cpu_result(sz, CV_8UC1); cpu_result.setTo(0); for (vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++) { cv::Mat cpu_result_roi(cpu_result, *r); cpu_result_roi.setTo(1); cpu_result.copyTo(cpu_result); } int cpu_area = cv::countNonZero(cpu_result > 0); cv::Mat gpu_result(sz, CV_8UC1); gpu_result.setTo(0); for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++) { cv::Mat gpu_result_roi(gpu_result, *r2); gpu_result_roi.setTo(1); gpu_result.copyTo(gpu_result); } cv::Mat result_; multiply(cpu_result, gpu_result, result_); int result = cv::countNonZero(result_ > 0); if (cpu_area!=0 && result!=0) final_test_result = 1.0 - (double)result/(double)cpu_area; else if(cpu_area==0 && result!=0) final_test_result = -1; } return final_test_result; } void TestUtils::showDiff(InputArray _src, InputArray _gold, InputArray _actual, double eps, bool alwaysShow) { Mat src = _src.getMat(), actual = _actual.getMat(), gold = _gold.getMat(); Mat diff, diff_thresh; absdiff(gold, actual, diff); diff.convertTo(diff, CV_32F); threshold(diff, diff_thresh, eps, 255.0, cv::THRESH_BINARY); if (alwaysShow || cv::countNonZero(diff_thresh.reshape(1)) > 0) { #if 0 std::cout << "Source: " << std::endl << src << std::endl; std::cout << "Expected: " << std::endl << gold << std::endl; std::cout << "Actual: " << std::endl << actual << std::endl; #endif namedWindow("src", WINDOW_NORMAL); namedWindow("gold", WINDOW_NORMAL); namedWindow("actual", WINDOW_NORMAL); namedWindow("diff", WINDOW_NORMAL); imshow("src", src); imshow("gold", gold); imshow("actual", actual); imshow("diff", diff); cv::waitKey(); } } } } // namespace cvtest::ocl