/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* * Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts * Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013. */ #include "precomp.hpp" #include "opencv2/core.hpp" #include "scd_def.hpp" #include <limits> namespace cv { class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor { public: /* Constructors */ ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations, const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer) { nAngularBins=_nAngularBins; nRadialBins=_nRadialBins; innerRadius=_innerRadius; outerRadius=_outerRadius; rotationInvariant=false; comparer=_comparer; iterations=_iterations; transformer=_transformer; bendingEnergyWeight=0.3f; imageAppearanceWeight=0.0f; shapeContextWeight=1.0f; sigma=10.0f; name_ = "ShapeDistanceExtractor.SCD"; } /* Destructor */ ~ShapeContextDistanceExtractorImpl() { } //! the main operator virtual float computeDistance(InputArray contour1, InputArray contour2); //! Setters/Getters virtual void setAngularBins(int _nAngularBins){CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins;} virtual int getAngularBins() const {return nAngularBins;} virtual void setRadialBins(int _nRadialBins){CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins;} virtual int getRadialBins() const {return nRadialBins;} virtual void setInnerRadius(float _innerRadius) {CV_Assert(_innerRadius>0); innerRadius=_innerRadius;} virtual float getInnerRadius() const {return innerRadius;} virtual void setOuterRadius(float _outerRadius) {CV_Assert(_outerRadius>0); outerRadius=_outerRadius;} virtual float getOuterRadius() const {return outerRadius;} virtual void setRotationInvariant(bool _rotationInvariant) {rotationInvariant=_rotationInvariant;} virtual bool getRotationInvariant() const {return rotationInvariant;} virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) { comparer = _comparer; } virtual Ptr<HistogramCostExtractor> getCostExtractor() const { return comparer; } virtual void setShapeContextWeight(float _shapeContextWeight) {shapeContextWeight=_shapeContextWeight;} virtual float getShapeContextWeight() const {return shapeContextWeight;} virtual void setImageAppearanceWeight(float _imageAppearanceWeight) {imageAppearanceWeight=_imageAppearanceWeight;} virtual float getImageAppearanceWeight() const {return imageAppearanceWeight;} virtual void setBendingEnergyWeight(float _bendingEnergyWeight) {bendingEnergyWeight=_bendingEnergyWeight;} virtual float getBendingEnergyWeight() const {return bendingEnergyWeight;} virtual void setStdDev(float _sigma) {sigma=_sigma;} virtual float getStdDev() const {return sigma;} virtual void setImages(InputArray _image1, InputArray _image2) { Mat image1_=_image1.getMat(), image2_=_image2.getMat(); CV_Assert((image1_.depth()==0) && (image2_.depth()==0)); image1=image1_; image2=image2_; } virtual void getImages(OutputArray _image1, OutputArray _image2) const { CV_Assert((!image1.empty()) && (!image2.empty())); _image1.create(image1.size(), image1.type()); _image2.create(image2.size(), image2.type()); _image1.getMat()=image1; _image2.getMat()=image2; } virtual void setIterations(int _iterations) {CV_Assert(_iterations>0); iterations=_iterations;} virtual int getIterations() const {return iterations;} virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) {transformer=_transformer;} virtual Ptr<ShapeTransformer> getTransformAlgorithm() const {return transformer;} //! write/read virtual void write(FileStorage& fs) const { fs << "name" << name_ << "nRads" << nRadialBins << "nAngs" << nAngularBins << "iters" << iterations << "img_1" << image1 << "img_2" << image2 << "beWei" << bendingEnergyWeight << "scWei" << shapeContextWeight << "iaWei" << imageAppearanceWeight << "costF" << costFlag << "rotIn" << rotationInvariant << "sigma" << sigma; } virtual void read(const FileNode& fn) { CV_Assert( (String)fn["name"] == name_ ); nRadialBins = (int)fn["nRads"]; nAngularBins = (int)fn["nAngs"]; iterations = (int)fn["iters"]; bendingEnergyWeight = (float)fn["beWei"]; shapeContextWeight = (float)fn["scWei"]; imageAppearanceWeight = (float)fn["iaWei"]; costFlag = (int)fn["costF"]; sigma = (float)fn["sigma"]; } protected: int nAngularBins; int nRadialBins; float innerRadius; float outerRadius; bool rotationInvariant; int costFlag; int iterations; Ptr<ShapeTransformer> transformer; Ptr<HistogramCostExtractor> comparer; Mat image1; Mat image2; float bendingEnergyWeight; float imageAppearanceWeight; float shapeContextWeight; float sigma; String name_; }; float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2) { // Checking // Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2; if (set1.type() != CV_32F) sset1.convertTo(set1, CV_32F); else sset1.copyTo(set1); if (set2.type() != CV_32F) sset2.convertTo(set2, CV_32F); else sset2.copyTo(set2); CV_Assert((set1.channels()==2) && (set1.cols>0)); CV_Assert((set2.channels()==2) && (set2.cols>0)); if (imageAppearanceWeight!=0) { CV_Assert((!image1.empty()) && (!image2.empty())); } // Initializing Extractor, Descriptor structures and Matcher // SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant); Mat set1SCD; SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant); Mat set2SCD; SCDMatcher matcher; std::vector<DMatch> matches; // Distance components (The output is a linear combination of these 3) // float sDistance=0, bEnergy=0, iAppearance=0; float beta; // Initializing some variables // std::vector<int> inliers1, inliers2; Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>(); Mat warpedImage; int ii, jj, pt; for (ii=0; ii<iterations; ii++) { // Extract SCD descriptor in the set1 // set1SCE.extractSCD(set1, set1SCD, inliers1); // Extract SCD descriptor of the set2 (TARGET) // set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance()); // regularization parameter with annealing rate annRate // beta=set1SCE.getMeanDistance(); beta *= beta; // match // matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2); // apply TPS transform // if ( !transDown.empty() ) transDown->setRegularizationParameter(beta); transformer->estimateTransformation(set1, set2, matches); bEnergy += transformer->applyTransformation(set1, set1); // Image appearance // if (imageAppearanceWeight!=0) { // Have to accumulate the transformation along all the iterations if (ii==0) { if ( !transDown.empty() ) { image2.copyTo(warpedImage); } else { image1.copyTo(warpedImage); } } transformer->warpImage(warpedImage, warpedImage); } } Mat gaussWindow, diffIm; if (imageAppearanceWeight!=0) { // compute appearance cost if ( !transDown.empty() ) { resize(warpedImage, warpedImage, image1.size()); Mat temp=(warpedImage-image1); multiply(temp, temp, diffIm); } else { resize(warpedImage, warpedImage, image2.size()); Mat temp=(warpedImage-image2); multiply(temp, temp, diffIm); } gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F); for (pt=0; pt<sset1.cols; pt++) { Point2f p = sset1.at<Point2f>(0,pt); for (ii=0; ii<diffIm.rows; ii++) { for (jj=0; jj<diffIm.cols; jj++) { float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI)); gaussWindow.at<float>(ii,jj) += val; } } } Mat appIm(diffIm.rows, diffIm.cols, CV_32F); for (ii=0; ii<diffIm.rows; ii++) { for (jj=0; jj<diffIm.cols; jj++) { float elema=float( diffIm.at<uchar>(ii,jj) )/255; float elemb=gaussWindow.at<float>(ii,jj); appIm.at<float>(ii,jj) = elema*elemb; } } iAppearance = float(cv::sum(appIm)[0]/sset1.cols); } sDistance = matcher.getMatchingCost(); return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight); } Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations, const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer) { return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius, outerRadius, iterations, comparer, transformer) ); } //! SCD void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance) { cv::Mat contourMat = contour; cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F); cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F); std::vector<double> logspaces, angspaces; logarithmicSpaces(logspaces); angularSpaces(angspaces); buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance); buildAngleMatrix(contourMat, angleMatrix); // Now, build the descriptor matrix (each row is a point) // descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F); for (int ptidx=0; ptidx<contourMat.cols; ptidx++) { for (int cmp=0; cmp<contourMat.cols; cmp++) { if (ptidx==cmp) continue; if ((int)queryInliers.size()>0) { if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers } int angidx=-1, radidx=-1; for (int i=0; i<nRadialBins; i++) { if (disMatrix.at<float>(ptidx, cmp)<logspaces[i]) { radidx=i; break; } } for (int i=0; i<nAngularBins; i++) { if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i]) { angidx=i; break; } } if (angidx!=-1 && radidx!=-1) { int idx = angidx+radidx*nAngularBins; descriptors.at<float>(ptidx, idx)++; } } } } void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const { double logmin=log10(innerRadius); double logmax=log10(outerRadius); double delta=(logmax-logmin)/(nRadialBins-1); double accdelta=0; for (int i=0; i<nRadialBins; i++) { double val = std::pow(10,logmin+accdelta); vecSpaces.push_back(val); accdelta += delta; } } void SCD::angularSpaces(std::vector<double> &vecSpaces) const { double delta=2*CV_PI/nAngularBins; double val=0; for (int i=0; i<nAngularBins; i++) { val += delta; vecSpaces.push_back(val); } } void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance) { cv::Mat contourMat = contour; cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U); for (int i=0; i<contourMat.cols; i++) { for (int j=0; j<contourMat.cols; j++) { disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 ); if (_meanDistance<0) { if (queryInliers.size()>0) { mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]); } else { mask.at<char>(i,j)=1; } } } } if (_meanDistance<0) { meanDistance=(float)mean(disMatrix, mask)[0]; } else { meanDistance=_meanDistance; } disMatrix/=meanDistance+FLT_EPSILON; } void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const { cv::Mat contourMat = contour; // if descriptor is rotationInvariant compute massCenter // cv::Point2f massCenter(0,0); if (rotationInvariant) { for (int i=0; i<contourMat.cols; i++) { massCenter+=contourMat.at<cv::Point2f>(0,i); } massCenter.x=massCenter.x/(float)contourMat.cols; massCenter.y=massCenter.y/(float)contourMat.cols; } for (int i=0; i<contourMat.cols; i++) { for (int j=0; j<contourMat.cols; j++) { if (i==j) { angleMatrix.at<float>(i,j)=0.0; } else { cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j); angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x); if (rotationInvariant) { cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter; float refAngle = atan2(refPt.y, refPt.x); angleMatrix.at<float>(i,j) -= refAngle; } angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI); } } } } //! SCDMatcher void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches, cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2) { matches.clear(); // Build the cost Matrix between descriptors // cv::Mat costMat; buildCostMatrix(descriptors1, descriptors2, costMat, comparer); // Solve the matching problem using the hungarian method // hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows); } void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2, cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const { comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix); } void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1, std::vector<int> &inliers2, int sizeScd1, int sizeScd2) { std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0); std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows); std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows); const float LOWV = 1e-10f; bool unassignedfound; int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0; int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0; float min=0, h=0, umin=0, usubmin=0, v2=0; // COLUMN REDUCTION // for (j = costMatrix.rows-1; j >= 0; j--) { // find minimum cost over rows. min = costMatrix.at<float>(0,j); imin = 0; for (i = 1; i < costMatrix.rows; i++) if (costMatrix.at<float>(i,j) < min) { min = costMatrix.at<float>(i,j); imin = i; } v[j] = min; if (++matches[imin] == 1) { rowsol[imin] = j; colsol[j] = imin; } else { colsol[j]=-1; } } // REDUCTION TRANSFER // for (i=0; i<costMatrix.rows; i++) { if (matches[i] == 0) { free[numfree++] = i; } else { if (matches[i] == 1) { j1=rowsol[i]; min=std::numeric_limits<float>::max(); for (j=0; j<costMatrix.rows; j++) { if (j!=j1) { if (costMatrix.at<float>(i,j)-v[j] < min) { min=costMatrix.at<float>(i,j)-v[j]; } } } v[j1] = v[j1]-min; } } } // AUGMENTING ROW REDUCTION // int loopcnt = 0; do { loopcnt++; k=0; prvnumfree=numfree; numfree=0; while (k < prvnumfree) { i=free[k]; k++; umin = costMatrix.at<float>(i,0)-v[0]; j1=0; usubmin = std::numeric_limits<float>::max(); for (j=1; j<costMatrix.rows; j++) { h = costMatrix.at<float>(i,j)-v[j]; if (h < usubmin) { if (h >= umin) { usubmin = h; j2 = j; } else { usubmin = umin; umin = h; j2 = j1; j1 = j; } } } i0 = colsol[j1]; if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin ) { v[j1] = v[j1] - (usubmin - umin); } else // minimum and subminimum equal. { if (i0 >= 0) // minimum column j1 is assigned. { j1 = j2; i0 = colsol[j2]; } } // (re-)assign i to j1, possibly de-assigning an i0. rowsol[i]=j1; colsol[j1]=i; if (i0 >= 0) { //if( umin < usubmin ) if (fabs(umin-usubmin) > LOWV) { free[--k] = i0; } else { free[numfree++] = i0; } } } }while (loopcnt<2); // repeat once. // AUGMENT SOLUTION for each free row // for (f = 0; f<numfree; f++) { freerow = free[f]; // start row of augmenting path. // Dijkstra shortest path algorithm. // runs until unassigned column added to shortest path tree. for (j = 0; j < costMatrix.rows; j++) { d[j] = costMatrix.at<float>(freerow,j) - v[j]; pred[j] = float(freerow); collist[j] = j; // init column list. } low=0; // columns in 0..low-1 are ready, now none. up=0; // columns in low..up-1 are to be scanned for current minimum, now none. unassignedfound = false; do { if (up == low) { last=low-1; min = d[collist[up++]]; for (k = up; k < costMatrix.rows; k++) { j = collist[k]; h = d[j]; if (h <= min) { if (h < min) // new minimum. { up = low; // restart list at index low. min = h; } collist[k] = collist[up]; collist[up++] = j; } } for (k=low; k<up; k++) { if (colsol[collist[k]] < 0) { endofpath = collist[k]; unassignedfound = true; break; } } } if (!unassignedfound) { // update 'distances' between freerow and all unscanned columns, via next scanned column. j1 = collist[low]; low++; i = colsol[j1]; h = costMatrix.at<float>(i,j1)-v[j1]-min; for (k = up; k < costMatrix.rows; k++) { j = collist[k]; v2 = costMatrix.at<float>(i,j) - v[j] - h; if (v2 < d[j]) { pred[j] = float(i); if (v2 == min) { if (colsol[j] < 0) { // if unassigned, shortest augmenting path is complete. endofpath = j; unassignedfound = true; break; } else { collist[k] = collist[up]; collist[up++] = j; } } d[j] = v2; } } } }while (!unassignedfound); // update column prices. for (k = 0; k <= last; k++) { j1 = collist[k]; v[j1] = v[j1] + d[j1] - min; } // reset row and column assignments along the alternating path. do { i = int(pred[endofpath]); colsol[endofpath] = i; j1 = endofpath; endofpath = rowsol[i]; rowsol[i] = j1; }while (i != freerow); } // calculate symmetric shape context cost cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2)); float leftcost = 0; for (int nrow=0; nrow<trueCostMatrix.rows; nrow++) { double minval; minMaxIdx(trueCostMatrix.row(nrow), &minval); leftcost+=float(minval); } leftcost /= trueCostMatrix.rows; float rightcost = 0; for (int ncol=0; ncol<trueCostMatrix.cols; ncol++) { double minval; minMaxIdx(trueCostMatrix.col(ncol), &minval); rightcost+=float(minval); } rightcost /= trueCostMatrix.cols; minMatchCost = std::max(leftcost,rightcost); // Save in a DMatch vector for (i=0;i<costMatrix.cols;i++) { cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance outMatches.push_back(singleMatch); } // Update inliers inliers1.reserve(sizeScd1); for (size_t kc = 0; kc<inliers1.size(); kc++) { if (rowsol[kc]<sizeScd1) // if a real match inliers1[kc]=1; else inliers1[kc]=0; } inliers2.reserve(sizeScd2); for (size_t kc = 0; kc<inliers2.size(); kc++) { if (colsol[kc]<sizeScd2) // if a real match inliers2[kc]=1; else inliers2[kc]=0; } } }