/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { int Subdiv2D::nextEdge(int edge) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); return qedges[edge >> 2].next[edge & 3]; } int Subdiv2D::rotateEdge(int edge, int rotate) const { return (edge & ~3) + ((edge + rotate) & 3); } int Subdiv2D::symEdge(int edge) const { return edge ^ 2; } int Subdiv2D::getEdge(int edge, int nextEdgeType) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); edge = qedges[edge >> 2].next[(edge + nextEdgeType) & 3]; return (edge & ~3) + ((edge + (nextEdgeType >> 4)) & 3); } int Subdiv2D::edgeOrg(int edge, CV_OUT Point2f* orgpt) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); int vidx = qedges[edge >> 2].pt[edge & 3]; if( orgpt ) { CV_DbgAssert((size_t)vidx < vtx.size()); *orgpt = vtx[vidx].pt; } return vidx; } int Subdiv2D::edgeDst(int edge, CV_OUT Point2f* dstpt) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); int vidx = qedges[edge >> 2].pt[(edge + 2) & 3]; if( dstpt ) { CV_DbgAssert((size_t)vidx < vtx.size()); *dstpt = vtx[vidx].pt; } return vidx; } Point2f Subdiv2D::getVertex(int vertex, CV_OUT int* firstEdge) const { CV_DbgAssert((size_t)vertex < vtx.size()); if( firstEdge ) *firstEdge = vtx[vertex].firstEdge; return vtx[vertex].pt; } Subdiv2D::Subdiv2D() { validGeometry = false; freeQEdge = 0; freePoint = 0; recentEdge = 0; } Subdiv2D::Subdiv2D(Rect rect) { validGeometry = false; freeQEdge = 0; freePoint = 0; recentEdge = 0; initDelaunay(rect); } Subdiv2D::QuadEdge::QuadEdge() { next[0] = next[1] = next[2] = next[3] = 0; pt[0] = pt[1] = pt[2] = pt[3] = 0; } Subdiv2D::QuadEdge::QuadEdge(int edgeidx) { CV_DbgAssert((edgeidx & 3) == 0); next[0] = edgeidx; next[1] = edgeidx+3; next[2] = edgeidx+2; next[3] = edgeidx+1; pt[0] = pt[1] = pt[2] = pt[3] = 0; } bool Subdiv2D::QuadEdge::isfree() const { return next[0] <= 0; } Subdiv2D::Vertex::Vertex() { firstEdge = 0; type = -1; } Subdiv2D::Vertex::Vertex(Point2f _pt, bool _isvirtual, int _firstEdge) { firstEdge = _firstEdge; type = (int)_isvirtual; pt = _pt; } bool Subdiv2D::Vertex::isvirtual() const { return type > 0; } bool Subdiv2D::Vertex::isfree() const { return type < 0; } void Subdiv2D::splice( int edgeA, int edgeB ) { int& a_next = qedges[edgeA >> 2].next[edgeA & 3]; int& b_next = qedges[edgeB >> 2].next[edgeB & 3]; int a_rot = rotateEdge(a_next, 1); int b_rot = rotateEdge(b_next, 1); int& a_rot_next = qedges[a_rot >> 2].next[a_rot & 3]; int& b_rot_next = qedges[b_rot >> 2].next[b_rot & 3]; std::swap(a_next, b_next); std::swap(a_rot_next, b_rot_next); } void Subdiv2D::setEdgePoints(int edge, int orgPt, int dstPt) { qedges[edge >> 2].pt[edge & 3] = orgPt; qedges[edge >> 2].pt[(edge + 2) & 3] = dstPt; vtx[orgPt].firstEdge = edge; vtx[dstPt].firstEdge = edge ^ 2; } int Subdiv2D::connectEdges( int edgeA, int edgeB ) { int edge = newEdge(); splice(edge, getEdge(edgeA, NEXT_AROUND_LEFT)); splice(symEdge(edge), edgeB); setEdgePoints(edge, edgeDst(edgeA), edgeOrg(edgeB)); return edge; } void Subdiv2D::swapEdges( int edge ) { int sedge = symEdge(edge); int a = getEdge(edge, PREV_AROUND_ORG); int b = getEdge(sedge, PREV_AROUND_ORG); splice(edge, a); splice(sedge, b); setEdgePoints(edge, edgeDst(a), edgeDst(b)); splice(edge, getEdge(a, NEXT_AROUND_LEFT)); splice(sedge, getEdge(b, NEXT_AROUND_LEFT)); } static double triangleArea( Point2f a, Point2f b, Point2f c ) { return ((double)b.x - a.x) * ((double)c.y - a.y) - ((double)b.y - a.y) * ((double)c.x - a.x); } int Subdiv2D::isRightOf(Point2f pt, int edge) const { Point2f org, dst; edgeOrg(edge, &org); edgeDst(edge, &dst); double cw_area = triangleArea( pt, dst, org ); return (cw_area > 0) - (cw_area < 0); } int Subdiv2D::newEdge() { if( freeQEdge <= 0 ) { qedges.push_back(QuadEdge()); freeQEdge = (int)(qedges.size()-1); } int edge = freeQEdge*4; freeQEdge = qedges[edge >> 2].next[1]; qedges[edge >> 2] = QuadEdge(edge); return edge; } void Subdiv2D::deleteEdge(int edge) { CV_DbgAssert((size_t)(edge >> 2) < (size_t)qedges.size()); splice( edge, getEdge(edge, PREV_AROUND_ORG) ); int sedge = symEdge(edge); splice(sedge, getEdge(sedge, PREV_AROUND_ORG) ); edge >>= 2; qedges[edge].next[0] = 0; qedges[edge].next[1] = freeQEdge; freeQEdge = edge; } int Subdiv2D::newPoint(Point2f pt, bool isvirtual, int firstEdge) { if( freePoint == 0 ) { vtx.push_back(Vertex()); freePoint = (int)(vtx.size()-1); } int vidx = freePoint; freePoint = vtx[vidx].firstEdge; vtx[vidx] = Vertex(pt, isvirtual, firstEdge); return vidx; } void Subdiv2D::deletePoint(int vidx) { CV_DbgAssert( (size_t)vidx < vtx.size() ); vtx[vidx].firstEdge = freePoint; vtx[vidx].type = -1; freePoint = vidx; } int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex) { int vertex = 0; int i, maxEdges = (int)(qedges.size() * 4); if( qedges.size() < (size_t)4 ) CV_Error( CV_StsError, "Subdivision is empty" ); if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y ) CV_Error( CV_StsOutOfRange, "" ); int edge = recentEdge; CV_Assert(edge > 0); int location = PTLOC_ERROR; int right_of_curr = isRightOf(pt, edge); if( right_of_curr > 0 ) { edge = symEdge(edge); right_of_curr = -right_of_curr; } for( i = 0; i < maxEdges; i++ ) { int onext_edge = nextEdge( edge ); int dprev_edge = getEdge( edge, PREV_AROUND_DST ); int right_of_onext = isRightOf( pt, onext_edge ); int right_of_dprev = isRightOf( pt, dprev_edge ); if( right_of_dprev > 0 ) { if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) ) { location = PTLOC_INSIDE; break; } else { right_of_curr = right_of_onext; edge = onext_edge; } } else { if( right_of_onext > 0 ) { if( right_of_dprev == 0 && right_of_curr == 0 ) { location = PTLOC_INSIDE; break; } else { right_of_curr = right_of_dprev; edge = dprev_edge; } } else if( right_of_curr == 0 && isRightOf( vtx[edgeDst(onext_edge)].pt, edge ) >= 0 ) { edge = symEdge( edge ); } else { right_of_curr = right_of_onext; edge = onext_edge; } } } recentEdge = edge; if( location == PTLOC_INSIDE ) { Point2f org_pt, dst_pt; edgeOrg(edge, &org_pt); edgeDst(edge, &dst_pt); double t1 = fabs( pt.x - org_pt.x ); t1 += fabs( pt.y - org_pt.y ); double t2 = fabs( pt.x - dst_pt.x ); t2 += fabs( pt.y - dst_pt.y ); double t3 = fabs( org_pt.x - dst_pt.x ); t3 += fabs( org_pt.y - dst_pt.y ); if( t1 < FLT_EPSILON ) { location = PTLOC_VERTEX; vertex = edgeOrg( edge ); edge = 0; } else if( t2 < FLT_EPSILON ) { location = PTLOC_VERTEX; vertex = edgeDst( edge ); edge = 0; } else if( (t1 < t3 || t2 < t3) && fabs( triangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON ) { location = PTLOC_ON_EDGE; vertex = 0; } } if( location == PTLOC_ERROR ) { edge = 0; vertex = 0; } _edge = edge; _vertex = vertex; return location; } inline int isPtInCircle3( Point2f pt, Point2f a, Point2f b, Point2f c) { const double eps = FLT_EPSILON*0.125; double val = ((double)a.x * a.x + (double)a.y * a.y) * triangleArea( b, c, pt ); val -= ((double)b.x * b.x + (double)b.y * b.y) * triangleArea( a, c, pt ); val += ((double)c.x * c.x + (double)c.y * c.y) * triangleArea( a, b, pt ); val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * triangleArea( a, b, c ); return val > eps ? 1 : val < -eps ? -1 : 0; } int Subdiv2D::insert(Point2f pt) { int curr_point = 0, curr_edge = 0, deleted_edge = 0; int location = locate( pt, curr_edge, curr_point ); if( location == PTLOC_ERROR ) CV_Error( CV_StsBadSize, "" ); if( location == PTLOC_OUTSIDE_RECT ) CV_Error( CV_StsOutOfRange, "" ); if( location == PTLOC_VERTEX ) return curr_point; if( location == PTLOC_ON_EDGE ) { deleted_edge = curr_edge; recentEdge = curr_edge = getEdge( curr_edge, PREV_AROUND_ORG ); deleteEdge(deleted_edge); } else if( location == PTLOC_INSIDE ) ; else CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) ); assert( curr_edge != 0 ); validGeometry = false; curr_point = newPoint(pt, false); int base_edge = newEdge(); int first_point = edgeOrg(curr_edge); setEdgePoints(base_edge, first_point, curr_point); splice(base_edge, curr_edge); do { base_edge = connectEdges( curr_edge, symEdge(base_edge) ); curr_edge = getEdge(base_edge, PREV_AROUND_ORG); } while( edgeDst(curr_edge) != first_point ); curr_edge = getEdge( base_edge, PREV_AROUND_ORG ); int i, max_edges = (int)(qedges.size()*4); for( i = 0; i < max_edges; i++ ) { int temp_dst = 0, curr_org = 0, curr_dst = 0; int temp_edge = getEdge( curr_edge, PREV_AROUND_ORG ); temp_dst = edgeDst( temp_edge ); curr_org = edgeOrg( curr_edge ); curr_dst = edgeDst( curr_edge ); if( isRightOf( vtx[temp_dst].pt, curr_edge ) > 0 && isPtInCircle3( vtx[curr_org].pt, vtx[temp_dst].pt, vtx[curr_dst].pt, vtx[curr_point].pt ) < 0 ) { swapEdges( curr_edge ); curr_edge = getEdge( curr_edge, PREV_AROUND_ORG ); } else if( curr_org == first_point ) break; else curr_edge = getEdge( nextEdge( curr_edge ), PREV_AROUND_LEFT ); } return curr_point; } void Subdiv2D::insert(const std::vector<Point2f>& ptvec) { for( size_t i = 0; i < ptvec.size(); i++ ) insert(ptvec[i]); } void Subdiv2D::initDelaunay( Rect rect ) { float big_coord = 3.f * MAX( rect.width, rect.height ); float rx = (float)rect.x; float ry = (float)rect.y; vtx.clear(); qedges.clear(); recentEdge = 0; validGeometry = false; topLeft = Point2f( rx, ry ); bottomRight = Point2f( rx + rect.width, ry + rect.height ); Point2f ppA( rx + big_coord, ry ); Point2f ppB( rx, ry + big_coord ); Point2f ppC( rx - big_coord, ry - big_coord ); vtx.push_back(Vertex()); qedges.push_back(QuadEdge()); freeQEdge = 0; freePoint = 0; int pA = newPoint(ppA, false); int pB = newPoint(ppB, false); int pC = newPoint(ppC, false); int edge_AB = newEdge(); int edge_BC = newEdge(); int edge_CA = newEdge(); setEdgePoints( edge_AB, pA, pB ); setEdgePoints( edge_BC, pB, pC ); setEdgePoints( edge_CA, pC, pA ); splice( edge_AB, symEdge( edge_CA )); splice( edge_BC, symEdge( edge_AB )); splice( edge_CA, symEdge( edge_BC )); recentEdge = edge_AB; } void Subdiv2D::clearVoronoi() { size_t i, total = qedges.size(); for( i = 0; i < total; i++ ) qedges[i].pt[1] = qedges[i].pt[3] = 0; total = vtx.size(); for( i = 0; i < total; i++ ) { if( vtx[i].isvirtual() ) deletePoint((int)i); } validGeometry = false; } static Point2f computeVoronoiPoint(Point2f org0, Point2f dst0, Point2f org1, Point2f dst1) { double a0 = dst0.x - org0.x; double b0 = dst0.y - org0.y; double c0 = -0.5*(a0 * (dst0.x + org0.x) + b0 * (dst0.y + org0.y)); double a1 = dst1.x - org1.x; double b1 = dst1.y - org1.y; double c1 = -0.5*(a1 * (dst1.x + org1.x) + b1 * (dst1.y + org1.y)); double det = a0 * b1 - a1 * b0; if( det != 0 ) { det = 1. / det; return Point2f((float) ((b0 * c1 - b1 * c0) * det), (float) ((a1 * c0 - a0 * c1) * det)); } return Point2f(FLT_MAX, FLT_MAX); } void Subdiv2D::calcVoronoi() { // check if it is already calculated if( validGeometry ) return; clearVoronoi(); int i, total = (int)qedges.size(); // loop through all quad-edges, except for the first 3 (#1, #2, #3 - 0 is reserved for "NULL" pointer) for( i = 4; i < total; i++ ) { QuadEdge& quadedge = qedges[i]; if( quadedge.isfree() ) continue; int edge0 = (int)(i*4); Point2f org0, dst0, org1, dst1; if( !quadedge.pt[3] ) { int edge1 = getEdge( edge0, NEXT_AROUND_LEFT ); int edge2 = getEdge( edge1, NEXT_AROUND_LEFT ); edgeOrg(edge0, &org0); edgeDst(edge0, &dst0); edgeOrg(edge1, &org1); edgeDst(edge1, &dst1); Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1); if( fabs( virt_point.x ) < FLT_MAX * 0.5 && fabs( virt_point.y ) < FLT_MAX * 0.5 ) { quadedge.pt[3] = qedges[edge1 >> 2].pt[3 - (edge1 & 2)] = qedges[edge2 >> 2].pt[3 - (edge2 & 2)] = newPoint(virt_point, true); } } if( !quadedge.pt[1] ) { int edge1 = getEdge( edge0, NEXT_AROUND_RIGHT ); int edge2 = getEdge( edge1, NEXT_AROUND_RIGHT ); edgeOrg(edge0, &org0); edgeDst(edge0, &dst0); edgeOrg(edge1, &org1); edgeDst(edge1, &dst1); Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1); if( fabs( virt_point.x ) < FLT_MAX * 0.5 && fabs( virt_point.y ) < FLT_MAX * 0.5 ) { quadedge.pt[1] = qedges[edge1 >> 2].pt[1 + (edge1 & 2)] = qedges[edge2 >> 2].pt[1 + (edge2 & 2)] = newPoint(virt_point, true); } } } validGeometry = true; } static int isRightOf2( const Point2f& pt, const Point2f& org, const Point2f& diff ) { double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x; return (cw_area > 0) - (cw_area < 0); } int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt) { if( !validGeometry ) calcVoronoi(); int vertex = 0, edge = 0; int loc = locate( pt, edge, vertex ); if( loc != PTLOC_ON_EDGE && loc != PTLOC_INSIDE ) return vertex; vertex = 0; Point2f start; edgeOrg(edge, &start); Point2f diff = pt - start; edge = rotateEdge(edge, 1); int i, total = (int)vtx.size(); for( i = 0; i < total; i++ ) { Point2f t; for(;;) { CV_Assert( edgeDst(edge, &t) > 0 ); if( isRightOf2( t, start, diff ) >= 0 ) break; edge = getEdge( edge, NEXT_AROUND_LEFT ); } for(;;) { CV_Assert( edgeOrg( edge, &t ) > 0 ); if( isRightOf2( t, start, diff ) < 0 ) break; edge = getEdge( edge, PREV_AROUND_LEFT ); } Point2f tempDiff; edgeDst(edge, &tempDiff); edgeOrg(edge, &t); tempDiff -= t; if( isRightOf2( pt, t, tempDiff ) >= 0 ) { vertex = edgeOrg(rotateEdge( edge, 3 )); break; } edge = symEdge( edge ); } if( nearestPt && vertex > 0 ) *nearestPt = vtx[vertex].pt; return vertex; } void Subdiv2D::getEdgeList(std::vector<Vec4f>& edgeList) const { edgeList.clear(); for( size_t i = 4; i < qedges.size(); i++ ) { if( qedges[i].isfree() ) continue; if( qedges[i].pt[0] > 0 && qedges[i].pt[2] > 0 ) { Point2f org = vtx[qedges[i].pt[0]].pt; Point2f dst = vtx[qedges[i].pt[2]].pt; edgeList.push_back(Vec4f(org.x, org.y, dst.x, dst.y)); } } } void Subdiv2D::getTriangleList(std::vector<Vec6f>& triangleList) const { triangleList.clear(); int i, total = (int)(qedges.size()*4); std::vector<bool> edgemask(total, false); for( i = 4; i < total; i += 2 ) { if( edgemask[i] ) continue; Point2f a, b, c; int edge = i; edgeOrg(edge, &a); edgemask[edge] = true; edge = getEdge(edge, NEXT_AROUND_LEFT); edgeOrg(edge, &b); edgemask[edge] = true; edge = getEdge(edge, NEXT_AROUND_LEFT); edgeOrg(edge, &c); edgemask[edge] = true; triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y)); } } void Subdiv2D::getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList, CV_OUT std::vector<Point2f>& facetCenters) { calcVoronoi(); facetList.clear(); facetCenters.clear(); std::vector<Point2f> buf; size_t i, total; if( idx.empty() ) i = 4, total = vtx.size(); else i = 0, total = idx.size(); for( ; i < total; i++ ) { int k = idx.empty() ? (int)i : idx[i]; if( vtx[k].isfree() || vtx[k].isvirtual() ) continue; int edge = rotateEdge(vtx[k].firstEdge, 1), t = edge; // gather points buf.clear(); do { buf.push_back(vtx[edgeOrg(t)].pt); t = getEdge( t, NEXT_AROUND_LEFT ); } while( t != edge ); facetList.push_back(buf); facetCenters.push_back(vtx[k].pt); } } void Subdiv2D::checkSubdiv() const { int i, j, total = (int)qedges.size(); for( i = 0; i < total; i++ ) { const QuadEdge& qe = qedges[i]; if( qe.isfree() ) continue; for( j = 0; j < 4; j++ ) { int e = (int)(i*4 + j); int o_next = nextEdge(e); int o_prev = getEdge(e, PREV_AROUND_ORG ); int d_prev = getEdge(e, PREV_AROUND_DST ); int d_next = getEdge(e, NEXT_AROUND_DST ); // check points CV_Assert( edgeOrg(e) == edgeOrg(o_next)); CV_Assert( edgeOrg(e) == edgeOrg(o_prev)); CV_Assert( edgeDst(e) == edgeDst(d_next)); CV_Assert( edgeDst(e) == edgeDst(d_prev)); if( j % 2 == 0 ) { CV_Assert( edgeDst(o_next) == edgeOrg(d_prev)); CV_Assert( edgeDst(o_prev) == edgeOrg(d_next)); CV_Assert( getEdge(getEdge(getEdge(e,NEXT_AROUND_LEFT),NEXT_AROUND_LEFT),NEXT_AROUND_LEFT) == e ); CV_Assert( getEdge(getEdge(getEdge(e,NEXT_AROUND_RIGHT),NEXT_AROUND_RIGHT),NEXT_AROUND_RIGHT) == e); } } } } } /* End of file. */