#ifndef DLS_H_ #define DLS_H_ #include "precomp.hpp" #include <iostream> using namespace std; using namespace cv; class dls { public: dls(const cv::Mat& opoints, const cv::Mat& ipoints); ~dls(); bool compute_pose(cv::Mat& R, cv::Mat& t); private: // initialisation template <typename OpointType, typename IpointType> void init_points(const cv::Mat& opoints, const cv::Mat& ipoints) { for(int i = 0; i < N; i++) { p.at<double>(0,i) = opoints.at<OpointType>(i).x; p.at<double>(1,i) = opoints.at<OpointType>(i).y; p.at<double>(2,i) = opoints.at<OpointType>(i).z; // compute mean of object points mn.at<double>(0) += p.at<double>(0,i); mn.at<double>(1) += p.at<double>(1,i); mn.at<double>(2) += p.at<double>(2,i); // make z into unit vectors from normalized pixel coords double sr = std::pow(ipoints.at<IpointType>(i).x, 2) + std::pow(ipoints.at<IpointType>(i).y, 2) + (double)1; sr = std::sqrt(sr); z.at<double>(0,i) = ipoints.at<IpointType>(i).x / sr; z.at<double>(1,i) = ipoints.at<IpointType>(i).y / sr; z.at<double>(2,i) = (double)1 / sr; } mn.at<double>(0) /= (double)N; mn.at<double>(1) /= (double)N; mn.at<double>(2) /= (double)N; } // main algorithm cv::Mat LeftMultVec(const cv::Mat& v); void run_kernel(const cv::Mat& pp); void build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D); void compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag, cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag); void fill_coeff(const cv::Mat * D); // useful functions cv::Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u); cv::Mat Hessian(const double s[]); cv::Mat cayley2rotbar(const cv::Mat& s); cv::Mat skewsymm(const cv::Mat * X1); // extra functions cv::Mat rotx(const double t); cv::Mat roty(const double t); cv::Mat rotz(const double t); cv::Mat mean(const cv::Mat& M); bool is_empty(const cv::Mat * v); bool positive_eigenvalues(const cv::Mat * eigenvalues); cv::Mat p, z, mn; // object-image points int N; // number of input points std::vector<double> f1coeff, f2coeff, f3coeff, cost_; // coefficient for coefficients matrix std::vector<cv::Mat> C_est_, t_est_; // optimal candidates cv::Mat C_est__, t_est__; // optimal found solution double cost__; // optimal found solution }; class EigenvalueDecomposition { private: // Holds the data dimension. int n; // Stores real/imag part of a complex division. double cdivr, cdivi; // Pointer to internal memory. double *d, *e, *ort; double **V, **H; // Holds the computed eigenvalues. Mat _eigenvalues; // Holds the computed eigenvectors. Mat _eigenvectors; // Allocates memory. template<typename _Tp> _Tp *alloc_1d(int m) { return new _Tp[m]; } // Allocates memory. template<typename _Tp> _Tp *alloc_1d(int m, _Tp val) { _Tp *arr = alloc_1d<_Tp> (m); for (int i = 0; i < m; i++) arr[i] = val; return arr; } // Allocates memory. template<typename _Tp> _Tp **alloc_2d(int m, int _n) { _Tp **arr = new _Tp*[m]; for (int i = 0; i < m; i++) arr[i] = new _Tp[_n]; return arr; } // Allocates memory. template<typename _Tp> _Tp **alloc_2d(int m, int _n, _Tp val) { _Tp **arr = alloc_2d<_Tp> (m, _n); for (int i = 0; i < m; i++) { for (int j = 0; j < _n; j++) { arr[i][j] = val; } } return arr; } void cdiv(double xr, double xi, double yr, double yi) { double r, dv; if (std::abs(yr) > std::abs(yi)) { r = yi / yr; dv = yr + r * yi; cdivr = (xr + r * xi) / dv; cdivi = (xi - r * xr) / dv; } else { r = yr / yi; dv = yi + r * yr; cdivr = (r * xr + xi) / dv; cdivi = (r * xi - xr) / dv; } } // Nonsymmetric reduction from Hessenberg to real Schur form. void hqr2() { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. // Initialize int nn = this->n; int n1 = nn - 1; int low = 0; int high = nn - 1; double eps = std::pow(2.0, -52.0); double exshift = 0.0; double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y; // Store roots isolated by balanc and compute matrix norm double norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low || i > high) { d[i] = H[i][i]; e[i] = 0.0; } for (int j = std::max(i - 1, 0); j < nn; j++) { norm = norm + std::abs(H[i][j]); } } // Outer loop over eigenvalue index int iter = 0; while (n1 >= low) { // Look for single small sub-diagonal element int l = n1; while (l > low) { s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]); if (s == 0.0) { s = norm; } if (std::abs(H[l][l - 1]) < eps * s) { break; } l--; } // Check for convergence // One root found if (l == n1) { H[n1][n1] = H[n1][n1] + exshift; d[n1] = H[n1][n1]; e[n1] = 0.0; n1--; iter = 0; // Two roots found } else if (l == n1 - 1) { w = H[n1][n1 - 1] * H[n1 - 1][n1]; p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0; q = p * p + w; z = std::sqrt(std::abs(q)); H[n1][n1] = H[n1][n1] + exshift; H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift; x = H[n1][n1]; // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d[n1 - 1] = x + z; d[n1] = d[n1 - 1]; if (z != 0.0) { d[n1] = x - w / z; } e[n1 - 1] = 0.0; e[n1] = 0.0; x = H[n1][n1 - 1]; s = std::abs(x) + std::abs(z); p = x / s; q = z / s; r = std::sqrt(p * p + q * q); p = p / r; q = q / r; // Row modification for (int j = n1 - 1; j < nn; j++) { z = H[n1 - 1][j]; H[n1 - 1][j] = q * z + p * H[n1][j]; H[n1][j] = q * H[n1][j] - p * z; } // Column modification for (int i = 0; i <= n1; i++) { z = H[i][n1 - 1]; H[i][n1 - 1] = q * z + p * H[i][n1]; H[i][n1] = q * H[i][n1] - p * z; } // Accumulate transformations for (int i = low; i <= high; i++) { z = V[i][n1 - 1]; V[i][n1 - 1] = q * z + p * V[i][n1]; V[i][n1] = q * V[i][n1] - p * z; } // Complex pair } else { d[n1 - 1] = x + p; d[n1] = x + p; e[n1 - 1] = z; e[n1] = -z; } n1 = n1 - 2; iter = 0; // No convergence yet } else { // Form shift x = H[n1][n1]; y = 0.0; w = 0.0; if (l < n1) { y = H[n1 - 1][n1 - 1]; w = H[n1][n1 - 1] * H[n1 - 1][n1]; } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n1; i++) { H[i][i] -= x; } s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = std::sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n1; i++) { H[i][i] -= s; } exshift += s; x = y = w = 0.964; } } iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n1 - 2; while (m >= l) { z = H[m][m]; r = x - z; s = y - z; p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; q = H[m + 1][m + 1] - z - r - s; r = H[m + 2][m + 1]; s = std::abs(p) + std::abs(q) + std::abs(r); p = p / s; q = q / s; r = r / s; if (m == l) { break; } if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p) * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs( H[m + 1][m + 1])))) { break; } m--; } for (int i = m + 2; i <= n1; i++) { H[i][i - 2] = 0.0; if (i > m + 2) { H[i][i - 3] = 0.0; } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n1 - 1; k++) { bool notlast = (k != n1 - 1); if (k != m) { p = H[k][k - 1]; q = H[k + 1][k - 1]; r = (notlast ? H[k + 2][k - 1] : 0.0); x = std::abs(p) + std::abs(q) + std::abs(r); if (x != 0.0) { p = p / x; q = q / x; r = r / x; } } if (x == 0.0) { break; } s = std::sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { H[k][k - 1] = -s * x; } else if (l != m) { H[k][k - 1] = -H[k][k - 1]; } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < nn; j++) { p = H[k][j] + q * H[k + 1][j]; if (notlast) { p = p + r * H[k + 2][j]; H[k + 2][j] = H[k + 2][j] - p * z; } H[k][j] = H[k][j] - p * x; H[k + 1][j] = H[k + 1][j] - p * y; } // Column modification for (int i = 0; i <= std::min(n1, k + 3); i++) { p = x * H[i][k] + y * H[i][k + 1]; if (notlast) { p = p + z * H[i][k + 2]; H[i][k + 2] = H[i][k + 2] - p * r; } H[i][k] = H[i][k] - p; H[i][k + 1] = H[i][k + 1] - p * q; } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * V[i][k] + y * V[i][k + 1]; if (notlast) { p = p + z * V[i][k + 2]; V[i][k + 2] = V[i][k + 2] - p * r; } V[i][k] = V[i][k] - p; V[i][k + 1] = V[i][k + 1] - p * q; } } // (s != 0) } // k loop } // check convergence } // while (n1 >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n1 = nn - 1; n1 >= 0; n1--) { p = d[n1]; q = e[n1]; // Real vector if (q == 0) { int l = n1; H[n1][n1] = 1.0; for (int i = n1 - 1; i >= 0; i--) { w = H[i][i] - p; r = 0.0; for (int j = l; j <= n1; j++) { r = r + H[i][j] * H[j][n1]; } if (e[i] < 0.0) { z = w; s = r; } else { l = i; if (e[i] == 0.0) { if (w != 0.0) { H[i][n1] = -r / w; } else { H[i][n1] = -r / (eps * norm); } // Solve real equations } else { x = H[i][i + 1]; y = H[i + 1][i]; q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; t = (x * s - z * r) / q; H[i][n1] = t; if (std::abs(x) > std::abs(z)) { H[i + 1][n1] = (-r - w * t) / x; } else { H[i + 1][n1] = (-s - y * t) / z; } } // Overflow control t = std::abs(H[i][n1]); if ((eps * t) * t > 1) { for (int j = i; j <= n1; j++) { H[j][n1] = H[j][n1] / t; } } } } // Complex vector } else if (q < 0) { int l = n1 - 1; // Last vector component imaginary so matrix is triangular if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) { H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1]; H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1]; } else { cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q); H[n1 - 1][n1 - 1] = cdivr; H[n1 - 1][n1] = cdivi; } H[n1][n1 - 1] = 0.0; H[n1][n1] = 1.0; for (int i = n1 - 2; i >= 0; i--) { double ra, sa; ra = 0.0; sa = 0.0; for (int j = l; j <= n1; j++) { ra = ra + H[i][j] * H[j][n1 - 1]; sa = sa + H[i][j] * H[j][n1]; } w = H[i][i] - p; if (e[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] == 0) { cdiv(-ra, -sa, w, q); H[i][n1 - 1] = cdivr; H[i][n1] = cdivi; } else { // Solve complex equations x = H[i][i + 1]; y = H[i + 1][i]; double vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; double vi = (d[i] - p) * 2.0 * q; if (vr == 0.0 && vi == 0.0) { vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x) + std::abs(y) + std::abs(z)); } cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); H[i][n1 - 1] = cdivr; H[i][n1] = cdivi; if (std::abs(x) > (std::abs(z) + std::abs(q))) { H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q * H[i][n1]) / x; H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1 - 1]) / x; } else { cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z, q); H[i + 1][n1 - 1] = cdivr; H[i + 1][n1] = cdivi; } } // Overflow control t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1])); if ((eps * t) * t > 1) { for (int j = i; j <= n1; j++) { H[j][n1 - 1] = H[j][n1 - 1] / t; H[j][n1] = H[j][n1] / t; } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low || i > high) { for (int j = i; j < nn; j++) { V[i][j] = H[i][j]; } } } // Back transformation to get eigenvectors of original matrix for (int j = nn - 1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= std::min(j, high); k++) { z = z + V[i][k] * H[k][j]; } V[i][j] = z; } } } // Nonsymmetric reduction to Hessenberg form. void orthes() { // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. int low = 0; int high = n - 1; for (int m = low + 1; m <= high - 1; m++) { // Scale column. double scale = 0.0; for (int i = m; i <= high; i++) { scale = scale + std::abs(H[i][m - 1]); } if (scale != 0.0) { // Compute Householder transformation. double h = 0.0; for (int i = high; i >= m; i--) { ort[i] = H[i][m - 1] / scale; h += ort[i] * ort[i]; } double g = std::sqrt(h); if (ort[m] > 0) { g = -g; } h = h - ort[m] * g; ort[m] = ort[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (int j = m; j < n; j++) { double f = 0.0; for (int i = high; i >= m; i--) { f += ort[i] * H[i][j]; } f = f / h; for (int i = m; i <= high; i++) { H[i][j] -= f * ort[i]; } } for (int i = 0; i <= high; i++) { double f = 0.0; for (int j = high; j >= m; j--) { f += ort[j] * H[i][j]; } f = f / h; for (int j = m; j <= high; j++) { H[i][j] -= f * ort[j]; } } ort[m] = scale * ort[m]; H[m][m - 1] = scale * g; } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = (i == j ? 1.0 : 0.0); } } for (int m = high - 1; m >= low + 1; m--) { if (H[m][m - 1] != 0.0) { for (int i = m + 1; i <= high; i++) { ort[i] = H[i][m - 1]; } for (int j = m; j <= high; j++) { double g = 0.0; for (int i = m; i <= high; i++) { g += ort[i] * V[i][j]; } // Double division avoids possible underflow g = (g / ort[m]) / H[m][m - 1]; for (int i = m; i <= high; i++) { V[i][j] += g * ort[i]; } } } } } // Releases all internal working memory. void release() { // releases the working data delete[] d; delete[] e; delete[] ort; for (int i = 0; i < n; i++) { delete[] H[i]; delete[] V[i]; } delete[] H; delete[] V; } // Computes the Eigenvalue Decomposition for a matrix given in H. void compute() { // Allocate memory for the working data. V = alloc_2d<double> (n, n, 0.0); d = alloc_1d<double> (n); e = alloc_1d<double> (n); ort = alloc_1d<double> (n); // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); // Copy eigenvalues to OpenCV Matrix. _eigenvalues.create(1, n, CV_64FC1); for (int i = 0; i < n; i++) { _eigenvalues.at<double> (0, i) = d[i]; } // Copy eigenvectors to OpenCV Matrix. _eigenvectors.create(n, n, CV_64FC1); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) _eigenvectors.at<double> (i, j) = V[i][j]; // Deallocate the memory by releasing all internal working data. release(); } public: EigenvalueDecomposition() : n(0) { } // Initializes & computes the Eigenvalue Decomposition for a general matrix // given in src. This function is a port of the EigenvalueSolver in JAMA, // which has been released to public domain by The MathWorks and the // National Institute of Standards and Technology (NIST). EigenvalueDecomposition(InputArray src) { compute(src); } // This function computes the Eigenvalue Decomposition for a general matrix // given in src. This function is a port of the EigenvalueSolver in JAMA, // which has been released to public domain by The MathWorks and the // National Institute of Standards and Technology (NIST). void compute(InputArray src) { /*if(isSymmetric(src)) { // Fall back to OpenCV for a symmetric matrix! cv::eigen(src, _eigenvalues, _eigenvectors); } else {*/ Mat tmp; // Convert the given input matrix to double. Is there any way to // prevent allocating the temporary memory? Only used for copying // into working memory and deallocated after. src.getMat().convertTo(tmp, CV_64FC1); // Get dimension of the matrix. this->n = tmp.cols; // Allocate the matrix data to work on. this->H = alloc_2d<double> (n, n); // Now safely copy the data. for (int i = 0; i < tmp.rows; i++) { for (int j = 0; j < tmp.cols; j++) { this->H[i][j] = tmp.at<double>(i, j); } } // Deallocates the temporary matrix before computing. tmp.release(); // Performs the eigenvalue decomposition of H. compute(); // } } ~EigenvalueDecomposition() {} // Returns the eigenvalues of the Eigenvalue Decomposition. Mat eigenvalues() { return _eigenvalues; } // Returns the eigenvectors of the Eigenvalue Decomposition. Mat eigenvectors() { return _eigenvectors; } }; #endif // DLS_H