//============================================================================= // // nldiffusion_functions.cpp // Author: Pablo F. Alcantarilla // Institution: University d'Auvergne // Address: Clermont Ferrand, France // Date: 27/12/2011 // Email: pablofdezalc@gmail.com // // KAZE Features Copyright 2012, Pablo F. Alcantarilla // All Rights Reserved // See LICENSE for the license information //============================================================================= /** * @file nldiffusion_functions.cpp * @brief Functions for non-linear diffusion applications: * 2D Gaussian Derivatives * Perona and Malik conductivity equations * Perona and Malik evolution * @date Dec 27, 2011 * @author Pablo F. Alcantarilla */ #include "../precomp.hpp" #include "nldiffusion_functions.h" #include <iostream> // Namespaces /* ************************************************************************* */ namespace cv { using namespace std; /* ************************************************************************* */ /** * @brief This function smoothes an image with a Gaussian kernel * @param src Input image * @param dst Output image * @param ksize_x Kernel size in X-direction (horizontal) * @param ksize_y Kernel size in Y-direction (vertical) * @param sigma Kernel standard deviation */ void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) { int ksize_x_ = 0, ksize_y_ = 0; // Compute an appropriate kernel size according to the specified sigma if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f))); ksize_y_ = ksize_x_; } // The kernel size must be and odd number if ((ksize_x_ % 2) == 0) { ksize_x_ += 1; } if ((ksize_y_ % 2) == 0) { ksize_y_ += 1; } // Perform the Gaussian Smoothing with border replication GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, BORDER_REPLICATE); } /* ************************************************************************* */ /** * @brief This function computes image derivatives with Scharr kernel * @param src Input image * @param dst Output image * @param xorder Derivative order in X-direction (horizontal) * @param yorder Derivative order in Y-direction (vertical) * @note Scharr operator approximates better rotation invariance than * other stencils such as Sobel. See Weickert and Scharr, * A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance, * Journal of Visual Communication and Image Representation 2002 */ void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) { Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT); } /* ************************************************************************* */ /** * @brief This function computes the Perona and Malik conductivity coefficient g1 * g1 = exp(-|dL|^2/k^2) * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter */ void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { Size sz = Lx.size(); float inv_k = 1.0f / (k*k); for (int y = 0; y < sz.height; y++) { const float* Lx_row = Lx.ptr<float>(y); const float* Ly_row = Ly.ptr<float>(y); float* dst_row = dst.ptr<float>(y); for (int x = 0; x < sz.width; x++) { dst_row[x] = (-inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x])); } } exp(dst, dst); } /* ************************************************************************* */ /** * @brief This function computes the Perona and Malik conductivity coefficient g2 * g2 = 1 / (1 + dL^2 / k^2) * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter */ void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { Size sz = Lx.size(); dst.create(sz, Lx.type()); float k2inv = 1.0f / (k * k); for(int y = 0; y < sz.height; y++) { const float *Lx_row = Lx.ptr<float>(y); const float *Ly_row = Ly.ptr<float>(y); float* dst_row = dst.ptr<float>(y); for(int x = 0; x < sz.width; x++) { dst_row[x] = 1.0f / (1.0f + ((Lx_row[x] * Lx_row[x] + Ly_row[x] * Ly_row[x]) * k2inv)); } } } /* ************************************************************************* */ /** * @brief This function computes Weickert conductivity coefficient gw * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter * @note For more information check the following paper: J. Weickert * Applications of nonlinear diffusion in image processing and computer vision, * Proceedings of Algorithmy 2000 */ void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { Size sz = Lx.size(); float inv_k = 1.0f / (k*k); for (int y = 0; y < sz.height; y++) { const float* Lx_row = Lx.ptr<float>(y); const float* Ly_row = Ly.ptr<float>(y); float* dst_row = dst.ptr<float>(y); for (int x = 0; x < sz.width; x++) { float dL = inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x]); dst_row[x] = -3.315f/(dL*dL*dL*dL); } } exp(dst, dst); dst = 1.0 - dst; } /* ************************************************************************* */ /** * @brief This function computes Charbonnier conductivity coefficient gc * gc = 1 / sqrt(1 + dL^2 / k^2) * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter * @note For more information check the following paper: J. Weickert * Applications of nonlinear diffusion in image processing and computer vision, * Proceedings of Algorithmy 2000 */ void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { Size sz = Lx.size(); float inv_k = 1.0f / (k*k); for (int y = 0; y < sz.height; y++) { const float* Lx_row = Lx.ptr<float>(y); const float* Ly_row = Ly.ptr<float>(y); float* dst_row = dst.ptr<float>(y); for (int x = 0; x < sz.width; x++) { float den = sqrt(1.0f+inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x])); dst_row[x] = 1.0f / den; } } } /* ************************************************************************* */ /** * @brief This function computes a good empirical value for the k contrast factor * given an input image, the percentile (0-1), the gradient scale and the number of * bins in the histogram * @param img Input image * @param perc Percentile of the image gradient histogram (0-1) * @param gscale Scale for computing the image gradient histogram * @param nbins Number of histogram bins * @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel * @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel * @return k contrast factor */ float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) { int nbin = 0, nelements = 0, nthreshold = 0, k = 0; float kperc = 0.0, modg = 0.0; float npoints = 0.0; float hmax = 0.0; // Create the array for the histogram std::vector<int> hist(nbins, 0); // Create the matrices Mat gaussian = Mat::zeros(img.rows, img.cols, CV_32F); Mat Lx = Mat::zeros(img.rows, img.cols, CV_32F); Mat Ly = Mat::zeros(img.rows, img.cols, CV_32F); // Perform the Gaussian convolution gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale); // Compute the Gaussian derivatives Lx and Ly Scharr(gaussian, Lx, CV_32F, 1, 0, 1, 0, cv::BORDER_DEFAULT); Scharr(gaussian, Ly, CV_32F, 0, 1, 1, 0, cv::BORDER_DEFAULT); // Skip the borders for computing the histogram for (int i = 1; i < gaussian.rows - 1; i++) { const float *lx = Lx.ptr<float>(i); const float *ly = Ly.ptr<float>(i); for (int j = 1; j < gaussian.cols - 1; j++) { modg = lx[j]*lx[j] + ly[j]*ly[j]; // Get the maximum if (modg > hmax) { hmax = modg; } } } hmax = sqrt(hmax); // Skip the borders for computing the histogram for (int i = 1; i < gaussian.rows - 1; i++) { const float *lx = Lx.ptr<float>(i); const float *ly = Ly.ptr<float>(i); for (int j = 1; j < gaussian.cols - 1; j++) { modg = lx[j]*lx[j] + ly[j]*ly[j]; // Find the correspondent bin if (modg != 0.0) { nbin = (int)floor(nbins*(sqrt(modg) / hmax)); if (nbin == nbins) { nbin--; } hist[nbin]++; npoints++; } } } // Now find the perc of the histogram percentile nthreshold = (int)(npoints*perc); for (k = 0; nelements < nthreshold && k < nbins; k++) { nelements = nelements + hist[k]; } if (nelements < nthreshold) { kperc = 0.03f; } else { kperc = hmax*((float)(k) / (float)nbins); } return kperc; } /* ************************************************************************* */ /** * @brief This function computes Scharr image derivatives * @param src Input image * @param dst Output image * @param xorder Derivative order in X-direction (horizontal) * @param yorder Derivative order in Y-direction (vertical) * @param scale Scale factor for the derivative size */ void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) { Mat kx, ky; compute_derivative_kernels(kx, ky, xorder, yorder, scale); sepFilter2D(src, dst, CV_32F, kx, ky); } /* ************************************************************************* */ /** * @brief Compute derivative kernels for sizes different than 3 * @param _kx Horizontal kernel ues * @param _ky Vertical kernel values * @param dx Derivative order in X-direction (horizontal) * @param dy Derivative order in Y-direction (vertical) * @param scale_ Scale factor or derivative size */ void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) { int ksize = 3 + 2 * (scale - 1); // The standard Scharr kernel if (scale == 1) { getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F); return; } _kx.create(ksize, 1, CV_32F, -1, true); _ky.create(ksize, 1, CV_32F, -1, true); Mat kx = _kx.getMat(); Mat ky = _ky.getMat(); float w = 10.0f / 3.0f; float norm = 1.0f / (2.0f*scale*(w + 2.0f)); for (int k = 0; k < 2; k++) { Mat* kernel = k == 0 ? &kx : &ky; int order = k == 0 ? dx : dy; std::vector<float> kerI(ksize, 0.0f); if (order == 0) { kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm; } else if (order == 1) { kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; } Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]); temp.copyTo(*kernel); } } class Nld_Step_Scalar_Invoker : public cv::ParallelLoopBody { public: Nld_Step_Scalar_Invoker(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float _stepsize) : _Ld(&Ld) , _c(&c) , _Lstep(&Lstep) , stepsize(_stepsize) { } virtual ~Nld_Step_Scalar_Invoker() { } void operator()(const cv::Range& range) const { cv::Mat& Ld = *_Ld; const cv::Mat& c = *_c; cv::Mat& Lstep = *_Lstep; for (int i = range.start; i < range.end; i++) { const float *c_prev = c.ptr<float>(i - 1); const float *c_curr = c.ptr<float>(i); const float *c_next = c.ptr<float>(i + 1); const float *ld_prev = Ld.ptr<float>(i - 1); const float *ld_curr = Ld.ptr<float>(i); const float *ld_next = Ld.ptr<float>(i + 1); float *dst = Lstep.ptr<float>(i); for (int j = 1; j < Lstep.cols - 1; j++) { float xpos = (c_curr[j] + c_curr[j+1])*(ld_curr[j+1] - ld_curr[j]); float xneg = (c_curr[j-1] + c_curr[j]) *(ld_curr[j] - ld_curr[j-1]); float ypos = (c_curr[j] + c_next[j]) *(ld_next[j] - ld_curr[j]); float yneg = (c_prev[j] + c_curr[j]) *(ld_curr[j] - ld_prev[j]); dst[j] = 0.5f*stepsize*(xpos - xneg + ypos - yneg); } } } private: cv::Mat * _Ld; const cv::Mat * _c; cv::Mat * _Lstep; float stepsize; }; /* ************************************************************************* */ /** * @brief This function performs a scalar non-linear diffusion step * @param Ld2 Output image in the evolution * @param c Conductivity image * @param Lstep Previous image in the evolution * @param stepsize The step size in time units * @note Forward Euler Scheme 3x3 stencil * The function c is a scalar value that depends on the gradient norm * dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy */ void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) { cv::parallel_for_(cv::Range(1, Lstep.rows - 1), Nld_Step_Scalar_Invoker(Ld, c, Lstep, stepsize), (double)Ld.total()/(1 << 16)); float xneg, xpos, yneg, ypos; float* dst = Lstep.ptr<float>(0); const float* cprv = NULL; const float* ccur = c.ptr<float>(0); const float* cnxt = c.ptr<float>(1); const float* ldprv = NULL; const float* ldcur = Ld.ptr<float>(0); const float* ldnxt = Ld.ptr<float>(1); for (int j = 1; j < Lstep.cols - 1; j++) { xpos = (ccur[j] + ccur[j+1]) * (ldcur[j+1] - ldcur[j]); xneg = (ccur[j-1] + ccur[j]) * (ldcur[j] - ldcur[j-1]); ypos = (ccur[j] + cnxt[j]) * (ldnxt[j] - ldcur[j]); dst[j] = 0.5f*stepsize*(xpos - xneg + ypos); } dst = Lstep.ptr<float>(Lstep.rows - 1); ccur = c.ptr<float>(Lstep.rows - 1); cprv = c.ptr<float>(Lstep.rows - 2); ldcur = Ld.ptr<float>(Lstep.rows - 1); ldprv = Ld.ptr<float>(Lstep.rows - 2); for (int j = 1; j < Lstep.cols - 1; j++) { xpos = (ccur[j] + ccur[j+1]) * (ldcur[j+1] - ldcur[j]); xneg = (ccur[j-1] + ccur[j]) * (ldcur[j] - ldcur[j-1]); yneg = (cprv[j] + ccur[j]) * (ldcur[j] - ldprv[j]); dst[j] = 0.5f*stepsize*(xpos - xneg - yneg); } ccur = c.ptr<float>(1); ldcur = Ld.ptr<float>(1); cprv = c.ptr<float>(0); ldprv = Ld.ptr<float>(0); int r0 = Lstep.cols - 1; int r1 = Lstep.cols - 2; for (int i = 1; i < Lstep.rows - 1; i++) { cnxt = c.ptr<float>(i + 1); ldnxt = Ld.ptr<float>(i + 1); dst = Lstep.ptr<float>(i); xpos = (ccur[0] + ccur[1]) * (ldcur[1] - ldcur[0]); ypos = (ccur[0] + cnxt[0]) * (ldnxt[0] - ldcur[0]); yneg = (cprv[0] + ccur[0]) * (ldcur[0] - ldprv[0]); dst[0] = 0.5f*stepsize*(xpos + ypos - yneg); xneg = (ccur[r1] + ccur[r0]) * (ldcur[r0] - ldcur[r1]); ypos = (ccur[r0] + cnxt[r0]) * (ldnxt[r0] - ldcur[r0]); yneg = (cprv[r0] + ccur[r0]) * (ldcur[r0] - ldprv[r0]); dst[r0] = 0.5f*stepsize*(-xneg + ypos - yneg); cprv = ccur; ccur = cnxt; ldprv = ldcur; ldcur = ldnxt; } Ld += Lstep; } /* ************************************************************************* */ /** * @brief This function downsamples the input image using OpenCV resize * @param img Input image to be downsampled * @param dst Output image with half of the resolution of the input image */ void halfsample_image(const cv::Mat& src, cv::Mat& dst) { // Make sure the destination image is of the right size CV_Assert(src.cols / 2 == dst.cols); CV_Assert(src.rows / 2 == dst.rows); resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA); } /* ************************************************************************* */ /** * @brief This function checks if a given pixel is a maximum in a local neighbourhood * @param img Input image where we will perform the maximum search * @param dsize Half size of the neighbourhood * @param value Response value at (x,y) position * @param row Image row coordinate * @param col Image column coordinate * @param same_img Flag to indicate if the image value at (x,y) is in the input image * @return 1->is maximum, 0->otherwise */ bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img) { bool response = true; for (int i = row - dsize; i <= row + dsize; i++) { for (int j = col - dsize; j <= col + dsize; j++) { if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) { if (same_img == true) { if (i != row || j != col) { if ((*(img.ptr<float>(i)+j)) > value) { response = false; return response; } } } else { if ((*(img.ptr<float>(i)+j)) > value) { response = false; return response; } } } } } return response; } }