/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace std; using namespace cv; using cv::ml::TrainData; using cv::ml::EM; using cv::ml::KNearest; static void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 ) { float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f}; float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f}; float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f}; means.create(3, 2, type); Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 ); Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 ); Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 ); means.resize(3), covs.resize(3); Mat mr0 = means.row(0); m0.convertTo(mr0, type); c0.convertTo(covs[0], type); Mat mr1 = means.row(1); m1.convertTo(mr1, type); c1.convertTo(covs[1], type); Mat mr2 = means.row(2); m2.convertTo(mr2, type); c2.convertTo(covs[2], type); } // generate points sets by normal distributions static void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType ) { vector<int>::const_iterator sit = sizes.begin(); int total = 0; for( ; sit != sizes.end(); ++sit ) total += *sit; CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() ); CV_Assert( !data.empty() && data.rows == total ); CV_Assert( data.type() == dataType ); labels.create( data.rows, 1, labelType ); randn( data, Scalar::all(-1.0), Scalar::all(1.0) ); vector<Mat> means(sizes.size()); for(int i = 0; i < _means.rows; i++) means[i] = _means.row(i); vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin(); int bi, ei = 0; sit = sizes.begin(); for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ ) { bi = ei; ei = bi + *sit; assert( mit->rows == 1 && mit->cols == data.cols ); assert( cit->rows == data.cols && cit->cols == data.cols ); for( int i = bi; i < ei; i++, p++ ) { Mat r = data.row(i); r = r * (*cit) + *mit; if( labelType == CV_32FC1 ) labels.at<float>(p, 0) = (float)l; else if( labelType == CV_32SC1 ) labels.at<int>(p, 0) = l; else { CV_DbgAssert(0); } } } } static int maxIdx( const vector<int>& count ) { int idx = -1; int maxVal = -1; vector<int>::const_iterator it = count.begin(); for( int i = 0; it != count.end(); ++it, i++ ) { if( *it > maxVal) { maxVal = *it; idx = i; } } assert( idx >= 0); return idx; } static bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq=true ) { size_t total = 0, nclusters = sizes.size(); for(size_t i = 0; i < sizes.size(); i++) total += sizes[i]; assert( !labels.empty() ); assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1)); assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 ); bool isFlt = labels.type() == CV_32FC1; labelsMap.resize(nclusters); vector<bool> buzy(nclusters, false); int startIndex = 0; for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ ) { vector<int> count( nclusters, 0 ); for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++) { int lbl = isFlt ? (int)labels.at<float>(i) : labels.at<int>(i); CV_Assert(lbl < (int)nclusters); count[lbl]++; CV_Assert(count[lbl] < (int)total); } startIndex += sizes[clusterIndex]; int cls = maxIdx( count ); CV_Assert( !checkClusterUniq || !buzy[cls] ); labelsMap[clusterIndex] = cls; buzy[cls] = true; } if(checkClusterUniq) { for(size_t i = 0; i < buzy.size(); i++) if(!buzy[i]) return false; } return true; } static bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true, bool checkClusterUniq=true ) { err = 0; CV_Assert( !labels.empty() && !origLabels.empty() ); CV_Assert( labels.rows == 1 || labels.cols == 1 ); CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 ); CV_Assert( labels.total() == origLabels.total() ); CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 ); CV_Assert( origLabels.type() == labels.type() ); vector<int> labelsMap; bool isFlt = labels.type() == CV_32FC1; if( !labelsEquivalent ) { if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) ) return false; for( int i = 0; i < labels.rows; i++ ) if( isFlt ) err += labels.at<float>(i) != labelsMap[(int)origLabels.at<float>(i)] ? 1.f : 0.f; else err += labels.at<int>(i) != labelsMap[origLabels.at<int>(i)] ? 1.f : 0.f; } else { for( int i = 0; i < labels.rows; i++ ) if( isFlt ) err += labels.at<float>(i) != origLabels.at<float>(i) ? 1.f : 0.f; else err += labels.at<int>(i) != origLabels.at<int>(i) ? 1.f : 0.f; } err /= (float)labels.rows; return true; } //-------------------------------------------------------------------------------------------- class CV_KMeansTest : public cvtest::BaseTest { public: CV_KMeansTest() {} protected: virtual void run( int start_from ); }; void CV_KMeansTest::run( int /*start_from*/ ) { const int iters = 100; int sizesArr[] = { 5000, 7000, 8000 }; int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; Mat data( pointsCount, 2, CV_32FC1 ), labels; vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); Mat means; vector<Mat> covs; defaultDistribs( means, covs ); generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 ); int code = cvtest::TS::OK; float err; Mat bestLabels; // 1. flag==KMEANS_PP_CENTERS kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, noArray() ); if( !calcErr( bestLabels, labels, sizes, err , false ) ) { ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_PP_CENTERS.\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.01f ) { ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_PP_CENTERS.\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // 2. flag==KMEANS_RANDOM_CENTERS kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, noArray() ); if( !calcErr( bestLabels, labels, sizes, err, false ) ) { ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_RANDOM_CENTERS.\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.01f ) { ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_RANDOM_CENTERS.\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // 3. flag==KMEANS_USE_INITIAL_LABELS labels.copyTo( bestLabels ); RNG rng; for( int i = 0; i < 0.5f * pointsCount; i++ ) bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3; kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, noArray() ); if( !calcErr( bestLabels, labels, sizes, err, false ) ) { ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_USE_INITIAL_LABELS.\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.01f ) { ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_USE_INITIAL_LABELS.\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } ts->set_failed_test_info( code ); } //-------------------------------------------------------------------------------------------- class CV_KNearestTest : public cvtest::BaseTest { public: CV_KNearestTest() {} protected: virtual void run( int start_from ); }; void CV_KNearestTest::run( int /*start_from*/ ) { int sizesArr[] = { 500, 700, 800 }; int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; // train data Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels; vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); Mat means; vector<Mat> covs; defaultDistribs( means, covs ); generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); // test data Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels; generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); int code = cvtest::TS::OK; // KNearest default implementation Ptr<KNearest> knearest = KNearest::create(); knearest->train(trainData, ml::ROW_SAMPLE, trainLabels); knearest->findNearest(testData, 4, bestLabels); float err; if( !calcErr( bestLabels, testLabels, sizes, err, true ) ) { ts->printf( cvtest::TS::LOG, "Bad output labels.\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.01f ) { ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // KNearest KDTree implementation Ptr<KNearest> knearestKdt = KNearest::create(); knearestKdt->setAlgorithmType(KNearest::KDTREE); knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); knearestKdt->findNearest(testData, 4, bestLabels); if( !calcErr( bestLabels, testLabels, sizes, err, true ) ) { ts->printf( cvtest::TS::LOG, "Bad output labels.\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.01f ) { ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } ts->set_failed_test_info( code ); } class EM_Params { public: EM_Params(int _nclusters=10, int _covMatType=EM::COV_MAT_DIAGONAL, int _startStep=EM::START_AUTO_STEP, const cv::TermCriteria& _termCrit=cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, FLT_EPSILON), const cv::Mat* _probs=0, const cv::Mat* _weights=0, const cv::Mat* _means=0, const std::vector<cv::Mat>* _covs=0) : nclusters(_nclusters), covMatType(_covMatType), startStep(_startStep), probs(_probs), weights(_weights), means(_means), covs(_covs), termCrit(_termCrit) {} int nclusters; int covMatType; int startStep; // all 4 following matrices should have type CV_32FC1 const cv::Mat* probs; const cv::Mat* weights; const cv::Mat* means; const std::vector<cv::Mat>* covs; cv::TermCriteria termCrit; }; //-------------------------------------------------------------------------------------------- class CV_EMTest : public cvtest::BaseTest { public: CV_EMTest() {} protected: virtual void run( int start_from ); int runCase( int caseIndex, const EM_Params& params, const cv::Mat& trainData, const cv::Mat& trainLabels, const cv::Mat& testData, const cv::Mat& testLabels, const vector<int>& sizes); }; int CV_EMTest::runCase( int caseIndex, const EM_Params& params, const cv::Mat& trainData, const cv::Mat& trainLabels, const cv::Mat& testData, const cv::Mat& testLabels, const vector<int>& sizes ) { int code = cvtest::TS::OK; cv::Mat labels; float err; Ptr<EM> em = EM::create(); em->setClustersNumber(params.nclusters); em->setCovarianceMatrixType(params.covMatType); em->setTermCriteria(params.termCrit); if( params.startStep == EM::START_AUTO_STEP ) em->trainEM( trainData, noArray(), labels, noArray() ); else if( params.startStep == EM::START_E_STEP ) em->trainE( trainData, *params.means, *params.covs, *params.weights, noArray(), labels, noArray() ); else if( params.startStep == EM::START_M_STEP ) em->trainM( trainData, *params.probs, noArray(), labels, noArray() ); // check train error if( !calcErr( labels, trainLabels, sizes, err , false, false ) ) { ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.008f ) { ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on train data.\n", caseIndex, err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // check test error labels.create( testData.rows, 1, CV_32SC1 ); for( int i = 0; i < testData.rows; i++ ) { Mat sample = testData.row(i); Mat probs; labels.at<int>(i) = static_cast<int>(em->predict2( sample, probs )[1]); } if( !calcErr( labels, testLabels, sizes, err, false, false ) ) { ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( err > 0.008f ) { ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on test data.\n", caseIndex, err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } return code; } void CV_EMTest::run( int /*start_from*/ ) { int sizesArr[] = { 500, 700, 800 }; int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; // Points distribution Mat means; vector<Mat> covs; defaultDistribs( means, covs, CV_64FC1 ); // train data Mat trainData( pointsCount, 2, CV_64FC1 ), trainLabels; vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 ); // test data Mat testData( pointsCount, 2, CV_64FC1 ), testLabels; generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 ); EM_Params params; params.nclusters = 3; Mat probs(trainData.rows, params.nclusters, CV_64FC1, cv::Scalar(1)); params.probs = &probs; Mat weights(1, params.nclusters, CV_64FC1, cv::Scalar(1)); params.weights = &weights; params.means = &means; params.covs = &covs; int code = cvtest::TS::OK; int caseIndex = 0; { params.startStep = EM::START_AUTO_STEP; params.covMatType = EM::COV_MAT_GENERIC; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_AUTO_STEP; params.covMatType = EM::COV_MAT_DIAGONAL; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_AUTO_STEP; params.covMatType = EM::COV_MAT_SPHERICAL; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_M_STEP; params.covMatType = EM::COV_MAT_GENERIC; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_M_STEP; params.covMatType = EM::COV_MAT_DIAGONAL; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_M_STEP; params.covMatType = EM::COV_MAT_SPHERICAL; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_E_STEP; params.covMatType = EM::COV_MAT_GENERIC; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_E_STEP; params.covMatType = EM::COV_MAT_DIAGONAL; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } { params.startStep = EM::START_E_STEP; params.covMatType = EM::COV_MAT_SPHERICAL; int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); code = currCode == cvtest::TS::OK ? code : currCode; } ts->set_failed_test_info( code ); } class CV_EMTest_SaveLoad : public cvtest::BaseTest { public: CV_EMTest_SaveLoad() {} protected: virtual void run( int /*start_from*/ ) { int code = cvtest::TS::OK; const int nclusters = 2; Mat samples = Mat(3,1,CV_64FC1); samples.at<double>(0,0) = 1; samples.at<double>(1,0) = 2; samples.at<double>(2,0) = 3; Mat labels; Ptr<EM> em = EM::create(); em->setClustersNumber(nclusters); em->trainEM(samples, noArray(), labels, noArray()); Mat firstResult(samples.rows, 1, CV_32SC1); for( int i = 0; i < samples.rows; i++) firstResult.at<int>(i) = static_cast<int>(em->predict2(samples.row(i), noArray())[1]); // Write out string filename = cv::tempfile(".xml"); { FileStorage fs = FileStorage(filename, FileStorage::WRITE); try { fs << "em" << "{"; em->write(fs); fs << "}"; } catch(...) { ts->printf( cvtest::TS::LOG, "Crash in write method.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_EXCEPTION ); } } em.release(); // Read in try { em = Algorithm::load<EM>(filename); } catch(...) { ts->printf( cvtest::TS::LOG, "Crash in read method.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_EXCEPTION ); } remove( filename.c_str() ); int errCaseCount = 0; for( int i = 0; i < samples.rows; i++) errCaseCount = std::abs(em->predict2(samples.row(i), noArray())[1] - firstResult.at<int>(i)) < FLT_EPSILON ? 0 : 1; if( errCaseCount > 0 ) { ts->printf( cvtest::TS::LOG, "Different prediction results before writeing and after reading (errCaseCount=%d).\n", errCaseCount ); code = cvtest::TS::FAIL_BAD_ACCURACY; } ts->set_failed_test_info( code ); } }; class CV_EMTest_Classification : public cvtest::BaseTest { public: CV_EMTest_Classification() {} protected: virtual void run(int) { // This test classifies spam by the following way: // 1. estimates distributions of "spam" / "not spam" // 2. predict classID using Bayes classifier for estimated distributions. string dataFilename = string(ts->get_data_path()) + "spambase.data"; Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0); if( data.empty() ) { ts->printf(cvtest::TS::LOG, "File with spambase dataset cann't be read.\n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); } Mat samples = data->getSamples(); CV_Assert(samples.cols == 57); Mat responses = data->getResponses(); vector<int> trainSamplesMask(samples.rows, 0); int trainSamplesCount = (int)(0.5f * samples.rows); for(int i = 0; i < trainSamplesCount; i++) trainSamplesMask[i] = 1; RNG rng(0); for(size_t i = 0; i < trainSamplesMask.size(); i++) { int i1 = rng(static_cast<unsigned>(trainSamplesMask.size())); int i2 = rng(static_cast<unsigned>(trainSamplesMask.size())); std::swap(trainSamplesMask[i1], trainSamplesMask[i2]); } Mat samples0, samples1; for(int i = 0; i < samples.rows; i++) { if(trainSamplesMask[i]) { Mat sample = samples.row(i); int resp = (int)responses.at<float>(i); if(resp == 0) samples0.push_back(sample); else samples1.push_back(sample); } } Ptr<EM> model0 = EM::create(); model0->setClustersNumber(3); model0->trainEM(samples0, noArray(), noArray(), noArray()); Ptr<EM> model1 = EM::create(); model1->setClustersNumber(3); model1->trainEM(samples1, noArray(), noArray(), noArray()); Mat trainConfusionMat(2, 2, CV_32SC1, Scalar(0)), testConfusionMat(2, 2, CV_32SC1, Scalar(0)); const double lambda = 1.; for(int i = 0; i < samples.rows; i++) { Mat sample = samples.row(i); double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0]; double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0]; int classID = sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1 ? 0 : 1; if(trainSamplesMask[i]) trainConfusionMat.at<int>((int)responses.at<float>(i), classID)++; else testConfusionMat.at<int>((int)responses.at<float>(i), classID)++; } // std::cout << trainConfusionMat << std::endl; // std::cout << testConfusionMat << std::endl; double trainError = (double)(trainConfusionMat.at<int>(1,0) + trainConfusionMat.at<int>(0,1)) / trainSamplesCount; double testError = (double)(testConfusionMat.at<int>(1,0) + testConfusionMat.at<int>(0,1)) / (samples.rows - trainSamplesCount); const double maxTrainError = 0.23; const double maxTestError = 0.26; int code = cvtest::TS::OK; if(trainError > maxTrainError) { ts->printf(cvtest::TS::LOG, "Too large train classification error (calc = %f, valid=%f).\n", trainError, maxTrainError); code = cvtest::TS::FAIL_INVALID_TEST_DATA; } if(testError > maxTestError) { ts->printf(cvtest::TS::LOG, "Too large test classification error (calc = %f, valid=%f).\n", testError, maxTestError); code = cvtest::TS::FAIL_INVALID_TEST_DATA; } ts->set_failed_test_info(code); } }; TEST(ML_KMeans, accuracy) { CV_KMeansTest test; test.safe_run(); } TEST(ML_KNearest, accuracy) { CV_KNearestTest test; test.safe_run(); } TEST(ML_EM, accuracy) { CV_EMTest test; test.safe_run(); } TEST(ML_EM, save_load) { CV_EMTest_SaveLoad test; test.safe_run(); } TEST(ML_EM, classification) { CV_EMTest_Classification test; test.safe_run(); }