/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "test_chessboardgenerator.hpp" #include <vector> #include <iterator> #include <algorithm> using namespace cv; using namespace std; ChessBoardGenerator::ChessBoardGenerator(const Size& _patternSize) : sensorWidth(32), sensorHeight(24), squareEdgePointsNum(200), min_cos(std::sqrt(2.f)*0.5f), cov(0.5), patternSize(_patternSize), rendererResolutionMultiplier(4), tvec(Mat::zeros(1, 3, CV_32F)) { Rodrigues(Mat::eye(3, 3, CV_32F), rvec); } void cv::ChessBoardGenerator::generateEdge(const Point3f& p1, const Point3f& p2, vector<Point3f>& out) const { Point3f step = (p2 - p1) * (1.f/squareEdgePointsNum); for(size_t n = 0; n < squareEdgePointsNum; ++n) out.push_back( p1 + step * (float)n); } Size cv::ChessBoardGenerator::cornersSize() const { return Size(patternSize.width-1, patternSize.height-1); } struct Mult { float m; Mult(int mult) : m((float)mult) {} Point2f operator()(const Point2f& p)const { return p * m; } }; void cv::ChessBoardGenerator::generateBasis(Point3f& pb1, Point3f& pb2) const { RNG& rng = theRNG(); Vec3f n; for(;;) { n[0] = rng.uniform(-1.f, 1.f); n[1] = rng.uniform(-1.f, 1.f); n[2] = rng.uniform(-1.f, 1.f); float len = (float)norm(n); n[0]/=len; n[1]/=len; n[2]/=len; if (n[2] > min_cos) break; } Vec3f n_temp = n; n_temp[0] += 100; Vec3f b1 = n.cross(n_temp); Vec3f b2 = n.cross(b1); float len_b1 = (float)norm(b1); float len_b2 = (float)norm(b2); pb1 = Point3f(b1[0]/len_b1, b1[1]/len_b1, b1[2]/len_b1); pb2 = Point3f(b2[0]/len_b1, b2[1]/len_b2, b2[2]/len_b2); } Mat cv::ChessBoardGenerator::generateChessBoard(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, const Point3f& zero, const Point3f& pb1, const Point3f& pb2, float sqWidth, float sqHeight, const vector<Point3f>& whole, vector<Point2f>& corners) const { vector< vector<Point> > squares_black; for(int i = 0; i < patternSize.width; ++i) for(int j = 0; j < patternSize.height; ++j) if ( (i % 2 == 0 && j % 2 == 0) || (i % 2 != 0 && j % 2 != 0) ) { vector<Point3f> pts_square3d; vector<Point2f> pts_square2d; Point3f p1 = zero + (i + 0) * sqWidth * pb1 + (j + 0) * sqHeight * pb2; Point3f p2 = zero + (i + 1) * sqWidth * pb1 + (j + 0) * sqHeight * pb2; Point3f p3 = zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2; Point3f p4 = zero + (i + 0) * sqWidth * pb1 + (j + 1) * sqHeight * pb2; generateEdge(p1, p2, pts_square3d); generateEdge(p2, p3, pts_square3d); generateEdge(p3, p4, pts_square3d); generateEdge(p4, p1, pts_square3d); projectPoints(Mat(pts_square3d), rvec, tvec, camMat, distCoeffs, pts_square2d); squares_black.resize(squares_black.size() + 1); vector<Point2f> temp; approxPolyDP(Mat(pts_square2d), temp, 1.0, true); transform(temp.begin(), temp.end(), back_inserter(squares_black.back()), Mult(rendererResolutionMultiplier)); } /* calculate corners */ corners3d.clear(); for(int j = 0; j < patternSize.height - 1; ++j) for(int i = 0; i < patternSize.width - 1; ++i) corners3d.push_back(zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2); corners.clear(); projectPoints(Mat(corners3d), rvec, tvec, camMat, distCoeffs, corners); vector<Point3f> whole3d; vector<Point2f> whole2d; generateEdge(whole[0], whole[1], whole3d); generateEdge(whole[1], whole[2], whole3d); generateEdge(whole[2], whole[3], whole3d); generateEdge(whole[3], whole[0], whole3d); projectPoints(Mat(whole3d), rvec, tvec, camMat, distCoeffs, whole2d); vector<Point2f> temp_whole2d; approxPolyDP(Mat(whole2d), temp_whole2d, 1.0, true); vector< vector<Point > > whole_contour(1); transform(temp_whole2d.begin(), temp_whole2d.end(), back_inserter(whole_contour.front()), Mult(rendererResolutionMultiplier)); Mat result; if (rendererResolutionMultiplier == 1) { result = bg.clone(); drawContours(result, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA); drawContours(result, squares_black, -1, Scalar::all(0), FILLED, LINE_AA); } else { Mat tmp; resize(bg, tmp, bg.size() * rendererResolutionMultiplier); drawContours(tmp, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA); drawContours(tmp, squares_black, -1, Scalar::all(0), FILLED, LINE_AA); resize(tmp, result, bg.size(), 0, 0, INTER_AREA); } return result; } Mat cv::ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, vector<Point2f>& corners) const { cov = std::min(cov, 0.8); double fovx, fovy, focalLen; Point2d principalPoint; double aspect; calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight, fovx, fovy, focalLen, principalPoint, aspect); RNG& rng = theRNG(); float d1 = static_cast<float>(rng.uniform(0.1, 10.0)); float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180); float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180); Point3f p; p.z = cos(ah) * d1; p.x = sin(ah) * d1; p.y = p.z * tan(av); Point3f pb1, pb2; generateBasis(pb1, pb2); float cbHalfWidth = static_cast<float>(norm(p) * sin( std::min(fovx, fovy) * 0.5 * CV_PI / 180)); float cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width; float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; vector<Point3f> pts3d(4); vector<Point2f> pts2d(4); for(;;) { pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; /* can remake with better perf */ projectPoints(Mat(pts3d), rvec, tvec, camMat, distCoeffs, pts2d); bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0; bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0; bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0; bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0; if (inrect1 && inrect2 && inrect3 && inrect4) break; cbHalfWidth*=0.8f; cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width; cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; } Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2; float sqWidth = 2 * cbHalfWidth/patternSize.width; float sqHeight = 2 * cbHalfHeight/patternSize.height; return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, sqWidth, sqHeight, pts3d, corners); } Mat cv::ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, const Size2f& squareSize, vector<Point2f>& corners) const { cov = std::min(cov, 0.8); double fovx, fovy, focalLen; Point2d principalPoint; double aspect; calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight, fovx, fovy, focalLen, principalPoint, aspect); RNG& rng = theRNG(); float d1 = static_cast<float>(rng.uniform(0.1, 10.0)); float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180); float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180); Point3f p; p.z = cos(ah) * d1; p.x = sin(ah) * d1; p.y = p.z * tan(av); Point3f pb1, pb2; generateBasis(pb1, pb2); float cbHalfWidth = squareSize.width * patternSize.width * 0.5f; float cbHalfHeight = squareSize.height * patternSize.height * 0.5f; float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; vector<Point3f> pts3d(4); vector<Point2f> pts2d(4); for(;;) { pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; /* can remake with better perf */ projectPoints(Mat(pts3d), rvec, tvec, camMat, distCoeffs, pts2d); bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0; bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0; bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0; bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0; if ( inrect1 && inrect2 && inrect3 && inrect4) break; p.z *= 1.1f; } Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2; return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, squareSize.width, squareSize.height, pts3d, corners); } Mat cv::ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, const Size2f& squareSize, const Point3f& pos, vector<Point2f>& corners) const { cov = std::min(cov, 0.8); Point3f p = pos; Point3f pb1, pb2; generateBasis(pb1, pb2); float cbHalfWidth = squareSize.width * patternSize.width * 0.5f; float cbHalfHeight = squareSize.height * patternSize.height * 0.5f; float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; vector<Point3f> pts3d(4); vector<Point2f> pts2d(4); pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; /* can remake with better perf */ projectPoints(Mat(pts3d), rvec, tvec, camMat, distCoeffs, pts2d); Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2; return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, squareSize.width, squareSize.height, pts3d, corners); }