/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2014, Itseez, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan, lyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Wu Zailong, bullet@yeah.net // Xu Pang, pangxu010@163.com // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../test_precomp.hpp" #include "cvconfig.h" #include "opencv2/ts/ocl_test.hpp" #ifdef HAVE_OPENCL namespace cvtest { namespace ocl { /////////////////////////////////////////////////////////////////////////////// PARAM_TEST_CASE(CalcBackProject, MatDepth, int, bool) { int depth, N; bool useRoi; std::vector<float> ranges; std::vector<int> channels; double scale; std::vector<Mat> images; std::vector<Mat> images_roi; std::vector<UMat> uimages; std::vector<UMat> uimages_roi; TEST_DECLARE_INPUT_PARAMETER(hist); TEST_DECLARE_OUTPUT_PARAMETER(dst); virtual void SetUp() { depth = GET_PARAM(0); N = GET_PARAM(1); useRoi = GET_PARAM(2); ASSERT_GE(2, N); images.resize(N); images_roi.resize(N); uimages.resize(N); uimages_roi.resize(N); } virtual void random_roi() { Size roiSize = randomSize(1, MAX_VALUE); int totalChannels = 0; ranges.clear(); channels.clear(); for (int i = 0; i < N; ++i) { Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); int cn = randomInt(1, 5); randomSubMat(images[i], images_roi[i], roiSize, srcBorder, CV_MAKE_TYPE(depth, cn), 0, 125); ranges.push_back(10); ranges.push_back(100); channels.push_back(randomInt(0, cn) + totalChannels); totalChannels += cn; } Mat tmpHist; { std::vector<int> hist_size(N); for (int i = 0 ; i < N; ++i) hist_size[i] = randomInt(10, 50); cv::calcHist(images_roi, channels, noArray(), tmpHist, hist_size, ranges); ASSERT_EQ(CV_32FC1, tmpHist.type()); } Border histBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(hist, hist_roi, tmpHist.size(), histBorder, tmpHist.type(), 0, MAX_VALUE); tmpHist.copyTo(hist_roi); Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(dst, dst_roi, roiSize, dstBorder, CV_MAKE_TYPE(depth, 1), 5, 16); for (int i = 0; i < N; ++i) { images[i].copyTo(uimages[i]); Size _wholeSize; Point ofs; images_roi[i].locateROI(_wholeSize, ofs); uimages_roi[i] = uimages[i](Rect(ofs.x, ofs.y, images_roi[i].cols, images_roi[i].rows)); } UMAT_UPLOAD_INPUT_PARAMETER(hist); UMAT_UPLOAD_OUTPUT_PARAMETER(dst); scale = randomDouble(0.1, 1); } void test_by_pict() { Mat frame1 = readImage("optflow/RubberWhale1.png", IMREAD_GRAYSCALE); UMat usrc; frame1.copyTo(usrc); int histSize = randomInt(3, 29); float hue_range[] = { 0, 180 }; const float* ranges1 = { hue_range }; Mat hist1; //compute histogram calcHist(&frame1, 1, 0, Mat(), hist1, 1, &histSize, &ranges1, true, false); normalize(hist1, hist1, 0, 255, NORM_MINMAX, -1, Mat()); Mat dst1; UMat udst1, src, uhist1; hist1.copyTo(uhist1); std::vector<UMat> uims; uims.push_back(usrc); std::vector<float> urngs; urngs.push_back(0); urngs.push_back(180); std::vector<int> chs; chs.push_back(0); OCL_OFF(calcBackProject(&frame1, 1, 0, hist1, dst1, &ranges1, 1, true)); OCL_ON(calcBackProject(uims, chs, uhist1, udst1, urngs, 1.0)); if (cv::ocl::useOpenCL() && cv::ocl::Device::getDefault().isAMD()) { Size dstSize = dst1.size(); int nDiffs = (int)(0.03f*dstSize.height*dstSize.width); //check if the dst mats are the same except 3% difference EXPECT_MAT_N_DIFF(dst1, udst1, nDiffs); } else { EXPECT_MAT_NEAR(dst1, udst1, 0.0); } } }; //////////////////////////////// CalcBackProject ////////////////////////////////////////////// OCL_TEST_P(CalcBackProject, Mat) { for (int j = 0; j < test_loop_times; j++) { random_roi(); OCL_OFF(cv::calcBackProject(images_roi, channels, hist_roi, dst_roi, ranges, scale)); OCL_ON(cv::calcBackProject(uimages_roi, channels, uhist_roi, udst_roi, ranges, scale)); Size dstSize = dst_roi.size(); int nDiffs = std::max((int)(0.07f*dstSize.area()), 1); //check if the dst mats are the same except 7% difference EXPECT_MAT_N_DIFF(dst_roi, udst_roi, nDiffs); } } OCL_TEST_P(CalcBackProject, Mat_RealImage) { //check on given image test_by_pict(); } //////////////////////////////// CalcHist ////////////////////////////////////////////// PARAM_TEST_CASE(CalcHist, bool) { bool useRoi; TEST_DECLARE_INPUT_PARAMETER(src); TEST_DECLARE_OUTPUT_PARAMETER(hist); virtual void SetUp() { useRoi = GET_PARAM(0); } virtual void random_roi() { Size roiSize = randomSize(1, MAX_VALUE); Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(src, src_roi, roiSize, srcBorder, CV_8UC1, 0, 256); Border histBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(hist, hist_roi, Size(1, 256), histBorder, CV_32SC1, 0, MAX_VALUE); UMAT_UPLOAD_INPUT_PARAMETER(src); UMAT_UPLOAD_OUTPUT_PARAMETER(hist); } }; OCL_TEST_P(CalcHist, Mat) { const std::vector<int> channels(1, 0); std::vector<float> ranges(2); std::vector<int> histSize(1, 256); ranges[0] = 0; ranges[1] = 256; for (int j = 0; j < test_loop_times; j++) { random_roi(); OCL_OFF(cv::calcHist(std::vector<Mat>(1, src_roi), channels, noArray(), hist_roi, histSize, ranges, false)); OCL_ON(cv::calcHist(std::vector<UMat>(1, usrc_roi), channels, noArray(), uhist_roi, histSize, ranges, false)); OCL_EXPECT_MATS_NEAR(hist, 0.0); } } ///////////////////////////////////////////////////////////////////////////////////// OCL_INSTANTIATE_TEST_CASE_P(Imgproc, CalcBackProject, Combine(Values((MatDepth)CV_8U), Values(1, 2), Bool())); OCL_INSTANTIATE_TEST_CASE_P(Imgproc, CalcHist, Values(true, false)); } } // namespace cvtest::ocl #endif // HAVE_OPENCL