/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ // This is based on the "An Improved Adaptive Background Mixture Model for // Real-time Tracking with Shadow Detection" by P. KaewTraKulPong and R. Bowden // http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf // // The windowing method is used, but not the shadow detection. I make some of my // own modifications which make more sense. There are some errors in some of their // equations. // //IplImage values of image that are useful //int nSize; /* sizeof(IplImage) */ //int depth; /* pixel depth in bits: IPL_DEPTH_8U ...*/ //int nChannels; /* OpenCV functions support 1,2,3 or 4 channels */ //int width; /* image width in pixels */ //int height; /* image height in pixels */ //int imageSize; /* image data size in bytes in case of interleaved data)*/ //char *imageData; /* pointer to aligned image data */ //char *imageDataOrigin; /* pointer to very origin of image -deallocation */ //Values useful for gaussian integral //0.5 - 0.19146 - 0.38292 //1.0 - 0.34134 - 0.68268 //1.5 - 0.43319 - 0.86638 //2.0 - 0.47725 - 0.95450 //2.5 - 0.49379 - 0.98758 //3.0 - 0.49865 - 0.99730 //3.5 - 0.4997674 - 0.9995348 //4.0 - 0.4999683 - 0.9999366 #include "_cvaux.h" //internal functions for gaussian background detection static void icvInsertionSortGaussians( CvGaussBGPoint* g_point, double* sort_key, CvGaussBGStatModelParams *bg_model_params ); /* Test whether pixel can be explained by background model; Return -1 if no match was found; otherwise the index in match[] is returned icvMatchTest(...) assumes what all color channels component exhibit the same variance icvMatchTest2(...) accounts for different variances per color channel */ static int icvMatchTest( double* src_pixel, int nChannels, int* match, const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ); /*static int icvMatchTest2( double* src_pixel, int nChannels, int* match, const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params );*/ /* The update procedure differs between * the initialization phase (named *Partial* ) and * the normal phase (named *Full* ) The initalization phase is defined as not having processed <win_size> frames yet */ static void icvUpdateFullWindow( double* src_pixel, int nChannels, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ); static void icvUpdateFullNoMatch( IplImage* gm_image, int p, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params); static void icvUpdatePartialWindow( double* src_pixel, int nChannels, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ); static void icvUpdatePartialNoMatch( double* src_pixel, int nChannels, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params); static void icvGetSortKey( const int nChannels, double* sort_key, const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ); static void icvBackgroundTest( const int nChannels, int n, int i, int j, int *match, CvGaussBGModel* bg_model ); static void CV_CDECL icvReleaseGaussianBGModel( CvGaussBGModel** bg_model ); static int CV_CDECL icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel* bg_model ); //#define for if(0);else for //g = 1 for first gaussian in list that matches else g = 0 //Rw is the learning rate for weight and Rg is leaning rate for mean and variance //Ms is the match_sum which is the sum of matches for a particular gaussian //Ms values are incremented until the sum of Ms values in the list equals window size L //SMs is the sum of match_sums for gaussians in the list //Rw = 1/SMs note the smallest Rw gets is 1/L //Rg = g/Ms for SMs < L and Rg = g/(w*L) for SMs = L //The list is maintained in sorted order using w/sqrt(variance) as a key //If there is no match the last gaussian in the list is replaced by the new gaussian //This will result in changes to SMs which results in changes in Rw and Rg. //If a gaussian is replaced and SMs previously equaled L values of Ms are computed from w //w[n+1] = w[n] + Rw*(g - w[n]) weight //u[n+1] = u[n] + Rg*(x[n+1] - u[n]) mean value Sg is sum n values of g //v[n+1] = v[n] + Rg*((x[n+1] - u[n])*(x[n+1] - u[n])) - v[n]) variance // CV_IMPL CvBGStatModel* cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters ) { CvGaussBGModel* bg_model = 0; CV_FUNCNAME( "cvCreateGaussianBGModel" ); __BEGIN__; double var_init; CvGaussBGStatModelParams params; int i, j, k, m, n; //init parameters if( parameters == NULL ) { /* These constants are defined in cvaux/include/cvaux.h: */ params.win_size = CV_BGFG_MOG_WINDOW_SIZE; params.bg_threshold = CV_BGFG_MOG_BACKGROUND_THRESHOLD; params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD; params.weight_init = CV_BGFG_MOG_WEIGHT_INIT; params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT; params.minArea = CV_BGFG_MOG_MINAREA; params.n_gauss = CV_BGFG_MOG_NGAUSSIANS; } else { params = *parameters; } if( !CV_IS_IMAGE(first_frame) ) CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" ); CV_CALL( bg_model = (CvGaussBGModel*)cvAlloc( sizeof(*bg_model) )); memset( bg_model, 0, sizeof(*bg_model) ); bg_model->type = CV_BG_MODEL_MOG; bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel; bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel; bg_model->params = params; //prepare storages CV_CALL( bg_model->g_point = (CvGaussBGPoint*)cvAlloc(sizeof(CvGaussBGPoint)* ((first_frame->width*first_frame->height) + 256))); CV_CALL( bg_model->background = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, first_frame->nChannels)); CV_CALL( bg_model->foreground = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1)); CV_CALL( bg_model->storage = cvCreateMemStorage()); //initializing var_init = 2 * params.std_threshold * params.std_threshold; CV_CALL( bg_model->g_point[0].g_values = (CvGaussBGValues*)cvAlloc( sizeof(CvGaussBGValues)*params.n_gauss* (first_frame->width*first_frame->height + 128))); for( i = 0, n = 0; i < first_frame->height; i++ ) { for( j = 0; j < first_frame->width; j++, n++ ) { const int p = i*first_frame->widthStep+j*first_frame->nChannels; bg_model->g_point[n].g_values = bg_model->g_point[0].g_values + n*params.n_gauss; bg_model->g_point[n].g_values[0].weight = 1; //the first value seen has weight one bg_model->g_point[n].g_values[0].match_sum = 1; for( m = 0; m < first_frame->nChannels; m++) { bg_model->g_point[n].g_values[0].variance[m] = var_init; bg_model->g_point[n].g_values[0].mean[m] = (unsigned char)first_frame->imageData[p + m]; } for( k = 1; k < params.n_gauss; k++) { bg_model->g_point[n].g_values[k].weight = 0; bg_model->g_point[n].g_values[k].match_sum = 0; for( m = 0; m < first_frame->nChannels; m++){ bg_model->g_point[n].g_values[k].variance[m] = var_init; bg_model->g_point[n].g_values[k].mean[m] = 0; } } } } bg_model->countFrames = 0; __END__; if( cvGetErrStatus() < 0 ) { CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model; if( bg_model && bg_model->release ) bg_model->release( &base_ptr ); else cvFree( &bg_model ); bg_model = 0; } return (CvBGStatModel*)bg_model; } static void CV_CDECL icvReleaseGaussianBGModel( CvGaussBGModel** _bg_model ) { CV_FUNCNAME( "icvReleaseGaussianBGModel" ); __BEGIN__; if( !_bg_model ) CV_ERROR( CV_StsNullPtr, "" ); if( *_bg_model ) { CvGaussBGModel* bg_model = *_bg_model; if( bg_model->g_point ) { cvFree( &bg_model->g_point[0].g_values ); cvFree( &bg_model->g_point ); } cvReleaseImage( &bg_model->background ); cvReleaseImage( &bg_model->foreground ); cvReleaseMemStorage(&bg_model->storage); memset( bg_model, 0, sizeof(*bg_model) ); cvFree( _bg_model ); } __END__; } static int CV_CDECL icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel* bg_model ) { int i, j, k, n; int region_count = 0; CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL; bg_model->countFrames++; for( i = 0, n = 0; i < curr_frame->height; i++ ) { for( j = 0; j < curr_frame->width; j++, n++ ) { int match[CV_BGFG_MOG_MAX_NGAUSSIANS]; double sort_key[CV_BGFG_MOG_MAX_NGAUSSIANS]; const int nChannels = curr_frame->nChannels; const int p = curr_frame->widthStep*i+j*nChannels; // A few short cuts CvGaussBGPoint* g_point = &bg_model->g_point[n]; const CvGaussBGStatModelParams bg_model_params = bg_model->params; double pixel[4]; int no_match; for( k = 0; k < nChannels; k++ ) pixel[k] = (uchar)curr_frame->imageData[p+k]; no_match = icvMatchTest( pixel, nChannels, match, g_point, &bg_model_params ); if( bg_model->countFrames >= bg_model->params.win_size ) { icvUpdateFullWindow( pixel, nChannels, match, g_point, &bg_model->params ); if( no_match == -1) icvUpdateFullNoMatch( curr_frame, p, match, g_point, &bg_model_params ); } else { icvUpdatePartialWindow( pixel, nChannels, match, g_point, &bg_model_params ); if( no_match == -1) icvUpdatePartialNoMatch( pixel, nChannels, match, g_point, &bg_model_params ); } icvGetSortKey( nChannels, sort_key, g_point, &bg_model_params ); icvInsertionSortGaussians( g_point, sort_key, (CvGaussBGStatModelParams *)&bg_model_params ); icvBackgroundTest( nChannels, n, i, j, match, bg_model ); } } //foreground filtering //filter small regions cvClearMemStorage(bg_model->storage); //cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 ); //cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 ); cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST ); for( seq = first_seq; seq; seq = seq->h_next ) { CvContour* cnt = (CvContour*)seq; if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea ) { //delete small contour prev_seq = seq->h_prev; if( prev_seq ) { prev_seq->h_next = seq->h_next; if( seq->h_next ) seq->h_next->h_prev = prev_seq; } else { first_seq = seq->h_next; if( seq->h_next ) seq->h_next->h_prev = NULL; } } else { region_count++; } } bg_model->foreground_regions = first_seq; cvZero(bg_model->foreground); cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1); return region_count; } static void icvInsertionSortGaussians( CvGaussBGPoint* g_point, double* sort_key, CvGaussBGStatModelParams *bg_model_params ) { int i, j; for( i = 1; i < bg_model_params->n_gauss; i++ ) { double index = sort_key[i]; for( j = i; j > 0 && sort_key[j-1] < index; j-- ) //sort decending order { double temp_sort_key = sort_key[j]; sort_key[j] = sort_key[j-1]; sort_key[j-1] = temp_sort_key; CvGaussBGValues temp_gauss_values = g_point->g_values[j]; g_point->g_values[j] = g_point->g_values[j-1]; g_point->g_values[j-1] = temp_gauss_values; } // sort_key[j] = index; } } static int icvMatchTest( double* src_pixel, int nChannels, int* match, const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ) { int k; int matchPosition=-1; for ( k = 0; k < bg_model_params->n_gauss; k++) match[k]=0; for ( k = 0; k < bg_model_params->n_gauss; k++) { double sum_d2 = 0.0; double var_threshold = 0.0; for(int m = 0; m < nChannels; m++){ double d = g_point->g_values[k].mean[m]- src_pixel[m]; sum_d2 += (d*d); var_threshold += g_point->g_values[k].variance[m]; } //difference < STD_LIMIT*STD_LIMIT or difference**2 < STD_LIMIT*STD_LIMIT*VAR var_threshold = bg_model_params->std_threshold*bg_model_params->std_threshold*var_threshold; if(sum_d2 < var_threshold){ match[k] = 1; matchPosition = k; break; } } return matchPosition; } /* static int icvMatchTest2( double* src_pixel, int nChannels, int* match, const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ) { int k, m; int matchPosition=-1; for( k = 0; k < bg_model_params->n_gauss; k++ ) match[k] = 0; for( k = 0; k < bg_model_params->n_gauss; k++ ) { double sum_d2 = 0.0, var_threshold; for( m = 0; m < nChannels; m++ ) { double d = g_point->g_values[k].mean[m]- src_pixel[m]; sum_d2 += (d*d) / (g_point->g_values[k].variance[m] * g_point->g_values[k].variance[m]); } //difference < STD_LIMIT*STD_LIMIT or difference**2 < STD_LIMIT*STD_LIMIT*VAR var_threshold = bg_model_params->std_threshold*bg_model_params->std_threshold; if( sum_d2 < var_threshold ) { match[k] = 1; matchPosition = k; break; } } return matchPosition; } */ static void icvUpdateFullWindow( double* src_pixel, int nChannels, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ) { const double learning_rate_weight = (1.0/(double)bg_model_params->win_size); for(int k = 0; k < bg_model_params->n_gauss; k++){ g_point->g_values[k].weight = g_point->g_values[k].weight + (learning_rate_weight*((double)match[k] - g_point->g_values[k].weight)); if(match[k]){ double learning_rate_gaussian = (double)match[k]/(g_point->g_values[k].weight* (double)bg_model_params->win_size); for(int m = 0; m < nChannels; m++){ const double tmpDiff = src_pixel[m] - g_point->g_values[k].mean[m]; g_point->g_values[k].mean[m] = g_point->g_values[k].mean[m] + (learning_rate_gaussian * tmpDiff); g_point->g_values[k].variance[m] = g_point->g_values[k].variance[m]+ (learning_rate_gaussian*((tmpDiff*tmpDiff) - g_point->g_values[k].variance[m])); } } } } static void icvUpdatePartialWindow( double* src_pixel, int nChannels, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ) { int k, m; int window_current = 0; for( k = 0; k < bg_model_params->n_gauss; k++ ) window_current += g_point->g_values[k].match_sum; for( k = 0; k < bg_model_params->n_gauss; k++ ) { g_point->g_values[k].match_sum += match[k]; double learning_rate_weight = (1.0/((double)window_current + 1.0)); //increased by one since sum g_point->g_values[k].weight = g_point->g_values[k].weight + (learning_rate_weight*((double)match[k] - g_point->g_values[k].weight)); if( g_point->g_values[k].match_sum > 0 && match[k] ) { double learning_rate_gaussian = (double)match[k]/((double)g_point->g_values[k].match_sum); for( m = 0; m < nChannels; m++ ) { const double tmpDiff = src_pixel[m] - g_point->g_values[k].mean[m]; g_point->g_values[k].mean[m] = g_point->g_values[k].mean[m] + (learning_rate_gaussian*tmpDiff); g_point->g_values[k].variance[m] = g_point->g_values[k].variance[m]+ (learning_rate_gaussian*((tmpDiff*tmpDiff) - g_point->g_values[k].variance[m])); } } } } static void icvUpdateFullNoMatch( IplImage* gm_image, int p, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params) { int k, m; double alpha; int match_sum_total = 0; //new value of last one g_point->g_values[bg_model_params->n_gauss - 1].match_sum = 1; //get sum of all but last value of match_sum for( k = 0; k < bg_model_params->n_gauss ; k++ ) match_sum_total += g_point->g_values[k].match_sum; g_point->g_values[bg_model_params->n_gauss - 1].weight = 1./(double)match_sum_total; for( m = 0; m < gm_image->nChannels ; m++ ) { // first pass mean is image value g_point->g_values[bg_model_params->n_gauss - 1].variance[m] = bg_model_params->variance_init; g_point->g_values[bg_model_params->n_gauss - 1].mean[m] = (unsigned char)gm_image->imageData[p + m]; } alpha = 1.0 - (1.0/bg_model_params->win_size); for( k = 0; k < bg_model_params->n_gauss - 1; k++ ) { g_point->g_values[k].weight *= alpha; if( match[k] ) g_point->g_values[k].weight += alpha; } } static void icvUpdatePartialNoMatch(double *pixel, int nChannels, int* /*match*/, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params) { int k, m; //new value of last one g_point->g_values[bg_model_params->n_gauss - 1].match_sum = 1; //get sum of all but last value of match_sum int match_sum_total = 0; for(k = 0; k < bg_model_params->n_gauss ; k++) match_sum_total += g_point->g_values[k].match_sum; for(m = 0; m < nChannels; m++) { //first pass mean is image value g_point->g_values[bg_model_params->n_gauss - 1].variance[m] = bg_model_params->variance_init; g_point->g_values[bg_model_params->n_gauss - 1].mean[m] = pixel[m]; } for(k = 0; k < bg_model_params->n_gauss; k++) { g_point->g_values[k].weight = (double)g_point->g_values[k].match_sum / (double)match_sum_total; } } static void icvGetSortKey( const int nChannels, double* sort_key, const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params ) { int k, m; for( k = 0; k < bg_model_params->n_gauss; k++ ) { // Avoid division by zero if( g_point->g_values[k].match_sum > 0 ) { // Independence assumption between components double variance_sum = 0.0; for( m = 0; m < nChannels; m++ ) variance_sum += g_point->g_values[k].variance[m]; sort_key[k] = g_point->g_values[k].weight/sqrt(variance_sum); } else sort_key[k]= 0.0; } } static void icvBackgroundTest( const int nChannels, int n, int i, int j, int *match, CvGaussBGModel* bg_model ) { int m, b; uchar pixelValue = (uchar)255; // will switch to 0 if match found double weight_sum = 0.0; CvGaussBGPoint* g_point = bg_model->g_point; for( m = 0; m < nChannels; m++) bg_model->background->imageData[ bg_model->background->widthStep*i + j*nChannels + m] = (unsigned char)(g_point[n].g_values[0].mean[m]+0.5); for( b = 0; b < bg_model->params.n_gauss; b++) { weight_sum += g_point[n].g_values[b].weight; if( match[b] ) pixelValue = 0; if( weight_sum > bg_model->params.bg_threshold ) break; } bg_model->foreground->imageData[ bg_model->foreground->widthStep*i + j] = pixelValue; } /* End of file. */