/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { static const uchar* adjustRect( const uchar* src, size_t src_step, int pix_size, Size src_size, Size win_size, Point ip, Rect* pRect ) { Rect rect; if( ip.x >= 0 ) { src += ip.x*pix_size; rect.x = 0; } else { rect.x = -ip.x; if( rect.x > win_size.width ) rect.x = win_size.width; } if( ip.x < src_size.width - win_size.width ) rect.width = win_size.width; else { rect.width = src_size.width - ip.x - 1; if( rect.width < 0 ) { src += rect.width*pix_size; rect.width = 0; } assert( rect.width <= win_size.width ); } if( ip.y >= 0 ) { src += ip.y * src_step; rect.y = 0; } else rect.y = -ip.y; if( ip.y < src_size.height - win_size.height ) rect.height = win_size.height; else { rect.height = src_size.height - ip.y - 1; if( rect.height < 0 ) { src += rect.height*src_step; rect.height = 0; } } *pRect = rect; return src - rect.x*pix_size; } enum { SUBPIX_SHIFT=16 }; struct scale_fixpt { int operator()(float a) const { return cvRound(a*(1 << SUBPIX_SHIFT)); } }; struct cast_8u { uchar operator()(int a) const { return (uchar)((a + (1 << (SUBPIX_SHIFT-1))) >> SUBPIX_SHIFT); } }; struct cast_flt_8u { uchar operator()(float a) const { return (uchar)cvRound(a); } }; template<typename _Tp> struct nop { _Tp operator()(_Tp a) const { return a; } }; template<typename _Tp, typename _DTp, typename _WTp, class ScaleOp, class CastOp> void getRectSubPix_Cn_(const _Tp* src, size_t src_step, Size src_size, _DTp* dst, size_t dst_step, Size win_size, Point2f center, int cn ) { ScaleOp scale_op; CastOp cast_op; Point ip; _WTp a11, a12, a21, a22, b1, b2; float a, b; int i, j, c; center.x -= (win_size.width-1)*0.5f; center.y -= (win_size.height-1)*0.5f; ip.x = cvFloor( center.x ); ip.y = cvFloor( center.y ); a = center.x - ip.x; b = center.y - ip.y; a11 = scale_op((1.f-a)*(1.f-b)); a12 = scale_op(a*(1.f-b)); a21 = scale_op((1.f-a)*b); a22 = scale_op(a*b); b1 = scale_op(1.f - b); b2 = scale_op(b); src_step /= sizeof(src[0]); dst_step /= sizeof(dst[0]); if( 0 <= ip.x && ip.x < src_size.width - win_size.width && 0 <= ip.y && ip.y < src_size.height - win_size.height) { // extracted rectangle is totally inside the image src += ip.y * src_step + ip.x*cn; win_size.width *= cn; for( i = 0; i < win_size.height; i++, src += src_step, dst += dst_step ) { for( j = 0; j <= win_size.width - 2; j += 2 ) { _WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22; _WTp s1 = src[j+1]*a11 + src[j+cn+1]*a12 + src[j+src_step+1]*a21 + src[j+src_step+cn+1]*a22; dst[j] = cast_op(s0); dst[j+1] = cast_op(s1); } for( ; j < win_size.width; j++ ) { _WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22; dst[j] = cast_op(s0); } } } else { Rect r; src = (const _Tp*)adjustRect( (const uchar*)src, src_step*sizeof(*src), sizeof(*src)*cn, src_size, win_size, ip, &r); for( i = 0; i < win_size.height; i++, dst += dst_step ) { const _Tp *src2 = src + src_step; _WTp s0; if( i < r.y || i >= r.height ) src2 -= src_step; for( c = 0; c < cn; c++ ) { s0 = src[r.x*cn + c]*b1 + src2[r.x*cn + c]*b2; for( j = 0; j < r.x; j++ ) dst[j*cn + c] = cast_op(s0); s0 = src[r.width*cn + c]*b1 + src2[r.width*cn + c]*b2; for( j = r.width; j < win_size.width; j++ ) dst[j*cn + c] = cast_op(s0); } for( j = r.x*cn; j < r.width*cn; j++ ) { s0 = src[j]*a11 + src[j+cn]*a12 + src2[j]*a21 + src2[j+cn]*a22; dst[j] = cast_op(s0); } if( i < r.height ) src = src2; } } } static void getRectSubPix_8u32f ( const uchar* src, size_t src_step, Size src_size, float* dst, size_t dst_step, Size win_size, Point2f center0, int cn ) { Point2f center = center0; Point ip; center.x -= (win_size.width-1)*0.5f; center.y -= (win_size.height-1)*0.5f; ip.x = cvFloor( center.x ); ip.y = cvFloor( center.y ); if( cn == 1 && 0 <= ip.x && ip.x + win_size.width < src_size.width && 0 <= ip.y && ip.y + win_size.height < src_size.height && win_size.width > 0 && win_size.height > 0 ) { float a = center.x - ip.x; float b = center.y - ip.y; a = MAX(a,0.0001f); float a12 = a*(1.f-b); float a22 = a*b; float b1 = 1.f - b; float b2 = b; double s = (1. - a)/a; src_step /= sizeof(src[0]); dst_step /= sizeof(dst[0]); // extracted rectangle is totally inside the image src += ip.y * src_step + ip.x; for( ; win_size.height--; src += src_step, dst += dst_step ) { float prev = (1 - a)*(b1*src[0] + b2*src[src_step]); for( int j = 0; j < win_size.width; j++ ) { float t = a12*src[j+1] + a22*src[j+1+src_step]; dst[j] = prev + t; prev = (float)(t*s); } } } else { getRectSubPix_Cn_<uchar, float, float, nop<float>, nop<float> > (src, src_step, src_size, dst, dst_step, win_size, center0, cn ); } } static void getQuadrangleSubPix_8u32f_CnR( const uchar* src, size_t src_step, Size src_size, float* dst, size_t dst_step, Size win_size, const double *matrix, int cn ) { int x, y, k; double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]; double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]; src_step /= sizeof(src[0]); dst_step /= sizeof(dst[0]); for( y = 0; y < win_size.height; y++, dst += dst_step ) { double xs = A12*y + A13; double ys = A22*y + A23; double xe = A11*(win_size.width-1) + A12*y + A13; double ye = A21*(win_size.width-1) + A22*y + A23; if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && (unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && (unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && (unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) { for( x = 0; x < win_size.width; x++ ) { int ixs = cvFloor( xs ); int iys = cvFloor( ys ); const uchar *ptr = src + src_step*iys; float a = (float)(xs - ixs), b = (float)(ys - iys), a1 = 1.f - a, b1 = 1.f - b; float w00 = a1*b1, w01 = a*b1, w10 = a1*b, w11 = a*b; xs += A11; ys += A21; if( cn == 1 ) { ptr += ixs; dst[x] = ptr[0]*w00 + ptr[1]*w01 + ptr[src_step]*w10 + ptr[src_step+1]*w11; } else if( cn == 3 ) { ptr += ixs*3; float t0 = ptr[0]*w00 + ptr[3]*w01 + ptr[src_step]*w10 + ptr[src_step+3]*w11; float t1 = ptr[1]*w00 + ptr[4]*w01 + ptr[src_step+1]*w10 + ptr[src_step+4]*w11; float t2 = ptr[2]*w00 + ptr[5]*w01 + ptr[src_step+2]*w10 + ptr[src_step+5]*w11; dst[x*3] = t0; dst[x*3+1] = t1; dst[x*3+2] = t2; } else { ptr += ixs*cn; for( k = 0; k < cn; k++ ) dst[x*cn+k] = ptr[k]*w00 + ptr[k+cn]*w01 + ptr[src_step+k]*w10 + ptr[src_step+k+cn]*w11; } } } else { for( x = 0; x < win_size.width; x++ ) { int ixs = cvFloor( xs ), iys = cvFloor( ys ); float a = (float)(xs - ixs), b = (float)(ys - iys), a1 = 1.f - a, b1 = 1.f - b; float w00 = a1*b1, w01 = a*b1, w10 = a1*b, w11 = a*b; const uchar *ptr0, *ptr1; xs += A11; ys += A21; if( (unsigned)iys < (unsigned)(src_size.height-1) ) ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; else ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; if( (unsigned)ixs < (unsigned)(src_size.width-1) ) { ptr0 += ixs*cn; ptr1 += ixs*cn; for( k = 0; k < cn; k++ ) dst[x*cn + k] = ptr0[k]*w00 + ptr0[k+cn]*w01 + ptr1[k]*w10 + ptr1[k+cn]*w11; } else { ixs = ixs < 0 ? 0 : src_size.width - 1; ptr0 += ixs*cn; ptr1 += ixs*cn; for( k = 0; k < cn; k++ ) dst[x*cn + k] = ptr0[k]*b1 + ptr1[k]*b; } } } } } } void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center, OutputArray _patch, int patchType ) { Mat image = _image.getMat(); int depth = image.depth(), cn = image.channels(); int ddepth = patchType < 0 ? depth : CV_MAT_DEPTH(patchType); CV_Assert( cn == 1 || cn == 3 ); _patch.create(patchSize, CV_MAKETYPE(ddepth, cn)); Mat patch = _patch.getMat(); #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) CV_IPP_CHECK() { typedef IppStatus (CV_STDCALL *ippiGetRectSubPixFunc)( const void* src, int src_step, IppiSize src_size, void* dst, int dst_step, IppiSize win_size, IppiPoint_32f center, IppiPoint* minpt, IppiPoint* maxpt ); IppiPoint minpt={0,0}, maxpt={0,0}; IppiPoint_32f icenter = {center.x, center.y}; IppiSize src_size={image.cols, image.rows}, win_size={patch.cols, patch.rows}; int srctype = image.type(); ippiGetRectSubPixFunc ippfunc = srctype == CV_8UC1 && ddepth == CV_8U ? (ippiGetRectSubPixFunc)ippiCopySubpixIntersect_8u_C1R : srctype == CV_8UC1 && ddepth == CV_32F ? (ippiGetRectSubPixFunc)ippiCopySubpixIntersect_8u32f_C1R : srctype == CV_32FC1 && ddepth == CV_32F ? (ippiGetRectSubPixFunc)ippiCopySubpixIntersect_32f_C1R : 0; if( ippfunc) { if (ippfunc(image.ptr(), (int)image.step, src_size, patch.ptr(), (int)patch.step, win_size, icenter, &minpt, &maxpt) >= 0 ) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); } } #endif if( depth == CV_8U && ddepth == CV_8U ) getRectSubPix_Cn_<uchar, uchar, int, scale_fixpt, cast_8u> (image.ptr(), image.step, image.size(), patch.ptr(), patch.step, patch.size(), center, cn); else if( depth == CV_8U && ddepth == CV_32F ) getRectSubPix_8u32f (image.ptr(), image.step, image.size(), patch.ptr<float>(), patch.step, patch.size(), center, cn); else if( depth == CV_32F && ddepth == CV_32F ) getRectSubPix_Cn_<float, float, float, nop<float>, nop<float> > (image.ptr<float>(), image.step, image.size(), patch.ptr<float>(), patch.step, patch.size(), center, cn); else CV_Error( CV_StsUnsupportedFormat, "Unsupported combination of input and output formats"); } CV_IMPL void cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center ) { cv::Mat src = cv::cvarrToMat(srcarr); const cv::Mat dst = cv::cvarrToMat(dstarr); CV_Assert( src.channels() == dst.channels() ); cv::getRectSubPix(src, dst.size(), center, dst, dst.type()); } CV_IMPL void cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat ) { const cv::Mat src = cv::cvarrToMat(srcarr), m = cv::cvarrToMat(mat); cv::Mat dst = cv::cvarrToMat(dstarr); CV_Assert( src.channels() == dst.channels() ); cv::Size win_size = dst.size(); double matrix[6]; cv::Mat M(2, 3, CV_64F, matrix); m.convertTo(M, CV_64F); double dx = (win_size.width - 1)*0.5; double dy = (win_size.height - 1)*0.5; matrix[2] -= matrix[0]*dx + matrix[1]*dy; matrix[5] -= matrix[3]*dx + matrix[4]*dy; if( src.depth() == CV_8U && dst.depth() == CV_32F ) cv::getQuadrangleSubPix_8u32f_CnR( src.ptr(), src.step, src.size(), dst.ptr<float>(), dst.step, dst.size(), matrix, src.channels()); else { CV_Assert( src.depth() == dst.depth() ); cv::warpAffine(src, dst, M, dst.size(), cv::INTER_LINEAR + cv::WARP_INVERSE_MAP, cv::BORDER_REPLICATE); } } CV_IMPL int cvSampleLine( const void* _img, CvPoint pt1, CvPoint pt2, void* _buffer, int connectivity ) { cv::Mat img = cv::cvarrToMat(_img); cv::LineIterator li(img, pt1, pt2, connectivity, false); uchar* buffer = (uchar*)_buffer; size_t pixsize = img.elemSize(); if( !buffer ) CV_Error( CV_StsNullPtr, "" ); for( int i = 0; i < li.count; i++, ++li ) { for( size_t k = 0; k < pixsize; k++ ) *buffer++ = li.ptr[k]; } return li.count; } /* End of file. */