/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_CUDAARITHM) Ptr<cuda::CornersDetector> cv::cuda::createGoodFeaturesToTrackDetector(int, int, double, double, int, bool, double) { throw_no_cuda(); return Ptr<cuda::CornersDetector>(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace cuda { namespace device { namespace gfft { int findCorners_gpu(PtrStepSzf eig, float threshold, PtrStepSzb mask, float2* corners, int max_count); void sortCorners_gpu(PtrStepSzf eig, float2* corners, int count); } }}} namespace { class GoodFeaturesToTrackDetector : public CornersDetector { public: GoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, int blockSize, bool useHarrisDetector, double harrisK); void detect(InputArray image, OutputArray corners, InputArray mask, Stream& stream); private: int maxCorners_; double qualityLevel_; double minDistance_; Ptr<cuda::CornernessCriteria> cornerCriteria_; GpuMat Dx_; GpuMat Dy_; GpuMat buf_; GpuMat eig_; GpuMat tmpCorners_; }; GoodFeaturesToTrackDetector::GoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, int blockSize, bool useHarrisDetector, double harrisK) : maxCorners_(maxCorners), qualityLevel_(qualityLevel), minDistance_(minDistance) { CV_Assert( qualityLevel_ > 0 && minDistance_ >= 0 && maxCorners_ >= 0 ); cornerCriteria_ = useHarrisDetector ? cuda::createHarrisCorner(srcType, blockSize, 3, harrisK) : cuda::createMinEigenValCorner(srcType, blockSize, 3); } void GoodFeaturesToTrackDetector::detect(InputArray _image, OutputArray _corners, InputArray _mask, Stream& stream) { // TODO : implement async version (void) stream; using namespace cv::cuda::device::gfft; GpuMat image = _image.getGpuMat(); GpuMat mask = _mask.getGpuMat(); CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) ); ensureSizeIsEnough(image.size(), CV_32FC1, eig_); cornerCriteria_->compute(image, eig_); double maxVal = 0; cuda::minMax(eig_, 0, &maxVal); ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_); int total = findCorners_gpu(eig_, static_cast<float>(maxVal * qualityLevel_), mask, tmpCorners_.ptr<float2>(), tmpCorners_.cols); if (total == 0) { _corners.release(); return; } sortCorners_gpu(eig_, tmpCorners_.ptr<float2>(), total); if (minDistance_ < 1) { tmpCorners_.colRange(0, maxCorners_ > 0 ? std::min(maxCorners_, total) : total).copyTo(_corners); } else { std::vector<Point2f> tmp(total); Mat tmpMat(1, total, CV_32FC2, (void*)&tmp[0]); tmpCorners_.colRange(0, total).download(tmpMat); std::vector<Point2f> tmp2; tmp2.reserve(total); const int cell_size = cvRound(minDistance_); const int grid_width = (image.cols + cell_size - 1) / cell_size; const int grid_height = (image.rows + cell_size - 1) / cell_size; std::vector< std::vector<Point2f> > grid(grid_width * grid_height); for (int i = 0; i < total; ++i) { Point2f p = tmp[i]; bool good = true; int x_cell = static_cast<int>(p.x / cell_size); int y_cell = static_cast<int>(p.y / cell_size); int x1 = x_cell - 1; int y1 = y_cell - 1; int x2 = x_cell + 1; int y2 = y_cell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(grid_width - 1, x2); y2 = std::min(grid_height - 1, y2); for (int yy = y1; yy <= y2; yy++) { for (int xx = x1; xx <= x2; xx++) { std::vector<Point2f>& m = grid[yy * grid_width + xx]; if (!m.empty()) { for(size_t j = 0; j < m.size(); j++) { float dx = p.x - m[j].x; float dy = p.y - m[j].y; if (dx * dx + dy * dy < minDistance_ * minDistance_) { good = false; goto break_out; } } } } } break_out: if(good) { grid[y_cell * grid_width + x_cell].push_back(p); tmp2.push_back(p); if (maxCorners_ > 0 && tmp2.size() == static_cast<size_t>(maxCorners_)) break; } } _corners.create(1, static_cast<int>(tmp2.size()), CV_32FC2); GpuMat corners = _corners.getGpuMat(); corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0])); } } } Ptr<cuda::CornersDetector> cv::cuda::createGoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, int blockSize, bool useHarrisDetector, double harrisK) { return Ptr<cuda::CornersDetector>( new GoodFeaturesToTrackDetector(srcType, maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, harrisK)); } #endif /* !defined (HAVE_CUDA) */