/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2008-2013, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Itseez Inc. may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include <cstdio> #include "cascadedetect.hpp" #include "opencv2/objdetect/objdetect_c.h" #include "opencl_kernels_objdetect.hpp" #if defined ANDROID && defined RENDERSCRIPT #include "rsobjdetect.hpp" #endif namespace cv { template<typename _Tp> void copyVectorToUMat(const std::vector<_Tp>& v, UMat& um) { if(v.empty()) um.release(); Mat(1, (int)(v.size()*sizeof(v[0])), CV_8U, (void*)&v[0]).copyTo(um); } void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights) { if( groupThreshold <= 0 || rectList.empty() ) { if( weights ) { size_t i, sz = rectList.size(); weights->resize(sz); for( i = 0; i < sz; i++ ) (*weights)[i] = 1; } return; } std::vector<int> labels; int nclasses = partition(rectList, labels, SimilarRects(eps)); std::vector<Rect> rrects(nclasses); std::vector<int> rweights(nclasses, 0); std::vector<int> rejectLevels(nclasses, 0); std::vector<double> rejectWeights(nclasses, DBL_MIN); int i, j, nlabels = (int)labels.size(); for( i = 0; i < nlabels; i++ ) { int cls = labels[i]; rrects[cls].x += rectList[i].x; rrects[cls].y += rectList[i].y; rrects[cls].width += rectList[i].width; rrects[cls].height += rectList[i].height; rweights[cls]++; } bool useDefaultWeights = false; if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() ) { for( i = 0; i < nlabels; i++ ) { int cls = labels[i]; if( (*weights)[i] > rejectLevels[cls] ) { rejectLevels[cls] = (*weights)[i]; rejectWeights[cls] = (*levelWeights)[i]; } else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) ) rejectWeights[cls] = (*levelWeights)[i]; } } else useDefaultWeights = true; for( i = 0; i < nclasses; i++ ) { Rect r = rrects[i]; float s = 1.f/rweights[i]; rrects[i] = Rect(saturate_cast<int>(r.x*s), saturate_cast<int>(r.y*s), saturate_cast<int>(r.width*s), saturate_cast<int>(r.height*s)); } rectList.clear(); if( weights ) weights->clear(); if( levelWeights ) levelWeights->clear(); for( i = 0; i < nclasses; i++ ) { Rect r1 = rrects[i]; int n1 = rweights[i]; double w1 = rejectWeights[i]; int l1 = rejectLevels[i]; // filter out rectangles which don't have enough similar rectangles if( n1 <= groupThreshold ) continue; // filter out small face rectangles inside large rectangles for( j = 0; j < nclasses; j++ ) { int n2 = rweights[j]; if( j == i || n2 <= groupThreshold ) continue; Rect r2 = rrects[j]; int dx = saturate_cast<int>( r2.width * eps ); int dy = saturate_cast<int>( r2.height * eps ); if( i != j && r1.x >= r2.x - dx && r1.y >= r2.y - dy && r1.x + r1.width <= r2.x + r2.width + dx && r1.y + r1.height <= r2.y + r2.height + dy && (n2 > std::max(3, n1) || n1 < 3) ) break; } if( j == nclasses ) { rectList.push_back(r1); if( weights ) weights->push_back(useDefaultWeights ? n1 : l1); if( levelWeights ) levelWeights->push_back(w1); } } } class MeanshiftGrouping { public: MeanshiftGrouping(const Point3d& densKer, const std::vector<Point3d>& posV, const std::vector<double>& wV, double eps, int maxIter = 20) { densityKernel = densKer; weightsV = wV; positionsV = posV; positionsCount = (int)posV.size(); meanshiftV.resize(positionsCount); distanceV.resize(positionsCount); iterMax = maxIter; modeEps = eps; for (unsigned i = 0; i<positionsV.size(); i++) { meanshiftV[i] = getNewValue(positionsV[i]); distanceV[i] = moveToMode(meanshiftV[i]); meanshiftV[i] -= positionsV[i]; } } void getModes(std::vector<Point3d>& modesV, std::vector<double>& resWeightsV, const double eps) { for (size_t i=0; i <distanceV.size(); i++) { bool is_found = false; for(size_t j=0; j<modesV.size(); j++) { if ( getDistance(distanceV[i], modesV[j]) < eps) { is_found=true; break; } } if (!is_found) { modesV.push_back(distanceV[i]); } } resWeightsV.resize(modesV.size()); for (size_t i=0; i<modesV.size(); i++) { resWeightsV[i] = getResultWeight(modesV[i]); } } protected: std::vector<Point3d> positionsV; std::vector<double> weightsV; Point3d densityKernel; int positionsCount; std::vector<Point3d> meanshiftV; std::vector<Point3d> distanceV; int iterMax; double modeEps; Point3d getNewValue(const Point3d& inPt) const { Point3d resPoint(.0); Point3d ratPoint(.0); for (size_t i=0; i<positionsV.size(); i++) { Point3d aPt= positionsV[i]; Point3d bPt = inPt; Point3d sPt = densityKernel; sPt.x *= std::exp(aPt.z); sPt.y *= std::exp(aPt.z); aPt.x /= sPt.x; aPt.y /= sPt.y; aPt.z /= sPt.z; bPt.x /= sPt.x; bPt.y /= sPt.y; bPt.z /= sPt.z; double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1))); resPoint += w*aPt; ratPoint.x += w/sPt.x; ratPoint.y += w/sPt.y; ratPoint.z += w/sPt.z; } resPoint.x /= ratPoint.x; resPoint.y /= ratPoint.y; resPoint.z /= ratPoint.z; return resPoint; } double getResultWeight(const Point3d& inPt) const { double sumW=0; for (size_t i=0; i<positionsV.size(); i++) { Point3d aPt = positionsV[i]; Point3d sPt = densityKernel; sPt.x *= std::exp(aPt.z); sPt.y *= std::exp(aPt.z); aPt -= inPt; aPt.x /= sPt.x; aPt.y /= sPt.y; aPt.z /= sPt.z; sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1))); } return sumW; } Point3d moveToMode(Point3d aPt) const { Point3d bPt; for (int i = 0; i<iterMax; i++) { bPt = aPt; aPt = getNewValue(bPt); if ( getDistance(aPt, bPt) <= modeEps ) { break; } } return aPt; } double getDistance(Point3d p1, Point3d p2) const { Point3d ns = densityKernel; ns.x *= std::exp(p2.z); ns.y *= std::exp(p2.z); p2 -= p1; p2.x /= ns.x; p2.y /= ns.y; p2.z /= ns.z; return p2.dot(p2); } }; //new grouping function with using meanshift static void groupRectangles_meanshift(std::vector<Rect>& rectList, double detectThreshold, std::vector<double>* foundWeights, std::vector<double>& scales, Size winDetSize) { int detectionCount = (int)rectList.size(); std::vector<Point3d> hits(detectionCount), resultHits; std::vector<double> hitWeights(detectionCount), resultWeights; Point2d hitCenter; for (int i=0; i < detectionCount; i++) { hitWeights[i] = (*foundWeights)[i]; hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i])); } rectList.clear(); if (foundWeights) foundWeights->clear(); double logZ = std::log(1.3); Point3d smothing(8, 16, logZ); MeanshiftGrouping msGrouping(smothing, hits, hitWeights, 1e-5, 100); msGrouping.getModes(resultHits, resultWeights, 1); for (unsigned i=0; i < resultHits.size(); ++i) { double scale = std::exp(resultHits[i].z); hitCenter.x = resultHits[i].x; hitCenter.y = resultHits[i].y; Size s( int(winDetSize.width * scale), int(winDetSize.height * scale) ); Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2), int(s.width), int(s.height) ); if (resultWeights[i] > detectThreshold) { rectList.push_back(resultRect); foundWeights->push_back(resultWeights[i]); } } } void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps) { groupRectangles(rectList, groupThreshold, eps, 0, 0); } void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& weights, int groupThreshold, double eps) { groupRectangles(rectList, groupThreshold, eps, &weights, 0); } //used for cascade detection algorithm for ROC-curve calculating void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, int groupThreshold, double eps) { groupRectangles(rectList, groupThreshold, eps, &rejectLevels, &levelWeights); } //can be used for HOG detection algorithm only void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, std::vector<double>& foundScales, double detectThreshold, Size winDetSize) { groupRectangles_meanshift(rectList, detectThreshold, &foundWeights, foundScales, winDetSize); } FeatureEvaluator::~FeatureEvaluator() {} bool FeatureEvaluator::read(const FileNode&, Size _origWinSize) { origWinSize = _origWinSize; localSize = lbufSize = Size(0, 0); if (scaleData.empty()) scaleData = makePtr<std::vector<ScaleData> >(); else scaleData->clear(); return true; } Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); } int FeatureEvaluator::getFeatureType() const {return -1;} bool FeatureEvaluator::setWindow(Point, int) { return true; } void FeatureEvaluator::getUMats(std::vector<UMat>& bufs) { if (!(sbufFlag & USBUF_VALID)) { sbuf.copyTo(usbuf); sbufFlag |= USBUF_VALID; } bufs.clear(); bufs.push_back(uscaleData); bufs.push_back(usbuf); bufs.push_back(ufbuf); } void FeatureEvaluator::getMats() { if (!(sbufFlag & SBUF_VALID)) { usbuf.copyTo(sbuf); sbufFlag |= SBUF_VALID; } } float FeatureEvaluator::calcOrd(int) const { return 0.; } int FeatureEvaluator::calcCat(int) const { return 0; } bool FeatureEvaluator::updateScaleData( Size imgsz, const std::vector<float>& _scales ) { if( scaleData.empty() ) scaleData = makePtr<std::vector<ScaleData> >(); size_t i, nscales = _scales.size(); bool recalcOptFeatures = nscales != scaleData->size(); scaleData->resize(nscales); int layer_dy = 0; Point layer_ofs(0,0); Size prevBufSize = sbufSize; sbufSize.width = std::max(sbufSize.width, (int)alignSize(cvRound(imgsz.width/_scales[0]) + 31, 32)); recalcOptFeatures = recalcOptFeatures || sbufSize.width != prevBufSize.width; for( i = 0; i < nscales; i++ ) { FeatureEvaluator::ScaleData& s = scaleData->at(i); if( !recalcOptFeatures && fabs(s.scale - _scales[i]) > FLT_EPSILON*100*_scales[i] ) recalcOptFeatures = true; float sc = _scales[i]; Size sz; sz.width = cvRound(imgsz.width/sc); sz.height = cvRound(imgsz.height/sc); s.ystep = sc >= 2 ? 1 : 2; s.scale = sc; s.szi = Size(sz.width+1, sz.height+1); if( i == 0 ) { layer_dy = s.szi.height; } if( layer_ofs.x + s.szi.width > sbufSize.width ) { layer_ofs = Point(0, layer_ofs.y + layer_dy); layer_dy = s.szi.height; } s.layer_ofs = layer_ofs.y*sbufSize.width + layer_ofs.x; layer_ofs.x += s.szi.width; } layer_ofs.y += layer_dy; sbufSize.height = std::max(sbufSize.height, layer_ofs.y); recalcOptFeatures = recalcOptFeatures || sbufSize.height != prevBufSize.height; return recalcOptFeatures; } #if defined ANDROID && defined RENDERSCRIPT void haarIntegral(Mat in, int width, int height, int* out, int* outSq) { int sum = 0, sumSq =0, val = 0, idx = 0; uchar *src = in.data; size_t step = in.step; memset(out, 0, width*sizeof(out[0])); memset(outSq, 0, width*sizeof(outSq[0])); outSq += width; out += width; for (int y = 1; y < height; y++, out += width, outSq += width, src += step) { sum = sumSq = out[0] = outSq[0] = 0; for (int x = 1; x < width; x++) { val = src[x]; sum += val; sumSq += val * val; out[x] = out[x - width] + sum; outSq[x] = outSq[x - width] + sumSq; } } } #endif bool FeatureEvaluator::setImage( InputArray _image, const std::vector<float>& _scales ) { Size imgsz = _image.size(); bool recalcOptFeatures = updateScaleData(imgsz, _scales); size_t i, nscales = scaleData->size(); if (nscales == 0) { return false; } Size sz0 = scaleData->at(0).szi; sz0 = Size(std::max(rbuf.cols, (int)alignSize(sz0.width, 16)), std::max(rbuf.rows, sz0.height)); if (recalcOptFeatures) { computeOptFeatures(); copyVectorToUMat(*scaleData, uscaleData); } if (_image.isUMat() && localSize.area() > 0) { usbuf.create(sbufSize.height*nchannels, sbufSize.width, CV_32S); urbuf.create(sz0, CV_8U); for (i = 0; i < nscales; i++) { const ScaleData& s = scaleData->at(i); UMat dst(urbuf, Rect(0, 0, s.szi.width - 1, s.szi.height - 1)); resize(_image, dst, dst.size(), 1. / s.scale, 1. / s.scale, INTER_LINEAR); computeChannels((int)i, dst); } sbufFlag = USBUF_VALID; } else { Mat image = _image.getMat(); sbuf.create(sbufSize.height*nchannels, sbufSize.width, CV_32S); rbuf.create(sz0, CV_8U); #if defined ANDROID && defined RENDERSCRIPT integralImages = (int **) malloc(sizeof(int *)*nscales); integralImagesSq = (int **) malloc(sizeof(int *)*nscales); #endif for (i = 0; i < nscales; i++) { #if defined ANDROID && defined RENDERSCRIPT const ScaleData& s = scaleData->at(i); Mat dst(s.szi.height - 1, s.szi.width - 1 , CV_8U); resize(image, dst, dst.size(), 1. / s.scale, 1. / s.scale, INTER_LINEAR); const Size sz = s.getWorkingSize(origWinSize); int* intImg = (int *)malloc(sizeof(int)*s.szi.area()); int* intImgSq = (int *)malloc(sizeof(int)*s.szi.area()); haarIntegral(dst, sz.width, sz.height, intImg, intImgSq); integralImages[i] = intImg; integralImagesSq[i] = intImgSq; #else const ScaleData& s = scaleData->at(i); Mat dst(s.szi.height - 1, s.szi.width - 1, CV_8U, rbuf.ptr()); resize(image, dst, dst.size(), 1. / s.scale, 1. / s.scale, INTER_LINEAR); computeChannels((int)i, dst); #endif } sbufFlag = SBUF_VALID; } return true; } //---------------------------------------------- HaarEvaluator --------------------------------------- bool HaarEvaluator::Feature :: read( const FileNode& node ) { FileNode rnode = node[CC_RECTS]; FileNodeIterator it = rnode.begin(), it_end = rnode.end(); int ri; for( ri = 0; ri < RECT_NUM; ri++ ) { rect[ri].r = Rect(); rect[ri].weight = 0.f; } for(ri = 0; it != it_end; ++it, ri++) { FileNodeIterator it2 = (*it).begin(); it2 >> rect[ri].r.x >> rect[ri].r.y >> rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight; } tilted = (int)node[CC_TILTED] != 0; return true; } HaarEvaluator::HaarEvaluator() { optfeaturesPtr = 0; pwin = 0; localSize = Size(4, 2); lbufSize = Size(0, 0); nchannels = 0; tofs = 0; } HaarEvaluator::~HaarEvaluator() { } bool HaarEvaluator::read(const FileNode& node, Size _origWinSize) { if (!FeatureEvaluator::read(node, _origWinSize)) return false; size_t i, n = node.size(); CV_Assert(n > 0); if(features.empty()) features = makePtr<std::vector<Feature> >(); if(optfeatures.empty()) optfeatures = makePtr<std::vector<OptFeature> >(); if (optfeatures_lbuf.empty()) optfeatures_lbuf = makePtr<std::vector<OptFeature> >(); features->resize(n); FileNodeIterator it = node.begin(); hasTiltedFeatures = false; std::vector<Feature>& ff = *features; sbufSize = Size(); ufbuf.release(); for(i = 0; i < n; i++, ++it) { if(!ff[i].read(*it)) return false; if( ff[i].tilted ) hasTiltedFeatures = true; } nchannels = hasTiltedFeatures ? 3 : 2; normrect = Rect(1, 1, origWinSize.width - 2, origWinSize.height - 2); localSize = lbufSize = Size(0, 0); if (ocl::haveOpenCL()) { if (ocl::Device::getDefault().isAMD() || ocl::Device::getDefault().isIntel()) { localSize = Size(8, 8); lbufSize = Size(origWinSize.width + localSize.width, origWinSize.height + localSize.height); if (lbufSize.area() > 1024) lbufSize = Size(0, 0); } } return true; } Ptr<FeatureEvaluator> HaarEvaluator::clone() const { Ptr<HaarEvaluator> ret = makePtr<HaarEvaluator>(); *ret = *this; return ret; } void HaarEvaluator::computeChannels(int scaleIdx, InputArray img) { const ScaleData& s = scaleData->at(scaleIdx); sqofs = hasTiltedFeatures ? sbufSize.area() * 2 : sbufSize.area(); if (img.isUMat()) { int sx = s.layer_ofs % sbufSize.width; int sy = s.layer_ofs / sbufSize.width; int sqy = sy + (sqofs / sbufSize.width); UMat sum(usbuf, Rect(sx, sy, s.szi.width, s.szi.height)); UMat sqsum(usbuf, Rect(sx, sqy, s.szi.width, s.szi.height)); sqsum.flags = (sqsum.flags & ~UMat::DEPTH_MASK) | CV_32S; if (hasTiltedFeatures) { int sty = sy + (tofs / sbufSize.width); UMat tilted(usbuf, Rect(sx, sty, s.szi.width, s.szi.height)); integral(img, sum, sqsum, tilted, CV_32S, CV_32S); } else { UMatData* u = sqsum.u; integral(img, sum, sqsum, noArray(), CV_32S, CV_32S); CV_Assert(sqsum.u == u && sqsum.size() == s.szi && sqsum.type()==CV_32S); } } else { Mat sum(s.szi, CV_32S, sbuf.ptr<int>() + s.layer_ofs, sbuf.step); Mat sqsum(s.szi, CV_32S, sum.ptr<int>() + sqofs, sbuf.step); if (hasTiltedFeatures) { Mat tilted(s.szi, CV_32S, sum.ptr<int>() + tofs, sbuf.step); integral(img, sum, sqsum, tilted, CV_32S, CV_32S); } else integral(img, sum, sqsum, noArray(), CV_32S, CV_32S); } } void HaarEvaluator::computeOptFeatures() { if (hasTiltedFeatures) tofs = sbufSize.area(); int sstep = sbufSize.width; CV_SUM_OFS( nofs[0], nofs[1], nofs[2], nofs[3], 0, normrect, sstep ); size_t fi, nfeatures = features->size(); const std::vector<Feature>& ff = *features; optfeatures->resize(nfeatures); optfeaturesPtr = &(*optfeatures)[0]; for( fi = 0; fi < nfeatures; fi++ ) optfeaturesPtr[fi].setOffsets( ff[fi], sstep, tofs ); optfeatures_lbuf->resize(nfeatures); for( fi = 0; fi < nfeatures; fi++ ) optfeatures_lbuf->at(fi).setOffsets(ff[fi], lbufSize.width > 0 ? lbufSize.width : sstep, tofs); copyVectorToUMat(*optfeatures_lbuf, ufbuf); } bool HaarEvaluator::setWindow( Point pt, int scaleIdx ) { const ScaleData& s = getScaleData(scaleIdx); if( pt.x < 0 || pt.y < 0 || pt.x + origWinSize.width >= s.szi.width || pt.y + origWinSize.height >= s.szi.height ) return false; pwin = &sbuf.at<int>(pt) + s.layer_ofs; const int* pq = (const int*)(pwin + sqofs); int valsum = CALC_SUM_OFS(nofs, pwin); unsigned valsqsum = (unsigned)(CALC_SUM_OFS(nofs, pq)); double area = normrect.area(); double nf = area * valsqsum - (double)valsum * valsum; if( nf > 0. ) { nf = std::sqrt(nf); varianceNormFactor = (float)(1./nf); return area*varianceNormFactor < 1e-1; } else { varianceNormFactor = 1.f; return false; } } void HaarEvaluator::OptFeature::setOffsets( const Feature& _f, int step, int _tofs ) { weight[0] = _f.rect[0].weight; weight[1] = _f.rect[1].weight; weight[2] = _f.rect[2].weight; if( _f.tilted ) { CV_TILTED_OFS( ofs[0][0], ofs[0][1], ofs[0][2], ofs[0][3], _tofs, _f.rect[0].r, step ); CV_TILTED_OFS( ofs[1][0], ofs[1][1], ofs[1][2], ofs[1][3], _tofs, _f.rect[1].r, step ); CV_TILTED_OFS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], _tofs, _f.rect[2].r, step ); } else { CV_SUM_OFS( ofs[0][0], ofs[0][1], ofs[0][2], ofs[0][3], 0, _f.rect[0].r, step ); CV_SUM_OFS( ofs[1][0], ofs[1][1], ofs[1][2], ofs[1][3], 0, _f.rect[1].r, step ); CV_SUM_OFS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], 0, _f.rect[2].r, step ); } } Rect HaarEvaluator::getNormRect() const { return normrect; } int HaarEvaluator::getSquaresOffset() const { return sqofs; } //---------------------------------------------- LBPEvaluator ------------------------------------- bool LBPEvaluator::Feature :: read(const FileNode& node ) { FileNode rnode = node[CC_RECT]; FileNodeIterator it = rnode.begin(); it >> rect.x >> rect.y >> rect.width >> rect.height; return true; } LBPEvaluator::LBPEvaluator() { features = makePtr<std::vector<Feature> >(); optfeatures = makePtr<std::vector<OptFeature> >(); scaleData = makePtr<std::vector<ScaleData> >(); } LBPEvaluator::~LBPEvaluator() { } bool LBPEvaluator::read( const FileNode& node, Size _origWinSize ) { #if defined RENDERSCRIPT CV_Error(Error::StsNotImplemented, "Renderscript cannot be used with LBP in 3.0"); #endif if (!FeatureEvaluator::read(node, _origWinSize)) return false; if(features.empty()) features = makePtr<std::vector<Feature> >(); if(optfeatures.empty()) optfeatures = makePtr<std::vector<OptFeature> >(); if (optfeatures_lbuf.empty()) optfeatures_lbuf = makePtr<std::vector<OptFeature> >(); features->resize(node.size()); optfeaturesPtr = 0; FileNodeIterator it = node.begin(), it_end = node.end(); std::vector<Feature>& ff = *features; for(int i = 0; it != it_end; ++it, i++) { if(!ff[i].read(*it)) return false; } nchannels = 1; localSize = lbufSize = Size(0, 0); if (ocl::haveOpenCL()) localSize = Size(8, 8); return true; } Ptr<FeatureEvaluator> LBPEvaluator::clone() const { Ptr<LBPEvaluator> ret = makePtr<LBPEvaluator>(); *ret = *this; return ret; } void LBPEvaluator::computeChannels(int scaleIdx, InputArray _img) { const ScaleData& s = scaleData->at(scaleIdx); if (_img.isUMat()) { int sx = s.layer_ofs % sbufSize.width; int sy = s.layer_ofs / sbufSize.width; UMat sum(usbuf, Rect(sx, sy, s.szi.width, s.szi.height)); integral(_img, sum, noArray(), noArray(), CV_32S); } else { Mat sum(s.szi, CV_32S, sbuf.ptr<int>() + s.layer_ofs, sbuf.step); integral(_img, sum, noArray(), noArray(), CV_32S); } } void LBPEvaluator::computeOptFeatures() { int sstep = sbufSize.width; size_t fi, nfeatures = features->size(); const std::vector<Feature>& ff = *features; optfeatures->resize(nfeatures); optfeaturesPtr = &(*optfeatures)[0]; for( fi = 0; fi < nfeatures; fi++ ) optfeaturesPtr[fi].setOffsets( ff[fi], sstep ); copyVectorToUMat(*optfeatures, ufbuf); } void LBPEvaluator::OptFeature::setOffsets( const Feature& _f, int step ) { Rect tr = _f.rect; int w0 = tr.width; int h0 = tr.height; CV_SUM_OFS( ofs[0], ofs[1], ofs[4], ofs[5], 0, tr, step ); tr.x += 2*w0; CV_SUM_OFS( ofs[2], ofs[3], ofs[6], ofs[7], 0, tr, step ); tr.y += 2*h0; CV_SUM_OFS( ofs[10], ofs[11], ofs[14], ofs[15], 0, tr, step ); tr.x -= 2*w0; CV_SUM_OFS( ofs[8], ofs[9], ofs[12], ofs[13], 0, tr, step ); } bool LBPEvaluator::setWindow( Point pt, int scaleIdx ) { CV_Assert(0 <= scaleIdx && scaleIdx < (int)scaleData->size()); const ScaleData& s = scaleData->at(scaleIdx); if( pt.x < 0 || pt.y < 0 || pt.x + origWinSize.width >= s.szi.width || pt.y + origWinSize.height >= s.szi.height ) return false; pwin = &sbuf.at<int>(pt) + s.layer_ofs; return true; } Ptr<FeatureEvaluator> FeatureEvaluator::create( int featureType ) { return featureType == HAAR ? Ptr<FeatureEvaluator>(new HaarEvaluator) : featureType == LBP ? Ptr<FeatureEvaluator>(new LBPEvaluator) : Ptr<FeatureEvaluator>(); } //---------------------------------------- Classifier Cascade -------------------------------------------- CascadeClassifierImpl::CascadeClassifierImpl() { } CascadeClassifierImpl::~CascadeClassifierImpl() { } bool CascadeClassifierImpl::empty() const { return !oldCascade && data.stages.empty(); } bool CascadeClassifierImpl::load(const String& filename) { oldCascade.release(); data = Data(); featureEvaluator.release(); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; if( read_(fs.getFirstTopLevelNode()) ) return true; fs.release(); oldCascade.reset((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0)); return !oldCascade.empty(); } void CascadeClassifierImpl::read(const FileNode& node) { read_(node); } int CascadeClassifierImpl::runAt( Ptr<FeatureEvaluator>& evaluator, Point pt, int scaleIdx, double& weight ) { assert( !oldCascade && (data.featureType == FeatureEvaluator::HAAR || data.featureType == FeatureEvaluator::LBP || data.featureType == FeatureEvaluator::HOG) ); if( !evaluator->setWindow(pt, scaleIdx) ) return -1; if( data.maxNodesPerTree == 1 ) { if( data.featureType == FeatureEvaluator::HAAR ) return predictOrderedStump<HaarEvaluator>( *this, evaluator, weight ); else if( data.featureType == FeatureEvaluator::LBP ) return predictCategoricalStump<LBPEvaluator>( *this, evaluator, weight ); else return -2; } else { if( data.featureType == FeatureEvaluator::HAAR ) return predictOrdered<HaarEvaluator>( *this, evaluator, weight ); else if( data.featureType == FeatureEvaluator::LBP ) return predictCategorical<LBPEvaluator>( *this, evaluator, weight ); else return -2; } } void CascadeClassifierImpl::setMaskGenerator(const Ptr<MaskGenerator>& _maskGenerator) { maskGenerator=_maskGenerator; } Ptr<CascadeClassifierImpl::MaskGenerator> CascadeClassifierImpl::getMaskGenerator() { return maskGenerator; } Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator() { #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::useTegra()) return tegra::getCascadeClassifierMaskGenerator(); #endif return Ptr<BaseCascadeClassifier::MaskGenerator>(); } class CascadeClassifierInvoker : public ParallelLoopBody { public: CascadeClassifierInvoker( CascadeClassifierImpl& _cc, int _nscales, int _nstripes, const FeatureEvaluator::ScaleData* _scaleData, const int* _stripeSizes, std::vector<Rect>& _vec, std::vector<int>& _levels, std::vector<double>& _weights, bool outputLevels, const Mat& _mask, Mutex* _mtx) { classifier = &_cc; nscales = _nscales; nstripes = _nstripes; scaleData = _scaleData; stripeSizes = _stripeSizes; rectangles = &_vec; rejectLevels = outputLevels ? &_levels : 0; levelWeights = outputLevels ? &_weights : 0; mask = _mask; mtx = _mtx; } void operator()(const Range& range) const { Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone(); double gypWeight = 0.; Size origWinSize = classifier->data.origWinSize; for( int scaleIdx = 0; scaleIdx < nscales; scaleIdx++ ) { const FeatureEvaluator::ScaleData& s = scaleData[scaleIdx]; float scalingFactor = s.scale; int yStep = s.ystep; int stripeSize = stripeSizes[scaleIdx]; int y0 = range.start*stripeSize; Size szw = s.getWorkingSize(origWinSize); int y1 = std::min(range.end*stripeSize, szw.height); Size winSize(cvRound(origWinSize.width * scalingFactor), cvRound(origWinSize.height * scalingFactor)); for( int y = y0; y < y1; y += yStep ) { for( int x = 0; x < szw.width; x += yStep ) { int result = classifier->runAt(evaluator, Point(x, y), scaleIdx, gypWeight); if( rejectLevels ) { if( result == 1 ) result = -(int)classifier->data.stages.size(); if( classifier->data.stages.size() + result == 0 ) { mtx->lock(); rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); rejectLevels->push_back(-result); levelWeights->push_back(gypWeight); mtx->unlock(); } } else if( result > 0 ) { mtx->lock(); rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); mtx->unlock(); } if( result == 0 ) x += yStep; } } } } CascadeClassifierImpl* classifier; std::vector<Rect>* rectangles; int nscales, nstripes; const FeatureEvaluator::ScaleData* scaleData; const int* stripeSizes; std::vector<int> *rejectLevels; std::vector<double> *levelWeights; std::vector<float> scales; Mat mask; Mutex* mtx; }; struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } }; struct getNeighbors { int operator ()(const CvAvgComp& e) const { return e.neighbors; } }; bool CascadeClassifierImpl::ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales, std::vector<Rect>& candidates ) { int featureType = getFeatureType(); std::vector<UMat> bufs; featureEvaluator->getUMats(bufs); Size localsz = featureEvaluator->getLocalSize(); if( localsz.area() == 0 ) return false; Size lbufSize = featureEvaluator->getLocalBufSize(); size_t localsize[] = { localsz.width, localsz.height }; const int grp_per_CU = 12; size_t globalsize[] = { grp_per_CU*ocl::Device::getDefault().maxComputeUnits()*localsize[0], localsize[1] }; bool ok = false; ufacepos.create(1, MAX_FACES*3+1, CV_32S); UMat ufacepos_count(ufacepos, Rect(0, 0, 1, 1)); ufacepos_count.setTo(Scalar::all(0)); if( ustages.empty() ) { copyVectorToUMat(data.stages, ustages); if (!data.stumps.empty()) copyVectorToUMat(data.stumps, unodes); else copyVectorToUMat(data.nodes, unodes); copyVectorToUMat(data.leaves, uleaves); if( !data.subsets.empty() ) copyVectorToUMat(data.subsets, usubsets); } int nstages = (int)data.stages.size(); int splitstage_ocl = 1; if( featureType == FeatureEvaluator::HAAR ) { Ptr<HaarEvaluator> haar = featureEvaluator.dynamicCast<HaarEvaluator>(); if( haar.empty() ) return false; if( haarKernel.empty() ) { String opts; if (lbufSize.area()) opts = format("-D LOCAL_SIZE_X=%d -D LOCAL_SIZE_Y=%d -D SUM_BUF_SIZE=%d -D SUM_BUF_STEP=%d -D NODE_COUNT=%d -D SPLIT_STAGE=%d -D N_STAGES=%d -D MAX_FACES=%d -D HAAR", localsz.width, localsz.height, lbufSize.area(), lbufSize.width, data.maxNodesPerTree, splitstage_ocl, nstages, MAX_FACES); else opts = format("-D LOCAL_SIZE_X=%d -D LOCAL_SIZE_Y=%d -D NODE_COUNT=%d -D SPLIT_STAGE=%d -D N_STAGES=%d -D MAX_FACES=%d -D HAAR", localsz.width, localsz.height, data.maxNodesPerTree, splitstage_ocl, nstages, MAX_FACES); haarKernel.create("runHaarClassifier", ocl::objdetect::cascadedetect_oclsrc, opts); if( haarKernel.empty() ) return false; } Rect normrect = haar->getNormRect(); int sqofs = haar->getSquaresOffset(); haarKernel.args((int)scales.size(), ocl::KernelArg::PtrReadOnly(bufs[0]), // scaleData ocl::KernelArg::ReadOnlyNoSize(bufs[1]), // sum ocl::KernelArg::PtrReadOnly(bufs[2]), // optfeatures // cascade classifier ocl::KernelArg::PtrReadOnly(ustages), ocl::KernelArg::PtrReadOnly(unodes), ocl::KernelArg::PtrReadOnly(uleaves), ocl::KernelArg::PtrWriteOnly(ufacepos), // positions normrect, sqofs, data.origWinSize); ok = haarKernel.run(2, globalsize, localsize, true); } else if( featureType == FeatureEvaluator::LBP ) { if (data.maxNodesPerTree > 1) return false; Ptr<LBPEvaluator> lbp = featureEvaluator.dynamicCast<LBPEvaluator>(); if( lbp.empty() ) return false; if( lbpKernel.empty() ) { String opts; if (lbufSize.area()) opts = format("-D LOCAL_SIZE_X=%d -D LOCAL_SIZE_Y=%d -D SUM_BUF_SIZE=%d -D SUM_BUF_STEP=%d -D SPLIT_STAGE=%d -D N_STAGES=%d -D MAX_FACES=%d -D LBP", localsz.width, localsz.height, lbufSize.area(), lbufSize.width, splitstage_ocl, nstages, MAX_FACES); else opts = format("-D LOCAL_SIZE_X=%d -D LOCAL_SIZE_Y=%d -D SPLIT_STAGE=%d -D N_STAGES=%d -D MAX_FACES=%d -D LBP", localsz.width, localsz.height, splitstage_ocl, nstages, MAX_FACES); lbpKernel.create("runLBPClassifierStumpSimple", ocl::objdetect::cascadedetect_oclsrc, opts); if( lbpKernel.empty() ) return false; } int subsetSize = (data.ncategories + 31)/32; lbpKernel.args((int)scales.size(), ocl::KernelArg::PtrReadOnly(bufs[0]), // scaleData ocl::KernelArg::ReadOnlyNoSize(bufs[1]), // sum ocl::KernelArg::PtrReadOnly(bufs[2]), // optfeatures // cascade classifier ocl::KernelArg::PtrReadOnly(ustages), ocl::KernelArg::PtrReadOnly(unodes), ocl::KernelArg::PtrReadOnly(usubsets), subsetSize, ocl::KernelArg::PtrWriteOnly(ufacepos), // positions data.origWinSize); ok = lbpKernel.run(2, globalsize, localsize, true); } if( ok ) { Mat facepos = ufacepos.getMat(ACCESS_READ); const int* fptr = facepos.ptr<int>(); int nfaces = fptr[0]; nfaces = std::min(nfaces, (int)MAX_FACES); for( int i = 0; i < nfaces; i++ ) { const FeatureEvaluator::ScaleData& s = featureEvaluator->getScaleData(fptr[i*3 + 1]); candidates.push_back(Rect(cvRound(fptr[i*3 + 2]*s.scale), cvRound(fptr[i*3 + 3]*s.scale), cvRound(data.origWinSize.width*s.scale), cvRound(data.origWinSize.height*s.scale))); } } return ok; } bool CascadeClassifierImpl::isOldFormatCascade() const { return !oldCascade.empty(); } int CascadeClassifierImpl::getFeatureType() const { return featureEvaluator->getFeatureType(); } Size CascadeClassifierImpl::getOriginalWindowSize() const { return data.origWinSize; } void* CascadeClassifierImpl::getOldCascade() { return oldCascade; } static void detectMultiScaleOldFormat( const Mat& image, Ptr<CvHaarClassifierCascade> oldCascade, std::vector<Rect>& objects, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, std::vector<CvAvgComp>& vecAvgComp, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize, bool outputRejectLevels = false ) { MemStorage storage(cvCreateMemStorage(0)); CvMat _image = image; CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels ); Seq<CvAvgComp>(_objects).copyTo(vecAvgComp); objects.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect()); } void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::vector<Rect>& candidates, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, double scaleFactor, Size minObjectSize, Size maxObjectSize, bool outputRejectLevels ) { Size imgsz = _image.size(); Mat grayImage; _InputArray gray; candidates.clear(); rejectLevels.clear(); levelWeights.clear(); if( maxObjectSize.height == 0 || maxObjectSize.width == 0 ) maxObjectSize = imgsz; #ifdef HAVE_OPENCL bool use_ocl = tryOpenCL && ocl::useOpenCL() && featureEvaluator->getLocalSize().area() > 0 && ocl::Device::getDefault().type() != ocl::Device::TYPE_CPU && (data.minNodesPerTree == data.maxNodesPerTree) && !isOldFormatCascade() && maskGenerator.empty() && !outputRejectLevels; #endif /*if( use_ocl ) { if (_image.channels() > 1) cvtColor(_image, ugrayImage, COLOR_BGR2GRAY); else if (_image.isUMat()) ugrayImage = _image.getUMat(); else _image.copyTo(ugrayImage); gray = ugrayImage; } else*/ { if (_image.channels() > 1) cvtColor(_image, grayImage, COLOR_BGR2GRAY); else if (_image.isMat()) grayImage = _image.getMat(); else _image.copyTo(grayImage); gray = grayImage; } std::vector<float> scales; scales.reserve(1024); for( double factor = 1; ; factor *= scaleFactor ) { Size originalWindowSize = getOriginalWindowSize(); Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) ); if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height || windowSize.width > imgsz.width || windowSize.height > imgsz.height ) break; if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height ) continue; scales.push_back((float)factor); } if( scales.size() == 0 || !featureEvaluator->setImage(gray, scales) ) return; // OpenCL code CV_OCL_RUN(use_ocl, ocl_detectMultiScaleNoGrouping( scales, candidates )) tryOpenCL = false; featureEvaluator->getMats(); { Mat currentMask; if (maskGenerator) currentMask = maskGenerator->generateMask(gray.getMat()); size_t i, nscales = scales.size(); cv::AutoBuffer<int> stripeSizeBuf(nscales); int* stripeSizes = stripeSizeBuf; const FeatureEvaluator::ScaleData* s = &featureEvaluator->getScaleData(0); Size szw = s->getWorkingSize(data.origWinSize); int nstripes = cvCeil(szw.width/32.); for( i = 0; i < nscales; i++ ) { szw = s[i].getWorkingSize(data.origWinSize); stripeSizes[i] = std::max((szw.height/s[i].ystep + nstripes-1)/nstripes, 1)*s[i].ystep; } #if defined ANDROID && defined RENDERSCRIPT rs_parallel_detect(candidates, nscales); #else CascadeClassifierInvoker invoker(*this, (int)nscales, nstripes, s, stripeSizes, candidates, rejectLevels, levelWeights, outputRejectLevels, currentMask, &mtx); parallel_for_(Range(0, nstripes), invoker); #endif } } #if defined ANDROID && defined RENDERSCRIPT void CascadeClassifierImpl::rs_parallel_detect(std::vector<Rect>& candidates, int nscales) { HaarEvaluator& heval = (HaarEvaluator&)*featureEvaluator; const FeatureEvaluator::ScaleData* s = &featureEvaluator->getScaleData(0); Size origWinSize = data.origWinSize; const int origWidth = origWinSize.width; const int origHeight = origWinSize.height; const int stepSize = heval.sbuf.step.p[0]; if (!loadedHaarVars) setHaarVars(); unsigned char* inData = heval.sbuf.data; const char* fin; for( int scaleIdx = 0; scaleIdx < nscales; scaleIdx++ ) { const FeatureEvaluator::ScaleData& sd = s[scaleIdx]; const float scalingFactor = sd.scale; const Size sz = sd.getWorkingSize(origWinSize); const int winWidth = origWinSize.width * scalingFactor; const int winHeight = origWinSize.height * scalingFactor; const int layerOfs = sd.layer_ofs; const int area = sz.width*sz.height; bool *outData = (bool *)malloc(sizeof(bool)*area); int* arr = heval.integralImages[scaleIdx]; int* arrSq = heval.integralImagesSq[scaleIdx]; innerloops(sz.height,sz.width,arr,arrSq,sd.ystep,outData); for (int y=0; y < sz.height; y += sd.ystep) { for (int x = 0; x< sz.width; x += sd.ystep) { if (*(outData + x + y*sz.width)) { candidates.push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winWidth, winHeight)); } } } free(outData); } cleanUpInnerLoops(); for (int i = 0; i < nscales; i++) { free(heval.integralImages[i]); free(heval.integralImagesSq[i]); } free(heval.integralImages); free(heval.integralImagesSq); } void CascadeClassifierImpl::setHaarVars() { HaarVars hf; Size origWinSize = data.origWinSize; const int origWidth = origWinSize.width; const int origHeight = origWinSize.height; HaarEvaluator& heval = (HaarEvaluator&)*featureEvaluator; int _nofs[4] = {(heval.nofs)[0], (heval.nofs)[1], (heval.nofs)[2], (heval.nofs)[3]}; memcpy (haarVars.nofs, _nofs, sizeof(_nofs)); hf.sqofs = heval.sqofs; hf.normRectArea = heval.normrect.area(); int nOptFeatures = (*heval.optfeatures).size(); HaarFeature *haf = (HaarFeature *)malloc(sizeof(HaarFeature)*nOptFeatures); const std::vector<HaarEvaluator::Feature>& ff = *heval.features; for (int i = 0; i < nOptFeatures; i++ ){ HaarFeature f; for (int j = 0; j < 3; j++) { f.x[j]=ff[i].rect[j].r.x; f.y[j]=ff[i].rect[j].r.y; f.width[j] = ff[i].rect[j].r.width; f.height[j] = ff[i].rect[j].r.height; } f.weight0 = ff[i].rect[0].weight; f.weight1 = ff[i].rect[1].weight; f.weight2 = ff[i].rect[2].weight; haf[i] = f; } hf.haarFeatures = &haf[0]; int nstages = (int) data.stages.size(); HaarStage *stageArr = (HaarStage *)malloc(sizeof(HaarStage)*nstages); for (int j = 0; j < nstages; j++ ){ HaarStage st; st.first = data.stages[j].first; st.ntrees = data.stages[j].ntrees; st.threshold = data.stages[j].threshold; stageArr[j] = st; } hf.stages = &stageArr[0]; hf.stagesSize = nstages; hf.nStumps = (int) data.stumps.size(); int nstumps = data.stumps.size(); HaarStump *stumpArr = (HaarStump *)malloc(sizeof(HaarStump)*nstumps); for (int j = 0; j < nstumps; j++){ HaarStump st; st.featureIdx = data.stumps[j].featureIdx; st.threshold = data.stumps[j].threshold; st.left = data.stumps[j].left; st.right = data.stumps[j].right; stumpArr[j] = st; } hf.stumps = &stumpArr[0]; hf.nFeatures = (int) heval.optfeatures->size(); HaarRect nr; nr.x = heval.normrect.x; nr.y = heval.normrect.y; nr.width = heval.normrect.width; nr.height = heval.normrect.height; hf.nrect = nr; haarVars = hf; loadedHaarVars = true; initInnerLoop(haarVars,origWidth,origHeight); } #endif void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize, bool outputRejectLevels ) { CV_Assert( scaleFactor > 1 && _image.depth() == CV_8U ); if( empty() ) return; if( isOldFormatCascade() ) { Mat image = _image.getMat(); std::vector<CvAvgComp> fakeVecAvgComp; detectMultiScaleOldFormat( image, oldCascade, objects, rejectLevels, levelWeights, fakeVecAvgComp, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels ); } else { detectMultiScaleNoGrouping( _image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize, outputRejectLevels ); const double GROUP_EPS = 0.2; if( outputRejectLevels ) { groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS ); } else { groupRectangles( objects, minNeighbors, GROUP_EPS ); } } } void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize) { std::vector<int> fakeLevels; std::vector<double> fakeWeights; detectMultiScale( _image, objects, fakeLevels, fakeWeights, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize ); } void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects, std::vector<int>& numDetections, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize ) { Mat image = _image.getMat(); CV_Assert( scaleFactor > 1 && image.depth() == CV_8U ); if( empty() ) return; std::vector<int> fakeLevels; std::vector<double> fakeWeights; if( isOldFormatCascade() ) { std::vector<CvAvgComp> vecAvgComp; detectMultiScaleOldFormat( image, oldCascade, objects, fakeLevels, fakeWeights, vecAvgComp, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize ); numDetections.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), numDetections.begin(), getNeighbors()); } else { detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize ); const double GROUP_EPS = 0.2; groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS ); } } CascadeClassifierImpl::Data::Data() { stageType = featureType = ncategories = maxNodesPerTree = 0; } bool CascadeClassifierImpl::Data::read(const FileNode &root) { static const float THRESHOLD_EPS = 1e-5f; // load stage params String stageTypeStr = (String)root[CC_STAGE_TYPE]; if( stageTypeStr == CC_BOOST ) stageType = BOOST; else return false; String featureTypeStr = (String)root[CC_FEATURE_TYPE]; if( featureTypeStr == CC_HAAR ) featureType = FeatureEvaluator::HAAR; else if( featureTypeStr == CC_LBP ) featureType = FeatureEvaluator::LBP; else if( featureTypeStr == CC_HOG ) { featureType = FeatureEvaluator::HOG; CV_Error(Error::StsNotImplemented, "HOG cascade is not supported in 3.0"); } else return false; origWinSize.width = (int)root[CC_WIDTH]; origWinSize.height = (int)root[CC_HEIGHT]; CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 ); // load feature params FileNode fn = root[CC_FEATURE_PARAMS]; if( fn.empty() ) return false; ncategories = fn[CC_MAX_CAT_COUNT]; int subsetSize = (ncategories + 31)/32, nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 ); // load stages fn = root[CC_STAGES]; if( fn.empty() ) return false; stages.reserve(fn.size()); classifiers.clear(); nodes.clear(); stumps.clear(); FileNodeIterator it = fn.begin(), it_end = fn.end(); minNodesPerTree = INT_MAX; maxNodesPerTree = 0; for( int si = 0; it != it_end; si++, ++it ) { FileNode fns = *it; Stage stage; stage.threshold = (float)fns[CC_STAGE_THRESHOLD] - THRESHOLD_EPS; fns = fns[CC_WEAK_CLASSIFIERS]; if(fns.empty()) return false; stage.ntrees = (int)fns.size(); stage.first = (int)classifiers.size(); stages.push_back(stage); classifiers.reserve(stages[si].first + stages[si].ntrees); FileNodeIterator it1 = fns.begin(), it1_end = fns.end(); for( ; it1 != it1_end; ++it1 ) // weak trees { FileNode fnw = *it1; FileNode internalNodes = fnw[CC_INTERNAL_NODES]; FileNode leafValues = fnw[CC_LEAF_VALUES]; if( internalNodes.empty() || leafValues.empty() ) return false; DTree tree; tree.nodeCount = (int)internalNodes.size()/nodeStep; minNodesPerTree = std::min(minNodesPerTree, tree.nodeCount); maxNodesPerTree = std::max(maxNodesPerTree, tree.nodeCount); classifiers.push_back(tree); nodes.reserve(nodes.size() + tree.nodeCount); leaves.reserve(leaves.size() + leafValues.size()); if( subsetSize > 0 ) subsets.reserve(subsets.size() + tree.nodeCount*subsetSize); FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end(); for( ; internalNodesIter != internalNodesEnd; ) // nodes { DTreeNode node; node.left = (int)*internalNodesIter; ++internalNodesIter; node.right = (int)*internalNodesIter; ++internalNodesIter; node.featureIdx = (int)*internalNodesIter; ++internalNodesIter; if( subsetSize > 0 ) { for( int j = 0; j < subsetSize; j++, ++internalNodesIter ) subsets.push_back((int)*internalNodesIter); node.threshold = 0.f; } else { node.threshold = (float)*internalNodesIter; ++internalNodesIter; } nodes.push_back(node); } internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end(); for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves leaves.push_back((float)*internalNodesIter); } } if( maxNodesPerTree == 1 ) { int nodeOfs = 0, leafOfs = 0; size_t nstages = stages.size(); for( size_t stageIdx = 0; stageIdx < nstages; stageIdx++ ) { const Stage& stage = stages[stageIdx]; int ntrees = stage.ntrees; for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 ) { const DTreeNode& node = nodes[nodeOfs]; stumps.push_back(Stump(node.featureIdx, node.threshold, leaves[leafOfs], leaves[leafOfs+1])); } } } return true; } bool CascadeClassifierImpl::read_(const FileNode& root) { tryOpenCL = true; haarKernel = ocl::Kernel(); lbpKernel = ocl::Kernel(); ustages.release(); unodes.release(); uleaves.release(); if( !data.read(root) ) return false; // load features featureEvaluator = FeatureEvaluator::create(data.featureType); FileNode fn = root[CC_FEATURES]; if( fn.empty() ) return false; return featureEvaluator->read(fn, data.origWinSize); } template<> void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const { cvReleaseHaarClassifierCascade(&obj); } BaseCascadeClassifier::~BaseCascadeClassifier() { } CascadeClassifier::CascadeClassifier() { #if defined(RENDERSCRIPT) && !defined(ANDROID) CV_Error(Error::StsNotImplemented, "Renderscript cannot be used on non-Android devices"); #endif } CascadeClassifier::CascadeClassifier(const String& filename) { #if defined(RENDERSCRIPT) && !defined(ANDROID) CV_Error(Error::StsNotImplemented, "Renderscript cannot be used on non-Android devices"); #endif load(filename); } CascadeClassifier::~CascadeClassifier() { } bool CascadeClassifier::empty() const { return cc.empty() || cc->empty(); } bool CascadeClassifier::load( const String& filename ) { cc = makePtr<CascadeClassifierImpl>(); if(!cc->load(filename)) cc.release(); return !empty(); } bool CascadeClassifier::read(const FileNode &root) { Ptr<CascadeClassifierImpl> ccimpl = makePtr<CascadeClassifierImpl>(); bool ok = ccimpl->read_(root); if( ok ) cc = ccimpl.staticCast<BaseCascadeClassifier>(); else cc.release(); return ok; } void clipObjects(Size sz, std::vector<Rect>& objects, std::vector<int>* a, std::vector<double>* b) { size_t i, j = 0, n = objects.size(); Rect win0 = Rect(0, 0, sz.width, sz.height); if(a) { CV_Assert(a->size() == n); } if(b) { CV_Assert(b->size() == n); } for( i = 0; i < n; i++ ) { Rect r = win0 & objects[i]; if( r.area() > 0 ) { objects[j] = r; if( i > j ) { if(a) a->at(j) = a->at(i); if(b) b->at(j) = b->at(i); } j++; } } if( j < n ) { objects.resize(j); if(a) a->resize(j); if(b) b->resize(j); } } void CascadeClassifier::detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize ) { CV_Assert(!empty()); cc->detectMultiScale(image, objects, scaleFactor, minNeighbors, flags, minSize, maxSize); clipObjects(image.size(), objects, 0, 0); } void CascadeClassifier::detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects, CV_OUT std::vector<int>& numDetections, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize ) { CV_Assert(!empty()); cc->detectMultiScale(image, objects, numDetections, scaleFactor, minNeighbors, flags, minSize, maxSize); clipObjects(image.size(), objects, &numDetections, 0); } void CascadeClassifier::detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects, CV_OUT std::vector<int>& rejectLevels, CV_OUT std::vector<double>& levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize, bool outputRejectLevels ) { CV_Assert(!empty()); cc->detectMultiScale(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minSize, maxSize, outputRejectLevels); clipObjects(image.size(), objects, &rejectLevels, &levelWeights); } bool CascadeClassifier::isOldFormatCascade() const { CV_Assert(!empty()); return cc->isOldFormatCascade(); } Size CascadeClassifier::getOriginalWindowSize() const { CV_Assert(!empty()); return cc->getOriginalWindowSize(); } int CascadeClassifier::getFeatureType() const { CV_Assert(!empty()); return cc->getFeatureType(); } void* CascadeClassifier::getOldCascade() { CV_Assert(!empty()); return cc->getOldCascade(); } void CascadeClassifier::setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator) { CV_Assert(!empty()); cc->setMaskGenerator(maskGenerator); } Ptr<BaseCascadeClassifier::MaskGenerator> CascadeClassifier::getMaskGenerator() { CV_Assert(!empty()); return cc->getMaskGenerator(); } } // namespace cv