Feature Detection {#tutorial_feature_detection} ================= Goal ---- In this tutorial you will learn how to: - Use the @ref cv::FeatureDetector interface in order to find interest points. Specifically: - Use the cv::xfeatures2d::SURF and its function cv::xfeatures2d::SURF::detect to perform the detection process - Use the function @ref cv::drawKeypoints to draw the detected keypoints Theory ------ Code ---- This tutorial code's is shown lines below. @code{.cpp} #include <stdio.h> #include <iostream> #include "opencv2/core.hpp" #include "opencv2/features2d.hpp" #include "opencv2/xfeatures2d.hpp" #include "opencv2/highgui.hpp" using namespace cv; using namespace cv::xfeatures2d; void readme(); /* @function main */ int main( int argc, char** argv ) { if( argc != 3 ) { readme(); return -1; } Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE ); Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE ); if( !img_1.data || !img_2.data ) { std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; Ptr<SURF> detector = SURF::create( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector->detect( img_1, keypoints_1 ); detector->detect( img_2, keypoints_2 ); //-- Draw keypoints Mat img_keypoints_1; Mat img_keypoints_2; drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); //-- Show detected (drawn) keypoints imshow("Keypoints 1", img_keypoints_1 ); imshow("Keypoints 2", img_keypoints_2 ); waitKey(0); return 0; } /* @function readme */ void readme() { std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; } @endcode Explanation ----------- Result ------ -# Here is the result of the feature detection applied to the first image: ![](images/Feature_Detection_Result_a.jpg) -# And here is the result for the second image: ![](images/Feature_Detection_Result_b.jpg)