/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/photo/cuda.hpp" #include "opencv2/core/private.cuda.hpp" #include "opencv2/opencv_modules.hpp" #ifdef HAVE_OPENCV_CUDAARITHM # include "opencv2/cudaarithm.hpp" #endif #ifdef HAVE_OPENCV_CUDAIMGPROC # include "opencv2/cudaimgproc.hpp" #endif using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAIMGPROC) void cv::cuda::nonLocalMeans(InputArray, OutputArray, float, int, int, int, Stream&) { throw_no_cuda(); } void cv::cuda::fastNlMeansDenoising(InputArray, OutputArray, float, int, int, Stream&) { throw_no_cuda(); } void cv::cuda::fastNlMeansDenoisingColored(InputArray, OutputArray, float, float, int, int, Stream&) { throw_no_cuda(); } #else ////////////////////////////////////////////////////////////////////////////////// //// Non Local Means Denosing (brute force) namespace cv { namespace cuda { namespace device { namespace imgproc { template<typename T> void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream); } }}} void cv::cuda::nonLocalMeans(InputArray _src, OutputArray _dst, float h, int search_window, int block_window, int borderMode, Stream& stream) { using cv::cuda::device::imgproc::nlm_bruteforce_gpu; typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream); static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, nlm_bruteforce_gpu<uchar2>, nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ }; const GpuMat src = _src.getGpuMat(); CV_Assert(src.type() == CV_8U || src.type() == CV_8UC2 || src.type() == CV_8UC3); const func_t func = funcs[src.channels() - 1]; CV_Assert(func != 0); int b = borderMode; CV_Assert(b == BORDER_REFLECT101 || b == BORDER_REPLICATE || b == BORDER_CONSTANT || b == BORDER_REFLECT || b == BORDER_WRAP); _dst.create(src.size(), src.type()); GpuMat dst = _dst.getGpuMat(); func(src, dst, search_window/2, block_window/2, h, borderMode, StreamAccessor::getStream(stream)); } namespace cv { namespace cuda { namespace device { namespace imgproc { void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows); template<typename T> void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer, int search_window, int block_window, float h, cudaStream_t stream); void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream); void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream); } }}} void cv::cuda::fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h, int search_window, int block_window, Stream& stream) { const GpuMat src = _src.getGpuMat(); CV_Assert(src.depth() == CV_8U && src.channels() < 4); int border_size = search_window/2 + block_window/2; Size esize = src.size() + Size(border_size, border_size) * 2; BufferPool pool(stream); GpuMat extended_src = pool.getBuffer(esize, src.type()); cv::cuda::copyMakeBorder(src, extended_src, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream); GpuMat src_hdr = extended_src(Rect(Point2i(border_size, border_size), src.size())); int bcols, brows; device::imgproc::nln_fast_get_buffer_size(src_hdr, search_window, block_window, bcols, brows); GpuMat buffer = pool.getBuffer(brows, bcols, CV_32S); using namespace cv::cuda::device::imgproc; typedef void (*nlm_fast_t)(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t); static const nlm_fast_t funcs[] = { nlm_fast_gpu<uchar>, nlm_fast_gpu<uchar2>, nlm_fast_gpu<uchar3>, 0}; _dst.create(src.size(), src.type()); GpuMat dst = _dst.getGpuMat(); funcs[src.channels()-1](src_hdr, dst, buffer, search_window, block_window, h, StreamAccessor::getStream(stream)); } void cv::cuda::fastNlMeansDenoisingColored(InputArray _src, OutputArray _dst, float h_luminance, float h_color, int search_window, int block_window, Stream& stream) { const GpuMat src = _src.getGpuMat(); CV_Assert(src.type() == CV_8UC3); BufferPool pool(stream); GpuMat lab = pool.getBuffer(src.size(), src.type()); cv::cuda::cvtColor(src, lab, cv::COLOR_BGR2Lab, 0, stream); GpuMat l = pool.getBuffer(src.size(), CV_8U); GpuMat ab = pool.getBuffer(src.size(), CV_8UC2); device::imgproc::fnlm_split_channels(lab, l, ab, StreamAccessor::getStream(stream)); fastNlMeansDenoising(l, l, h_luminance, search_window, block_window, stream); fastNlMeansDenoising(ab, ab, h_color, search_window, block_window, stream); device::imgproc::fnlm_merge_channels(l, ab, lab, StreamAccessor::getStream(stream)); cv::cuda::cvtColor(lab, _dst, cv::COLOR_Lab2BGR, 0, stream); } #endif