/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" using namespace std; using namespace testing; using namespace perf; #define ARITHM_MAT_DEPTH Values(CV_8U, CV_16U, CV_32F, CV_64F) ////////////////////////////////////////////////////////////////////// // Merge PERF_TEST_P(Sz_Depth_Cn, Merge, Combine(CUDA_TYPICAL_MAT_SIZES, ARITHM_MAT_DEPTH, Values(2, 3, 4))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); std::vector<cv::Mat> src(channels); for (int i = 0; i < channels; ++i) { src[i].create(size, depth); declare.in(src[i], WARMUP_RNG); } if (PERF_RUN_CUDA()) { std::vector<cv::cuda::GpuMat> d_src(channels); for (int i = 0; i < channels; ++i) d_src[i].upload(src[i]); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::merge(d_src, dst); CUDA_SANITY_CHECK(dst, 1e-10); } else { cv::Mat dst; TEST_CYCLE() cv::merge(src, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // Split PERF_TEST_P(Sz_Depth_Cn, Split, Combine(CUDA_TYPICAL_MAT_SIZES, ARITHM_MAT_DEPTH, Values(2, 3, 4))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); cv::Mat src(size, CV_MAKE_TYPE(depth, channels)); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); std::vector<cv::cuda::GpuMat> dst; TEST_CYCLE() cv::cuda::split(d_src, dst); const cv::cuda::GpuMat& dst0 = dst[0]; const cv::cuda::GpuMat& dst1 = dst[1]; CUDA_SANITY_CHECK(dst0, 1e-10); CUDA_SANITY_CHECK(dst1, 1e-10); } else { std::vector<cv::Mat> dst; TEST_CYCLE() cv::split(src, dst); const cv::Mat& dst0 = dst[0]; const cv::Mat& dst1 = dst[1]; CPU_SANITY_CHECK(dst0); CPU_SANITY_CHECK(dst1); } } ////////////////////////////////////////////////////////////////////// // Transpose PERF_TEST_P(Sz_Type, Transpose, Combine(CUDA_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32SC2, CV_64FC1))) { const cv::Size size = GET_PARAM(0); const int type = GET_PARAM(1); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::transpose(d_src, dst); CUDA_SANITY_CHECK(dst, 1e-10); } else { cv::Mat dst; TEST_CYCLE() cv::transpose(src, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // Flip enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) DEF_PARAM_TEST(Sz_Depth_Cn_Code, cv::Size, MatDepth, MatCn, FlipCode); PERF_TEST_P(Sz_Depth_Cn_Code, Flip, Combine(CUDA_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), CUDA_CHANNELS_1_3_4, FlipCode::all())) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int flipCode = GET_PARAM(3); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::flip(d_src, dst, flipCode); CUDA_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::flip(src, dst, flipCode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // LutOneChannel PERF_TEST_P(Sz_Type, LutOneChannel, Combine(CUDA_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC3))) { const cv::Size size = GET_PARAM(0); const int type = GET_PARAM(1); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); cv::Mat lut(1, 256, CV_8UC1); declare.in(lut, WARMUP_RNG); if (PERF_RUN_CUDA()) { cv::Ptr<cv::cuda::LookUpTable> lutAlg = cv::cuda::createLookUpTable(lut); const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() lutAlg->transform(d_src, dst); CUDA_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::LUT(src, lut, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // LutMultiChannel PERF_TEST_P(Sz_Type, LutMultiChannel, Combine(CUDA_TYPICAL_MAT_SIZES, Values<MatType>(CV_8UC3))) { const cv::Size size = GET_PARAM(0); const int type = GET_PARAM(1); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); cv::Mat lut(1, 256, CV_MAKE_TYPE(CV_8U, src.channels())); declare.in(lut, WARMUP_RNG); if (PERF_RUN_CUDA()) { cv::Ptr<cv::cuda::LookUpTable> lutAlg = cv::cuda::createLookUpTable(lut); const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() lutAlg->transform(d_src, dst); CUDA_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::LUT(src, lut, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // CopyMakeBorder DEF_PARAM_TEST(Sz_Depth_Cn_Border, cv::Size, MatDepth, MatCn, BorderMode); PERF_TEST_P(Sz_Depth_Cn_Border, CopyMakeBorder, Combine(CUDA_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), CUDA_CHANNELS_1_3_4, ALL_BORDER_MODES)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int borderMode = GET_PARAM(3); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::copyMakeBorder(d_src, dst, 5, 5, 5, 5, borderMode); CUDA_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode); CPU_SANITY_CHECK(dst); } }