/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); } Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); } #else /* !defined (HAVE_CUDA) */ namespace pyrlk { void loadConstants(int2 winSize, int iters, cudaStream_t stream); void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, int level, dim3 block, dim3 patch, cudaStream_t stream); void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, int level, dim3 block, dim3 patch, cudaStream_t stream); void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, PtrStepSzf err, int2 winSize, cudaStream_t stream); } namespace { class PyrLKOpticalFlowBase { public: PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow); void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream); void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream); protected: Size winSize_; int maxLevel_; int iters_; bool useInitialFlow_; private: std::vector<GpuMat> prevPyr_; std::vector<GpuMat> nextPyr_; }; PyrLKOpticalFlowBase::PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow) : winSize_(winSize), maxLevel_(maxLevel), iters_(iters), useInitialFlow_(useInitialFlow) { } void calcPatchSize(Size winSize, dim3& block, dim3& patch) { if (winSize.width > 32 && winSize.width > 2 * winSize.height) { block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16; block.y = 8; } else { block.x = 16; block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8; } patch.x = (winSize.width + block.x - 1) / block.x; patch.y = (winSize.height + block.y - 1) / block.y; block.z = patch.z = 1; } void PyrLKOpticalFlowBase::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream) { if (prevPts.empty()) { nextPts.release(); status.release(); if (err) err->release(); return; } dim3 block, patch; calcPatchSize(winSize_, block, patch); CV_Assert( prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4 ); CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() ); CV_Assert( maxLevel_ >= 0 ); CV_Assert( winSize_.width > 2 && winSize_.height > 2 ); CV_Assert( patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6 ); CV_Assert( prevPts.rows == 1 && prevPts.type() == CV_32FC2 ); if (useInitialFlow_) CV_Assert( nextPts.size() == prevPts.size() && nextPts.type() == prevPts.type() ); else ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); GpuMat temp1 = (useInitialFlow_ ? nextPts : prevPts).reshape(1); GpuMat temp2 = nextPts.reshape(1); cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel_) / 2.0), temp2, 1, -1, stream); ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); status.setTo(Scalar::all(1), stream); if (err) ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); // build the image pyramids. BufferPool pool(stream); prevPyr_.resize(maxLevel_ + 1); nextPyr_.resize(maxLevel_ + 1); int cn = prevImg.channels(); if (cn == 1 || cn == 4) { prevImg.convertTo(prevPyr_[0], CV_32F, stream); nextImg.convertTo(nextPyr_[0], CV_32F, stream); } else { GpuMat buf = pool.getBuffer(prevImg.size(), CV_MAKE_TYPE(prevImg.depth(), 4)); cuda::cvtColor(prevImg, buf, COLOR_BGR2BGRA, 0, stream); buf.convertTo(prevPyr_[0], CV_32F, stream); cuda::cvtColor(nextImg, buf, COLOR_BGR2BGRA, 0, stream); buf.convertTo(nextPyr_[0], CV_32F, stream); } for (int level = 1; level <= maxLevel_; ++level) { cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream); cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream); } pyrlk::loadConstants(make_int2(winSize_.width, winSize_.height), iters_, StreamAccessor::getStream(stream)); for (int level = maxLevel_; level >= 0; level--) { if (cn == 1) { pyrlk::sparse1(prevPyr_[level], nextPyr_[level], prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols, level, block, patch, StreamAccessor::getStream(stream)); } else { pyrlk::sparse4(prevPyr_[level], nextPyr_[level], prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols, level, block, patch, StreamAccessor::getStream(stream)); } } } void PyrLKOpticalFlowBase::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream) { CV_Assert( prevImg.type() == CV_8UC1 ); CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() ); CV_Assert( maxLevel_ >= 0 ); CV_Assert( winSize_.width > 2 && winSize_.height > 2 ); // build the image pyramids. prevPyr_.resize(maxLevel_ + 1); nextPyr_.resize(maxLevel_ + 1); prevPyr_[0] = prevImg; nextImg.convertTo(nextPyr_[0], CV_32F, stream); for (int level = 1; level <= maxLevel_; ++level) { cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream); cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream); } BufferPool pool(stream); GpuMat uPyr[] = { pool.getBuffer(prevImg.size(), CV_32FC1), pool.getBuffer(prevImg.size(), CV_32FC1), }; GpuMat vPyr[] = { pool.getBuffer(prevImg.size(), CV_32FC1), pool.getBuffer(prevImg.size(), CV_32FC1), }; uPyr[0].setTo(Scalar::all(0), stream); vPyr[0].setTo(Scalar::all(0), stream); uPyr[1].setTo(Scalar::all(0), stream); vPyr[1].setTo(Scalar::all(0), stream); int2 winSize2i = make_int2(winSize_.width, winSize_.height); pyrlk::loadConstants(winSize2i, iters_, StreamAccessor::getStream(stream)); int idx = 0; for (int level = maxLevel_; level >= 0; level--) { int idx2 = (idx + 1) & 1; pyrlk::dense(prevPyr_[level], nextPyr_[level], uPyr[idx], vPyr[idx], uPyr[idx2], vPyr[idx2], PtrStepSzf(), winSize2i, StreamAccessor::getStream(stream)); if (level > 0) idx = idx2; } uPyr[idx].copyTo(u, stream); vPyr[idx].copyTo(v, stream); } class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow, private PyrLKOpticalFlowBase { public: SparsePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) : PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow) { } virtual Size getWinSize() const { return winSize_; } virtual void setWinSize(Size winSize) { winSize_ = winSize; } virtual int getMaxLevel() const { return maxLevel_; } virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; } virtual int getNumIters() const { return iters_; } virtual void setNumIters(int iters) { iters_ = iters; } virtual bool getUseInitialFlow() const { return useInitialFlow_; } virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } virtual void calc(InputArray _prevImg, InputArray _nextImg, InputArray _prevPts, InputOutputArray _nextPts, OutputArray _status, OutputArray _err, Stream& stream) { const GpuMat prevImg = _prevImg.getGpuMat(); const GpuMat nextImg = _nextImg.getGpuMat(); const GpuMat prevPts = _prevPts.getGpuMat(); GpuMat& nextPts = _nextPts.getGpuMatRef(); GpuMat& status = _status.getGpuMatRef(); GpuMat* err = _err.needed() ? &(_err.getGpuMatRef()) : NULL; sparse(prevImg, nextImg, prevPts, nextPts, status, err, stream); } }; class DensePyrLKOpticalFlowImpl : public DensePyrLKOpticalFlow, private PyrLKOpticalFlowBase { public: DensePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) : PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow) { } virtual Size getWinSize() const { return winSize_; } virtual void setWinSize(Size winSize) { winSize_ = winSize; } virtual int getMaxLevel() const { return maxLevel_; } virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; } virtual int getNumIters() const { return iters_; } virtual void setNumIters(int iters) { iters_ = iters; } virtual bool getUseInitialFlow() const { return useInitialFlow_; } virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } virtual void calc(InputArray _prevImg, InputArray _nextImg, InputOutputArray _flow, Stream& stream) { const GpuMat prevImg = _prevImg.getGpuMat(); const GpuMat nextImg = _nextImg.getGpuMat(); BufferPool pool(stream); GpuMat u = pool.getBuffer(prevImg.size(), CV_32FC1); GpuMat v = pool.getBuffer(prevImg.size(), CV_32FC1); dense(prevImg, nextImg, u, v, stream); GpuMat flows[] = {u, v}; cuda::merge(flows, 2, _flow, stream); } }; } Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow) { return makePtr<SparsePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow); } Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow) { return makePtr<DensePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow); } #endif /* !defined (HAVE_CUDA) */