/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2002, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cvaux.h" #if _MSC_VER >= 1200 #pragma warning(disable:4786) // Disable MSVC warnings in the standard library. #pragma warning(disable:4100) #pragma warning(disable:4512) #endif #include <stdio.h> #include <map> #include <algorithm> #if _MSC_VER >= 1200 #pragma warning(default:4100) #pragma warning(default:4512) #endif #define ARRAY_SIZEOF(a) (sizeof(a)/sizeof((a)[0])) static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size); static void DrawEtalon(IplImage *img, CvPoint2D32f *corners, int corner_count, CvSize etalon_size, int draw_ordered); static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]); static void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]); static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p); static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1, CvPoint3D32f o2, CvPoint3D32f p2, CvPoint3D32f &r1, CvPoint3D32f &r2); ///////////////////////////////// // cv3dTrackerCalibrateCameras // ///////////////////////////////// CV_IMPL CvBool cv3dTrackerCalibrateCameras(int num_cameras, const Cv3dTrackerCameraIntrinsics camera_intrinsics[], // size is num_cameras CvSize etalon_size, float square_size, IplImage *samples[], // size is num_cameras Cv3dTrackerCameraInfo camera_info[]) // size is num_cameras { CV_FUNCNAME("cv3dTrackerCalibrateCameras"); const int num_points = etalon_size.width * etalon_size.height; int cameras_done = 0; // the number of cameras whose positions have been determined CvPoint3D32f *object_points = NULL; // real-world coordinates of checkerboard points CvPoint2D32f *points = NULL; // 2d coordinates of checkerboard points as seen by a camera IplImage *gray_img = NULL; // temporary image for color conversion IplImage *tmp_img = NULL; // temporary image used by FindChessboardCornerGuesses int c, i, j; if (etalon_size.width < 3 || etalon_size.height < 3) CV_ERROR(CV_StsBadArg, "Chess board size is invalid"); for (c = 0; c < num_cameras; c++) { // CV_CHECK_IMAGE is not available in the cvaux library // so perform the checks inline. //CV_CALL(CV_CHECK_IMAGE(samples[c])); if( samples[c] == NULL ) CV_ERROR( CV_HeaderIsNull, "Null image" ); if( samples[c]->dataOrder != IPL_DATA_ORDER_PIXEL && samples[c]->nChannels > 1 ) CV_ERROR( CV_BadOrder, "Unsupported image format" ); if( samples[c]->maskROI != 0 || samples[c]->tileInfo != 0 ) CV_ERROR( CV_StsBadArg, "Unsupported image format" ); if( samples[c]->imageData == 0 ) CV_ERROR( CV_BadDataPtr, "Null image data" ); if( samples[c]->roi && ((samples[c]->roi->xOffset | samples[c]->roi->yOffset | samples[c]->roi->width | samples[c]->roi->height) < 0 || samples[c]->roi->xOffset + samples[c]->roi->width > samples[c]->width || samples[c]->roi->yOffset + samples[c]->roi->height > samples[c]->height || (unsigned) (samples[c]->roi->coi) > (unsigned) (samples[c]->nChannels))) CV_ERROR( CV_BadROISize, "Invalid ROI" ); // End of CV_CHECK_IMAGE inline expansion if (samples[c]->depth != IPL_DEPTH_8U) CV_ERROR(CV_BadDepth, "Channel depth of source image must be 8"); if (samples[c]->nChannels != 3 && samples[c]->nChannels != 1) CV_ERROR(CV_BadNumChannels, "Source image must have 1 or 3 channels"); } CV_CALL(object_points = (CvPoint3D32f *)cvAlloc(num_points * sizeof(CvPoint3D32f))); CV_CALL(points = (CvPoint2D32f *)cvAlloc(num_points * sizeof(CvPoint2D32f))); // fill in the real-world coordinates of the checkerboard points FillObjectPoints(object_points, etalon_size, square_size); for (c = 0; c < num_cameras; c++) { CvSize image_size = cvSize(samples[c]->width, samples[c]->height); IplImage *img; // The input samples are not required to all have the same size or color // format. If they have different sizes, the temporary images are // reallocated as necessary. if (samples[c]->nChannels == 3) { // convert to gray if (gray_img == NULL || gray_img->width != samples[c]->width || gray_img->height != samples[c]->height ) { if (gray_img != NULL) cvReleaseImage(&gray_img); CV_CALL(gray_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1)); } CV_CALL(cvCvtColor(samples[c], gray_img, CV_BGR2GRAY)); img = gray_img; } else { // no color conversion required img = samples[c]; } if (tmp_img == NULL || tmp_img->width != samples[c]->width || tmp_img->height != samples[c]->height ) { if (tmp_img != NULL) cvReleaseImage(&tmp_img); CV_CALL(tmp_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1)); } int count = num_points; bool found = cvFindChessBoardCornerGuesses(img, tmp_img, 0, etalon_size, points, &count) != 0; if (count == 0) continue; // If found is true, it means all the points were found (count = num_points). // If found is false but count is non-zero, it means that not all points were found. cvFindCornerSubPix(img, points, count, cvSize(5,5), cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.01f)); // If the image origin is BL (bottom-left), fix the y coordinates // so they are relative to the true top of the image. if (samples[c]->origin == IPL_ORIGIN_BL) { for (i = 0; i < count; i++) points[i].y = samples[c]->height - 1 - points[i].y; } if (found) { // Make sure x coordinates are increasing and y coordinates are decreasing. // (The y coordinate of point (0,0) should be the greatest, because the point // on the checkerboard that is the origin is nearest the bottom of the image.) // This is done after adjusting the y coordinates according to the image origin. if (points[0].x > points[1].x) { // reverse points in each row for (j = 0; j < etalon_size.height; j++) { CvPoint2D32f *row = &points[j*etalon_size.width]; for (i = 0; i < etalon_size.width/2; i++) std::swap(row[i], row[etalon_size.width-i-1]); } } if (points[0].y < points[etalon_size.width].y) { // reverse points in each column for (i = 0; i < etalon_size.width; i++) { for (j = 0; j < etalon_size.height/2; j++) std::swap(points[i+j*etalon_size.width], points[i+(etalon_size.height-j-1)*etalon_size.width]); } } } DrawEtalon(samples[c], points, count, etalon_size, found); if (!found) continue; float rotVect[3]; float rotMatr[9]; float transVect[3]; cvFindExtrinsicCameraParams(count, image_size, points, object_points, const_cast<float *>(camera_intrinsics[c].focal_length), camera_intrinsics[c].principal_point, const_cast<float *>(camera_intrinsics[c].distortion), rotVect, transVect); // Check result against an arbitrary limit to eliminate impossible values. // (If the chess board were truly that far away, the camera wouldn't be able to // see the squares.) if (transVect[0] > 1000*square_size || transVect[1] > 1000*square_size || transVect[2] > 1000*square_size) { // ignore impossible results continue; } CvMat rotMatrDescr = cvMat(3, 3, CV_32FC1, rotMatr); CvMat rotVectDescr = cvMat(3, 1, CV_32FC1, rotVect); /* Calc rotation matrix by Rodrigues Transform */ cvRodrigues2( &rotVectDescr, &rotMatrDescr ); //combine the two transformations into one matrix //order is important! rotations are not commutative float tmat[4][4] = { { 1.f, 0.f, 0.f, 0.f }, { 0.f, 1.f, 0.f, 0.f }, { 0.f, 0.f, 1.f, 0.f }, { transVect[0], transVect[1], transVect[2], 1.f } }; float rmat[4][4] = { { rotMatr[0], rotMatr[1], rotMatr[2], 0.f }, { rotMatr[3], rotMatr[4], rotMatr[5], 0.f }, { rotMatr[6], rotMatr[7], rotMatr[8], 0.f }, { 0.f, 0.f, 0.f, 1.f } }; MultMatrix(camera_info[c].mat, tmat, rmat); // change the transformation of the cameras to put them in the world coordinate // system we want to work with. // Start with an identity matrix; then fill in the values to accomplish // the desired transformation. float smat[4][4] = { { 1.f, 0.f, 0.f, 0.f }, { 0.f, 1.f, 0.f, 0.f }, { 0.f, 0.f, 1.f, 0.f }, { 0.f, 0.f, 0.f, 1.f } }; // First, reflect through the origin by inverting all three axes. smat[0][0] = -1.f; smat[1][1] = -1.f; smat[2][2] = -1.f; MultMatrix(tmat, camera_info[c].mat, smat); // Scale x and y coordinates by the focal length (allowing for non-square pixels // and/or non-symmetrical lenses). smat[0][0] = 1.0f / camera_intrinsics[c].focal_length[0]; smat[1][1] = 1.0f / camera_intrinsics[c].focal_length[1]; smat[2][2] = 1.0f; MultMatrix(camera_info[c].mat, smat, tmat); camera_info[c].principal_point = camera_intrinsics[c].principal_point; camera_info[c].valid = true; cameras_done++; } exit: cvReleaseImage(&gray_img); cvReleaseImage(&tmp_img); cvFree(&object_points); cvFree(&points); return cameras_done == num_cameras; } // fill in the real-world coordinates of the checkerboard points static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size) { int x, y, i; for (y = 0, i = 0; y < etalon_size.height; y++) { for (x = 0; x < etalon_size.width; x++, i++) { obj_points[i].x = square_size * x; obj_points[i].y = square_size * y; obj_points[i].z = 0; } } } // Mark the points found on the input image // The marks are drawn multi-colored if all the points were found. static void DrawEtalon(IplImage *img, CvPoint2D32f *corners, int corner_count, CvSize etalon_size, int draw_ordered) { const int r = 4; int i; int x, y; CvPoint prev_pt = { 0, 0 }; static const CvScalar rgb_colors[] = { {{0,0,255}}, {{0,128,255}}, {{0,200,200}}, {{0,255,0}}, {{200,200,0}}, {{255,0,0}}, {{255,0,255}} }; static const CvScalar gray_colors[] = { {{80}}, {{120}}, {{160}}, {{200}}, {{100}}, {{140}}, {{180}} }; const CvScalar* colors = img->nChannels == 3 ? rgb_colors : gray_colors; CvScalar color = colors[0]; for (y = 0, i = 0; y < etalon_size.height; y++) { if (draw_ordered) color = colors[y % ARRAY_SIZEOF(rgb_colors)]; for (x = 0; x < etalon_size.width && i < corner_count; x++, i++) { CvPoint pt; pt.x = cvRound(corners[i].x); pt.y = cvRound(corners[i].y); if (img->origin == IPL_ORIGIN_BL) pt.y = img->height - 1 - pt.y; if (draw_ordered) { if (i != 0) cvLine(img, prev_pt, pt, color, 1, CV_AA); prev_pt = pt; } cvLine( img, cvPoint(pt.x - r, pt.y - r), cvPoint(pt.x + r, pt.y + r), color, 1, CV_AA ); cvLine( img, cvPoint(pt.x - r, pt.y + r), cvPoint(pt.x + r, pt.y - r), color, 1, CV_AA ); cvCircle( img, pt, r+1, color, 1, CV_AA ); } } } // Find the midpoint of the line segment between two points. static CvPoint3D32f midpoint(const CvPoint3D32f &p1, const CvPoint3D32f &p2) { return cvPoint3D32f((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2); } static void operator +=(CvPoint3D32f &p1, const CvPoint3D32f &p2) { p1.x += p2.x; p1.y += p2.y; p1.z += p2.z; } static CvPoint3D32f operator /(const CvPoint3D32f &p, int d) { return cvPoint3D32f(p.x/d, p.y/d, p.z/d); } static const Cv3dTracker2dTrackedObject *find(const Cv3dTracker2dTrackedObject v[], int num_objects, int id) { for (int i = 0; i < num_objects; i++) { if (v[i].id == id) return &v[i]; } return NULL; } #define CAMERA_POS(c) (cvPoint3D32f((c).mat[3][0], (c).mat[3][1], (c).mat[3][2])) ////////////////////////////// // cv3dTrackerLocateObjects // ////////////////////////////// CV_IMPL int cv3dTrackerLocateObjects(int num_cameras, int num_objects, const Cv3dTrackerCameraInfo camera_info[], // size is num_cameras const Cv3dTracker2dTrackedObject tracking_info[], // size is num_objects*num_cameras Cv3dTrackerTrackedObject tracked_objects[]) // size is num_objects { /*CV_FUNCNAME("cv3dTrackerLocateObjects");*/ int found_objects = 0; // count how many cameras could see each object std::map<int, int> count; for (int c = 0; c < num_cameras; c++) { if (!camera_info[c].valid) continue; for (int i = 0; i < num_objects; i++) { const Cv3dTracker2dTrackedObject *o = &tracking_info[c*num_objects+i]; if (o->id != -1) count[o->id]++; } } // process each object that was seen by at least two cameras for (std::map<int, int>::iterator i = count.begin(); i != count.end(); i++) { if (i->second < 2) continue; // ignore object seen by only one camera int id = i->first; // find an approximation of the objects location for each pair of cameras that // could see this object, and average them CvPoint3D32f total = cvPoint3D32f(0, 0, 0); int weight = 0; for (int c1 = 0; c1 < num_cameras-1; c1++) { if (!camera_info[c1].valid) continue; const Cv3dTracker2dTrackedObject *o1 = find(&tracking_info[c1*num_objects], num_objects, id); if (o1 == NULL) continue; // this camera didn't see this object CvPoint3D32f p1a = CAMERA_POS(camera_info[c1]); CvPoint3D32f p1b = ImageCStoWorldCS(camera_info[c1], o1->p); for (int c2 = c1 + 1; c2 < num_cameras; c2++) { if (!camera_info[c2].valid) continue; const Cv3dTracker2dTrackedObject *o2 = find(&tracking_info[c2*num_objects], num_objects, id); if (o2 == NULL) continue; // this camera didn't see this object CvPoint3D32f p2a = CAMERA_POS(camera_info[c2]); CvPoint3D32f p2b = ImageCStoWorldCS(camera_info[c2], o2->p); // these variables are initialized simply to avoid erroneous error messages // from the compiler CvPoint3D32f r1 = cvPoint3D32f(0, 0, 0); CvPoint3D32f r2 = cvPoint3D32f(0, 0, 0); // find the intersection of the two lines (or the points of closest // approach, if they don't intersect) if (!intersection(p1a, p1b, p2a, p2b, r1, r2)) continue; total += midpoint(r1, r2); weight++; } } CvPoint3D32f center = total/weight; tracked_objects[found_objects++] = cv3dTrackerTrackedObject(id, center); } return found_objects; } #define EPS 1e-9 // Compute the determinant of the 3x3 matrix represented by 3 row vectors. static inline double det(CvPoint3D32f v1, CvPoint3D32f v2, CvPoint3D32f v3) { return v1.x*v2.y*v3.z + v1.z*v2.x*v3.y + v1.y*v2.z*v3.x - v1.z*v2.y*v3.x - v1.x*v2.z*v3.y - v1.y*v2.x*v3.z; } static CvPoint3D32f operator +(CvPoint3D32f a, CvPoint3D32f b) { return cvPoint3D32f(a.x + b.x, a.y + b.y, a.z + b.z); } static CvPoint3D32f operator -(CvPoint3D32f a, CvPoint3D32f b) { return cvPoint3D32f(a.x - b.x, a.y - b.y, a.z - b.z); } static CvPoint3D32f operator *(CvPoint3D32f v, double f) { return cvPoint3D32f(f*v.x, f*v.y, f*v.z); } // Find the intersection of two lines, or if they don't intersect, // the points of closest approach. // The lines are defined by (o1,p1) and (o2, p2). // If they intersect, r1 and r2 will be the same. // Returns false on error. static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1, CvPoint3D32f o2, CvPoint3D32f p2, CvPoint3D32f &r1, CvPoint3D32f &r2) { CvPoint3D32f x = o2 - o1; CvPoint3D32f d1 = p1 - o1; CvPoint3D32f d2 = p2 - o2; CvPoint3D32f cross = cvPoint3D32f(d1.y*d2.z - d1.z*d2.y, d1.z*d2.x - d1.x*d2.z, d1.x*d2.y - d1.y*d2.x); double den = cross.x*cross.x + cross.y*cross.y + cross.z*cross.z; if (den < EPS) return false; double t1 = det(x, d2, cross) / den; double t2 = det(x, d1, cross) / den; r1 = o1 + d1 * t1; r2 = o2 + d2 * t2; return true; } // Convert from image to camera space by transforming point p in // the image plane by the camera matrix. static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p) { float tp[4]; tp[0] = (float)p.x - camera_info.principal_point.x; tp[1] = (float)p.y - camera_info.principal_point.y; tp[2] = 1.f; tp[3] = 1.f; float tr[4]; //multiply tp by mat to get tr MultVectorMatrix(tr, tp, camera_info.mat); return cvPoint3D32f(tr[0]/tr[3], tr[1]/tr[3], tr[2]/tr[3]); } // Multiply affine transformation m1 by the affine transformation m2 and // return the result in rm. static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]) { for (int i=0; i<=3; i++) for (int j=0; j<=3; j++) { rm[i][j]= 0.0; for (int k=0; k <= 3; k++) rm[i][j] += m1[i][k]*m2[k][j]; } } // Multiply the vector v by the affine transformation matrix m and return the // result in rv. void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]) { for (int i=0; i<=3; i++) { rv[i] = 0.f; for (int j=0;j<=3;j++) rv[i] += v[j] * m[j][i]; } }