/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDALEGACY) || defined (CUDA_DISABLER) Ptr<BroxOpticalFlow> cv::cuda::BroxOpticalFlow::create(double, double, double, int, int, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); } #else namespace { class BroxOpticalFlowImpl : public BroxOpticalFlow { public: BroxOpticalFlowImpl(double alpha, double gamma, double scale_factor, int inner_iterations, int outer_iterations, int solver_iterations) : alpha_(alpha), gamma_(gamma), scale_factor_(scale_factor), inner_iterations_(inner_iterations), outer_iterations_(outer_iterations), solver_iterations_(solver_iterations) { } virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream); virtual double getFlowSmoothness() const { return alpha_; } virtual void setFlowSmoothness(double alpha) { alpha_ = static_cast<float>(alpha); } virtual double getGradientConstancyImportance() const { return gamma_; } virtual void setGradientConstancyImportance(double gamma) { gamma_ = static_cast<float>(gamma); } virtual double getPyramidScaleFactor() const { return scale_factor_; } virtual void setPyramidScaleFactor(double scale_factor) { scale_factor_ = static_cast<float>(scale_factor); } //! number of lagged non-linearity iterations (inner loop) virtual int getInnerIterations() const { return inner_iterations_; } virtual void setInnerIterations(int inner_iterations) { inner_iterations_ = inner_iterations; } //! number of warping iterations (number of pyramid levels) virtual int getOuterIterations() const { return outer_iterations_; } virtual void setOuterIterations(int outer_iterations) { outer_iterations_ = outer_iterations; } //! number of linear system solver iterations virtual int getSolverIterations() const { return solver_iterations_; } virtual void setSolverIterations(int solver_iterations) { solver_iterations_ = solver_iterations; } private: //! flow smoothness float alpha_; //! gradient constancy importance float gamma_; //! pyramid scale factor float scale_factor_; //! number of lagged non-linearity iterations (inner loop) int inner_iterations_; //! number of warping iterations (number of pyramid levels) int outer_iterations_; //! number of linear system solver iterations int solver_iterations_; }; static size_t getBufSize(const NCVBroxOpticalFlowDescriptor& desc, const NCVMatrix<Ncv32f>& frame0, const NCVMatrix<Ncv32f>& frame1, NCVMatrix<Ncv32f>& u, NCVMatrix<Ncv32f>& v, size_t textureAlignment) { NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(textureAlignment)); ncvSafeCall( NCVBroxOpticalFlow(desc, gpuCounter, frame0, frame1, u, v, 0) ); return gpuCounter.maxSize(); } static void outputHandler(const String &msg) { CV_Error(cv::Error::GpuApiCallError, msg.c_str()); } void BroxOpticalFlowImpl::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow, Stream& stream) { const GpuMat frame0 = _I0.getGpuMat(); const GpuMat frame1 = _I1.getGpuMat(); CV_Assert( frame0.type() == CV_32FC1 ); CV_Assert( frame1.size() == frame0.size() && frame1.type() == frame0.type() ); ncvSetDebugOutputHandler(outputHandler); BufferPool pool(stream); GpuMat u = pool.getBuffer(frame0.size(), CV_32FC1); GpuMat v = pool.getBuffer(frame0.size(), CV_32FC1); NCVBroxOpticalFlowDescriptor desc; desc.alpha = alpha_; desc.gamma = gamma_; desc.scale_factor = scale_factor_; desc.number_of_inner_iterations = inner_iterations_; desc.number_of_outer_iterations = outer_iterations_; desc.number_of_solver_iterations = solver_iterations_; NCVMemSegment frame0MemSeg; frame0MemSeg.begin.memtype = NCVMemoryTypeDevice; frame0MemSeg.begin.ptr = const_cast<uchar*>(frame0.data); frame0MemSeg.size = frame0.step * frame0.rows; NCVMemSegment frame1MemSeg; frame1MemSeg.begin.memtype = NCVMemoryTypeDevice; frame1MemSeg.begin.ptr = const_cast<uchar*>(frame1.data); frame1MemSeg.size = frame1.step * frame1.rows; NCVMemSegment uMemSeg; uMemSeg.begin.memtype = NCVMemoryTypeDevice; uMemSeg.begin.ptr = u.ptr(); uMemSeg.size = u.step * u.rows; NCVMemSegment vMemSeg; vMemSeg.begin.memtype = NCVMemoryTypeDevice; vMemSeg.begin.ptr = v.ptr(); vMemSeg.size = v.step * v.rows; DeviceInfo devInfo; size_t textureAlignment = devInfo.textureAlignment(); NCVMatrixReuse<Ncv32f> frame0Mat(frame0MemSeg, static_cast<Ncv32u>(textureAlignment), frame0.cols, frame0.rows, static_cast<Ncv32u>(frame0.step)); NCVMatrixReuse<Ncv32f> frame1Mat(frame1MemSeg, static_cast<Ncv32u>(textureAlignment), frame1.cols, frame1.rows, static_cast<Ncv32u>(frame1.step)); NCVMatrixReuse<Ncv32f> uMat(uMemSeg, static_cast<Ncv32u>(textureAlignment), u.cols, u.rows, static_cast<Ncv32u>(u.step)); NCVMatrixReuse<Ncv32f> vMat(vMemSeg, static_cast<Ncv32u>(textureAlignment), v.cols, v.rows, static_cast<Ncv32u>(v.step)); size_t bufSize = getBufSize(desc, frame0Mat, frame1Mat, uMat, vMat, textureAlignment); GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1); NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, bufSize, static_cast<Ncv32u>(textureAlignment), buf.ptr()); ncvSafeCall( NCVBroxOpticalFlow(desc, gpuAllocator, frame0Mat, frame1Mat, uMat, vMat, StreamAccessor::getStream(stream)) ); GpuMat flows[] = {u, v}; cuda::merge(flows, 2, _flow, stream); } } Ptr<BroxOpticalFlow> cv::cuda::BroxOpticalFlow::create(double alpha, double gamma, double scale_factor, int inner_iterations, int outer_iterations, int solver_iterations) { return makePtr<BroxOpticalFlowImpl>(alpha, gamma, scale_factor, inner_iterations, outer_iterations, solver_iterations); } #endif /* HAVE_CUDA */