/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int, bool, int, int) { throw_no_cuda(); return Ptr<cv::cuda::FastFeatureDetector>(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace cuda { namespace device { namespace fast { int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, cudaStream_t stream); int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, cudaStream_t stream); } }}} namespace { class FAST_Impl : public cv::cuda::FastFeatureDetector { public: FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints); virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask); virtual void detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream); virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints); virtual void setThreshold(int threshold) { threshold_ = threshold; } virtual int getThreshold() const { return threshold_; } virtual void setNonmaxSuppression(bool f) { nonmaxSuppression_ = f; } virtual bool getNonmaxSuppression() const { return nonmaxSuppression_; } virtual void setMaxNumPoints(int max_npoints) { max_npoints_ = max_npoints; } virtual int getMaxNumPoints() const { return max_npoints_; } virtual void setType(int type) { CV_Assert( type == TYPE_9_16 ); } virtual int getType() const { return TYPE_9_16; } private: int threshold_; bool nonmaxSuppression_; int max_npoints_; }; FAST_Impl::FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints) : threshold_(threshold), nonmaxSuppression_(nonmaxSuppression), max_npoints_(max_npoints) { } void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) { if (_image.empty()) { keypoints.clear(); return; } BufferPool pool(Stream::Null()); GpuMat d_keypoints = pool.getBuffer(ROWS_COUNT, max_npoints_, CV_16SC2); detectAsync(_image, d_keypoints, _mask, Stream::Null()); convert(d_keypoints, keypoints); } void FAST_Impl::detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream) { using namespace cv::cuda::device::fast; const GpuMat img = _image.getGpuMat(); const GpuMat mask = _mask.getGpuMat(); CV_Assert( img.type() == CV_8UC1 ); CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()) ); BufferPool pool(stream); GpuMat kpLoc = pool.getBuffer(1, max_npoints_, CV_16SC2); GpuMat score; if (nonmaxSuppression_) { score = pool.getBuffer(img.size(), CV_32SC1); score.setTo(Scalar::all(0), stream); } int count = calcKeypoints_gpu(img, mask, kpLoc.ptr<short2>(), max_npoints_, score, threshold_, StreamAccessor::getStream(stream)); count = std::min(count, max_npoints_); if (count == 0) { _keypoints.release(); return; } ensureSizeIsEnough(ROWS_COUNT, count, CV_32FC1, _keypoints); GpuMat& keypoints = _keypoints.getGpuMatRef(); if (nonmaxSuppression_) { count = nonmaxSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW), StreamAccessor::getStream(stream)); if (count == 0) { keypoints.release(); } else { keypoints.cols = count; } } else { GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0)); kpLoc.colRange(0, count).copyTo(locRow, stream); keypoints.row(1).setTo(Scalar::all(0), stream); } } void FAST_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints) { if (_gpu_keypoints.empty()) { keypoints.clear(); return; } Mat h_keypoints; if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT) { _gpu_keypoints.getGpuMat().download(h_keypoints); } else { h_keypoints = _gpu_keypoints.getMat(); } CV_Assert( h_keypoints.rows == ROWS_COUNT ); CV_Assert( h_keypoints.elemSize() == 4 ); const int npoints = h_keypoints.cols; keypoints.resize(npoints); const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW); const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW); for (int i = 0; i < npoints; ++i) { KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]); keypoints[i] = kp; } } } Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int threshold, bool nonmaxSuppression, int type, int max_npoints) { CV_Assert( type == TYPE_9_16 ); return makePtr<FAST_Impl>(threshold, nonmaxSuppression, max_npoints); } #endif /* !defined (HAVE_CUDA) */