/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" void icvCrossCorr( const CvArr* _img, const CvArr* _templ, CvArr* _corr, CvPoint anchor ) { const double block_scale = 4.5; const int min_block_size = 256; CvMat* dft_img[CV_MAX_THREADS] = {0}; CvMat* dft_templ = 0; void* buf[CV_MAX_THREADS] = {0}; int k, num_threads = 0; CV_FUNCNAME( "icvCrossCorr" ); __BEGIN__; CvMat istub, *img = (CvMat*)_img; CvMat tstub, *templ = (CvMat*)_templ; CvMat cstub, *corr = (CvMat*)_corr; CvSize dftsize, blocksize; int depth, templ_depth, corr_depth, max_depth = CV_32F, cn, templ_cn, corr_cn, buf_size = 0, tile_count_x, tile_count_y, tile_count; CV_CALL( img = cvGetMat( img, &istub )); CV_CALL( templ = cvGetMat( templ, &tstub )); CV_CALL( corr = cvGetMat( corr, &cstub )); if( CV_MAT_DEPTH( img->type ) != CV_8U && CV_MAT_DEPTH( img->type ) != CV_16U && CV_MAT_DEPTH( img->type ) != CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "The function supports only 8u, 16u and 32f data types" ); if( !CV_ARE_DEPTHS_EQ( img, templ ) && CV_MAT_DEPTH( templ->type ) != CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "Template (kernel) must be of the same depth as the input image, or be 32f" ); if( !CV_ARE_DEPTHS_EQ( img, corr ) && CV_MAT_DEPTH( corr->type ) != CV_32F && CV_MAT_DEPTH( corr->type ) != CV_64F ) CV_ERROR( CV_StsUnsupportedFormat, "The output image must have the same depth as the input image, or be 32f/64f" ); if( (!CV_ARE_CNS_EQ( img, corr ) || CV_MAT_CN(templ->type) > 1) && (CV_MAT_CN( corr->type ) > 1 || !CV_ARE_CNS_EQ( img, templ)) ) CV_ERROR( CV_StsUnsupportedFormat, "The output must have the same number of channels as the input (when the template has 1 channel), " "or the output must have 1 channel when the input and the template have the same number of channels" ); depth = CV_MAT_DEPTH(img->type); cn = CV_MAT_CN(img->type); templ_depth = CV_MAT_DEPTH(templ->type); templ_cn = CV_MAT_CN(templ->type); corr_depth = CV_MAT_DEPTH(corr->type); corr_cn = CV_MAT_CN(corr->type); max_depth = MAX( max_depth, templ_depth ); max_depth = MAX( max_depth, depth ); max_depth = MAX( max_depth, corr_depth ); if( depth > CV_8U ) max_depth = CV_64F; if( img->cols < templ->cols || img->rows < templ->rows ) CV_ERROR( CV_StsUnmatchedSizes, "Such a combination of image and template/filter size is not supported" ); if( corr->rows > img->rows + templ->rows - 1 || corr->cols > img->cols + templ->cols - 1 ) CV_ERROR( CV_StsUnmatchedSizes, "output image should not be greater than (W + w - 1)x(H + h - 1)" ); blocksize.width = cvRound(templ->cols*block_scale); blocksize.width = MAX( blocksize.width, min_block_size - templ->cols + 1 ); blocksize.width = MIN( blocksize.width, corr->cols ); blocksize.height = cvRound(templ->rows*block_scale); blocksize.height = MAX( blocksize.height, min_block_size - templ->rows + 1 ); blocksize.height = MIN( blocksize.height, corr->rows ); dftsize.width = cvGetOptimalDFTSize(blocksize.width + templ->cols - 1); if( dftsize.width == 1 ) dftsize.width = 2; dftsize.height = cvGetOptimalDFTSize(blocksize.height + templ->rows - 1); if( dftsize.width <= 0 || dftsize.height <= 0 ) CV_ERROR( CV_StsOutOfRange, "the input arrays are too big" ); // recompute block size blocksize.width = dftsize.width - templ->cols + 1; blocksize.width = MIN( blocksize.width, corr->cols ); blocksize.height = dftsize.height - templ->rows + 1; blocksize.height = MIN( blocksize.height, corr->rows ); CV_CALL( dft_templ = cvCreateMat( dftsize.height*templ_cn, dftsize.width, max_depth )); num_threads = cvGetNumThreads(); for( k = 0; k < num_threads; k++ ) CV_CALL( dft_img[k] = cvCreateMat( dftsize.height, dftsize.width, max_depth )); if( templ_cn > 1 && templ_depth != max_depth ) buf_size = templ->cols*templ->rows*CV_ELEM_SIZE(templ_depth); if( cn > 1 && depth != max_depth ) buf_size = MAX( buf_size, (blocksize.width + templ->cols - 1)* (blocksize.height + templ->rows - 1)*CV_ELEM_SIZE(depth)); if( (corr_cn > 1 || cn > 1) && corr_depth != max_depth ) buf_size = MAX( buf_size, blocksize.width*blocksize.height*CV_ELEM_SIZE(corr_depth)); if( buf_size > 0 ) { for( k = 0; k < num_threads; k++ ) CV_CALL( buf[k] = cvAlloc(buf_size) ); } // compute DFT of each template plane for( k = 0; k < templ_cn; k++ ) { CvMat dstub, *src, *dst, temp; CvMat* planes[] = { 0, 0, 0, 0 }; int yofs = k*dftsize.height; src = templ; dst = cvGetSubRect( dft_templ, &dstub, cvRect(0,yofs,templ->cols,templ->rows)); if( templ_cn > 1 ) { planes[k] = templ_depth == max_depth ? dst : cvInitMatHeader( &temp, templ->rows, templ->cols, templ_depth, buf[0] ); cvSplit( templ, planes[0], planes[1], planes[2], planes[3] ); src = planes[k]; planes[k] = 0; } if( dst != src ) cvConvert( src, dst ); if( dft_templ->cols > templ->cols ) { cvGetSubRect( dft_templ, dst, cvRect(templ->cols, yofs, dft_templ->cols - templ->cols, templ->rows) ); cvZero( dst ); } cvGetSubRect( dft_templ, dst, cvRect(0,yofs,dftsize.width,dftsize.height) ); cvDFT( dst, dst, CV_DXT_FORWARD + CV_DXT_SCALE, templ->rows ); } tile_count_x = (corr->cols + blocksize.width - 1)/blocksize.width; tile_count_y = (corr->rows + blocksize.height - 1)/blocksize.height; tile_count = tile_count_x*tile_count_y; { #ifdef _OPENMP #pragma omp parallel for num_threads(num_threads) schedule(dynamic) #endif // calculate correlation by blocks for( k = 0; k < tile_count; k++ ) { int thread_idx = cvGetThreadNum(); int x = (k%tile_count_x)*blocksize.width; int y = (k/tile_count_x)*blocksize.height; int i, yofs; CvMat sstub, dstub, *src, *dst, temp; CvMat* planes[] = { 0, 0, 0, 0 }; CvMat* _dft_img = dft_img[thread_idx]; void* _buf = buf[thread_idx]; CvSize csz = { blocksize.width, blocksize.height }, isz; int x0 = x - anchor.x, y0 = y - anchor.y; int x1 = MAX( 0, x0 ), y1 = MAX( 0, y0 ), x2, y2; csz.width = MIN( csz.width, corr->cols - x ); csz.height = MIN( csz.height, corr->rows - y ); isz.width = csz.width + templ->cols - 1; isz.height = csz.height + templ->rows - 1; x2 = MIN( img->cols, x0 + isz.width ); y2 = MIN( img->rows, y0 + isz.height ); for( i = 0; i < cn; i++ ) { CvMat dstub1, *dst1; yofs = i*dftsize.height; src = cvGetSubRect( img, &sstub, cvRect(x1,y1,x2-x1,y2-y1) ); dst = cvGetSubRect( _dft_img, &dstub, cvRect(0,0,isz.width,isz.height) ); dst1 = dst; if( x2 - x1 < isz.width || y2 - y1 < isz.height ) dst1 = cvGetSubRect( _dft_img, &dstub1, cvRect( x1 - x0, y1 - y0, x2 - x1, y2 - y1 )); if( cn > 1 ) { planes[i] = dst1; if( depth != max_depth ) planes[i] = cvInitMatHeader( &temp, y2 - y1, x2 - x1, depth, _buf ); cvSplit( src, planes[0], planes[1], planes[2], planes[3] ); src = planes[i]; planes[i] = 0; } if( dst1 != src ) cvConvert( src, dst1 ); if( dst != dst1 ) cvCopyMakeBorder( dst1, dst, cvPoint(x1 - x0, y1 - y0), IPL_BORDER_REPLICATE ); if( dftsize.width > isz.width ) { cvGetSubRect( _dft_img, dst, cvRect(isz.width, 0, dftsize.width - isz.width,dftsize.height) ); cvZero( dst ); } cvDFT( _dft_img, _dft_img, CV_DXT_FORWARD, isz.height ); cvGetSubRect( dft_templ, dst, cvRect(0,(templ_cn>1?yofs:0),dftsize.width,dftsize.height) ); cvMulSpectrums( _dft_img, dst, _dft_img, CV_DXT_MUL_CONJ ); cvDFT( _dft_img, _dft_img, CV_DXT_INVERSE, csz.height ); src = cvGetSubRect( _dft_img, &sstub, cvRect(0,0,csz.width,csz.height) ); dst = cvGetSubRect( corr, &dstub, cvRect(x,y,csz.width,csz.height) ); if( corr_cn > 1 ) { planes[i] = src; if( corr_depth != max_depth ) { planes[i] = cvInitMatHeader( &temp, csz.height, csz.width, corr_depth, _buf ); cvConvert( src, planes[i] ); } cvMerge( planes[0], planes[1], planes[2], planes[3], dst ); planes[i] = 0; } else { if( i == 0 ) cvConvert( src, dst ); else { if( max_depth > corr_depth ) { cvInitMatHeader( &temp, csz.height, csz.width, corr_depth, _buf ); cvConvert( src, &temp ); src = &temp; } cvAcc( src, dst ); } } } } } __END__; cvReleaseMat( &dft_templ ); for( k = 0; k < num_threads; k++ ) { cvReleaseMat( &dft_img[k] ); cvFree( &buf[k] ); } } /***************************** IPP Match Template Functions ******************************/ icvCrossCorrValid_Norm_8u32f_C1R_t icvCrossCorrValid_Norm_8u32f_C1R_p = 0; icvCrossCorrValid_NormLevel_8u32f_C1R_t icvCrossCorrValid_NormLevel_8u32f_C1R_p = 0; icvSqrDistanceValid_Norm_8u32f_C1R_t icvSqrDistanceValid_Norm_8u32f_C1R_p = 0; icvCrossCorrValid_Norm_32f_C1R_t icvCrossCorrValid_Norm_32f_C1R_p = 0; icvCrossCorrValid_NormLevel_32f_C1R_t icvCrossCorrValid_NormLevel_32f_C1R_p = 0; icvSqrDistanceValid_Norm_32f_C1R_t icvSqrDistanceValid_Norm_32f_C1R_p = 0; typedef CvStatus (CV_STDCALL * CvTemplMatchIPPFunc) ( const void* img, int imgstep, CvSize imgsize, const void* templ, int templstep, CvSize templsize, void* result, int rstep ); /*****************************************************************************************/ CV_IMPL void cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int method ) { CvMat* sum = 0; CvMat* sqsum = 0; CV_FUNCNAME( "cvMatchTemplate" ); __BEGIN__; int coi1 = 0, coi2 = 0; int depth, cn; int i, j, k; CvMat stub, *img = (CvMat*)_img; CvMat tstub, *templ = (CvMat*)_templ; CvMat rstub, *result = (CvMat*)_result; CvScalar templ_mean = cvScalarAll(0); double templ_norm = 0, templ_sum2 = 0; int idx = 0, idx2 = 0; double *p0, *p1, *p2, *p3; double *q0, *q1, *q2, *q3; double inv_area; int sum_step, sqsum_step; int num_type = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 : method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2; int is_normed = method == CV_TM_CCORR_NORMED || method == CV_TM_SQDIFF_NORMED || method == CV_TM_CCOEFF_NORMED; CV_CALL( img = cvGetMat( img, &stub, &coi1 )); CV_CALL( templ = cvGetMat( templ, &tstub, &coi2 )); CV_CALL( result = cvGetMat( result, &rstub )); if( CV_MAT_DEPTH( img->type ) != CV_8U && CV_MAT_DEPTH( img->type ) != CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "The function supports only 8u and 32f data types" ); if( !CV_ARE_TYPES_EQ( img, templ )) CV_ERROR( CV_StsUnmatchedSizes, "image and template should have the same type" ); if( CV_MAT_TYPE( result->type ) != CV_32FC1 ) CV_ERROR( CV_StsUnsupportedFormat, "output image should have 32f type" ); if( img->rows < templ->rows || img->cols < templ->cols ) { CvMat* t; CV_SWAP( img, templ, t ); } if( result->rows != img->rows - templ->rows + 1 || result->cols != img->cols - templ->cols + 1 ) CV_ERROR( CV_StsUnmatchedSizes, "output image should be (W - w + 1)x(H - h + 1)" ); if( method < CV_TM_SQDIFF || method > CV_TM_CCOEFF_NORMED ) CV_ERROR( CV_StsBadArg, "unknown comparison method" ); depth = CV_MAT_DEPTH(img->type); cn = CV_MAT_CN(img->type); if( is_normed && cn == 1 && templ->rows > 8 && templ->cols > 8 && img->rows > templ->cols && img->cols > templ->cols ) { CvTemplMatchIPPFunc ipp_func = depth == CV_8U ? (method == CV_TM_SQDIFF_NORMED ? (CvTemplMatchIPPFunc)icvSqrDistanceValid_Norm_8u32f_C1R_p : method == CV_TM_CCORR_NORMED ? (CvTemplMatchIPPFunc)icvCrossCorrValid_Norm_8u32f_C1R_p : (CvTemplMatchIPPFunc)icvCrossCorrValid_NormLevel_8u32f_C1R_p) : (method == CV_TM_SQDIFF_NORMED ? (CvTemplMatchIPPFunc)icvSqrDistanceValid_Norm_32f_C1R_p : method == CV_TM_CCORR_NORMED ? (CvTemplMatchIPPFunc)icvCrossCorrValid_Norm_32f_C1R_p : (CvTemplMatchIPPFunc)icvCrossCorrValid_NormLevel_32f_C1R_p); if( ipp_func ) { CvSize img_size = cvGetMatSize(img), templ_size = cvGetMatSize(templ); IPPI_CALL( ipp_func( img->data.ptr, img->step ? img->step : CV_STUB_STEP, img_size, templ->data.ptr, templ->step ? templ->step : CV_STUB_STEP, templ_size, result->data.ptr, result->step ? result->step : CV_STUB_STEP )); for( i = 0; i < result->rows; i++ ) { float* rrow = (float*)(result->data.ptr + i*result->step); for( j = 0; j < result->cols; j++ ) { if( fabs(rrow[j]) > 1. ) rrow[j] = rrow[j] < 0 ? -1.f : 1.f; } } EXIT; } } CV_CALL( icvCrossCorr( img, templ, result )); if( method == CV_TM_CCORR ) EXIT; inv_area = 1./((double)templ->rows * templ->cols); CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_MAKETYPE( CV_64F, cn ))); if( method == CV_TM_CCOEFF ) { CV_CALL( cvIntegral( img, sum, 0, 0 )); CV_CALL( templ_mean = cvAvg( templ )); q0 = q1 = q2 = q3 = 0; } else { CvScalar _templ_sdv = cvScalarAll(0); CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_MAKETYPE( CV_64F, cn ))); CV_CALL( cvIntegral( img, sum, sqsum, 0 )); CV_CALL( cvAvgSdv( templ, &templ_mean, &_templ_sdv )); templ_norm = CV_SQR(_templ_sdv.val[0]) + CV_SQR(_templ_sdv.val[1]) + CV_SQR(_templ_sdv.val[2]) + CV_SQR(_templ_sdv.val[3]); if( templ_norm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED ) { cvSet( result, cvScalarAll(1.) ); EXIT; } templ_sum2 = templ_norm + CV_SQR(templ_mean.val[0]) + CV_SQR(templ_mean.val[1]) + CV_SQR(templ_mean.val[2]) + CV_SQR(templ_mean.val[3]); if( num_type != 1 ) { templ_mean = cvScalarAll(0); templ_norm = templ_sum2; } templ_sum2 /= inv_area; templ_norm = sqrt(templ_norm); templ_norm /= sqrt(inv_area); // care of accuracy here q0 = (double*)sqsum->data.ptr; q1 = q0 + templ->cols*cn; q2 = (double*)(sqsum->data.ptr + templ->rows*sqsum->step); q3 = q2 + templ->cols*cn; } p0 = (double*)sum->data.ptr; p1 = p0 + templ->cols*cn; p2 = (double*)(sum->data.ptr + templ->rows*sum->step); p3 = p2 + templ->cols*cn; sum_step = sum ? sum->step / sizeof(double) : 0; sqsum_step = sqsum ? sqsum->step / sizeof(double) : 0; for( i = 0; i < result->rows; i++ ) { float* rrow = (float*)(result->data.ptr + i*result->step); idx = i * sum_step; idx2 = i * sqsum_step; for( j = 0; j < result->cols; j++, idx += cn, idx2 += cn ) { double num = rrow[j], t; double wnd_mean2 = 0, wnd_sum2 = 0; if( num_type == 1 ) { for( k = 0; k < cn; k++ ) { t = p0[idx+k] - p1[idx+k] - p2[idx+k] + p3[idx+k]; wnd_mean2 += CV_SQR(t); num -= t*templ_mean.val[k]; } wnd_mean2 *= inv_area; } if( is_normed || num_type == 2 ) { for( k = 0; k < cn; k++ ) { t = q0[idx2+k] - q1[idx2+k] - q2[idx2+k] + q3[idx2+k]; wnd_sum2 += t; } if( num_type == 2 ) num = wnd_sum2 - 2*num + templ_sum2; } if( is_normed ) { t = sqrt(MAX(wnd_sum2 - wnd_mean2,0))*templ_norm; if( t > DBL_EPSILON ) { num /= t; if( fabs(num) > 1. ) num = num > 0 ? 1 : -1; } else num = method != CV_TM_SQDIFF_NORMED || num < DBL_EPSILON ? 0 : 1; } rrow[j] = (float)num; } } __END__; cvReleaseMat( &sum ); cvReleaseMat( &sqsum ); } /* End of file. */