/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" #define _CV_SNAKE_BIG 2.e+38f #define _CV_SNAKE_IMAGE 1 #define _CV_SNAKE_GRAD 2 /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvSnake8uC1R // Purpose: // Context: // Parameters: // src - source image, // srcStep - its step in bytes, // roi - size of ROI, // pt - pointer to snake points array // n - size of points array, // alpha - pointer to coefficient of continuity energy, // beta - pointer to coefficient of curvature energy, // gamma - pointer to coefficient of image energy, // coeffUsage - if CV_VALUE - alpha, beta, gamma point to single value // if CV_MATAY - point to arrays // criteria - termination criteria. // scheme - image energy scheme // if _CV_SNAKE_IMAGE - image intensity is energy // if _CV_SNAKE_GRAD - magnitude of gradient is energy // Returns: //F*/ static CvStatus icvSnake8uC1R( unsigned char *src, int srcStep, CvSize roi, CvPoint * pt, int n, float *alpha, float *beta, float *gamma, int coeffUsage, CvSize win, CvTermCriteria criteria, int scheme ) { int i, j, k; int neighbors = win.height * win.width; int centerx = win.width >> 1; int centery = win.height >> 1; float invn; int iteration = 0; int converged = 0; float *Econt; float *Ecurv; float *Eimg; float *E; float _alpha, _beta, _gamma; /*#ifdef GRAD_SNAKE */ float *gradient = NULL; uchar *map = NULL; int map_width = ((roi.width - 1) >> 3) + 1; int map_height = ((roi.height - 1) >> 3) + 1; CvSepFilter pX, pY; #define WTILE_SIZE 8 #define TILE_SIZE (WTILE_SIZE + 2) short dx[TILE_SIZE*TILE_SIZE], dy[TILE_SIZE*TILE_SIZE]; CvMat _dx = cvMat( TILE_SIZE, TILE_SIZE, CV_16SC1, dx ); CvMat _dy = cvMat( TILE_SIZE, TILE_SIZE, CV_16SC1, dy ); CvMat _src = cvMat( roi.height, roi.width, CV_8UC1, src ); /* inner buffer of convolution process */ //char ConvBuffer[400]; /*#endif */ /* check bad arguments */ if( src == NULL ) return CV_NULLPTR_ERR; if( (roi.height <= 0) || (roi.width <= 0) ) return CV_BADSIZE_ERR; if( srcStep < roi.width ) return CV_BADSIZE_ERR; if( pt == NULL ) return CV_NULLPTR_ERR; if( n < 3 ) return CV_BADSIZE_ERR; if( alpha == NULL ) return CV_NULLPTR_ERR; if( beta == NULL ) return CV_NULLPTR_ERR; if( gamma == NULL ) return CV_NULLPTR_ERR; if( coeffUsage != CV_VALUE && coeffUsage != CV_ARRAY ) return CV_BADFLAG_ERR; if( (win.height <= 0) || (!(win.height & 1))) return CV_BADSIZE_ERR; if( (win.width <= 0) || (!(win.width & 1))) return CV_BADSIZE_ERR; invn = 1 / ((float) n); if( scheme == _CV_SNAKE_GRAD ) { pX.init_deriv( TILE_SIZE+2, CV_8UC1, CV_16SC1, 1, 0, 3 ); pY.init_deriv( TILE_SIZE+2, CV_8UC1, CV_16SC1, 0, 1, 3 ); gradient = (float *) cvAlloc( roi.height * roi.width * sizeof( float )); if( !gradient ) return CV_OUTOFMEM_ERR; map = (uchar *) cvAlloc( map_width * map_height ); if( !map ) { cvFree( &gradient ); return CV_OUTOFMEM_ERR; } /* clear map - no gradient computed */ memset( (void *) map, 0, map_width * map_height ); } Econt = (float *) cvAlloc( neighbors * sizeof( float )); Ecurv = (float *) cvAlloc( neighbors * sizeof( float )); Eimg = (float *) cvAlloc( neighbors * sizeof( float )); E = (float *) cvAlloc( neighbors * sizeof( float )); while( !converged ) { float ave_d = 0; int moved = 0; converged = 0; iteration++; /* compute average distance */ for( i = 1; i < n; i++ ) { int diffx = pt[i - 1].x - pt[i].x; int diffy = pt[i - 1].y - pt[i].y; ave_d += cvSqrt( (float) (diffx * diffx + diffy * diffy) ); } ave_d += cvSqrt( (float) ((pt[0].x - pt[n - 1].x) * (pt[0].x - pt[n - 1].x) + (pt[0].y - pt[n - 1].y) * (pt[0].y - pt[n - 1].y))); ave_d *= invn; /* average distance computed */ for( i = 0; i < n; i++ ) { /* Calculate Econt */ float maxEcont = 0; float maxEcurv = 0; float maxEimg = 0; float minEcont = _CV_SNAKE_BIG; float minEcurv = _CV_SNAKE_BIG; float minEimg = _CV_SNAKE_BIG; float Emin = _CV_SNAKE_BIG; int offsetx = 0; int offsety = 0; float tmp; /* compute bounds */ int left = MIN( pt[i].x, win.width >> 1 ); int right = MIN( roi.width - 1 - pt[i].x, win.width >> 1 ); int upper = MIN( pt[i].y, win.height >> 1 ); int bottom = MIN( roi.height - 1 - pt[i].y, win.height >> 1 ); maxEcont = 0; minEcont = _CV_SNAKE_BIG; for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { int diffx, diffy; float energy; if( i == 0 ) { diffx = pt[n - 1].x - (pt[i].x + k); diffy = pt[n - 1].y - (pt[i].y + j); } else { diffx = pt[i - 1].x - (pt[i].x + k); diffy = pt[i - 1].y - (pt[i].y + j); } Econt[(j + centery) * win.width + k + centerx] = energy = (float) fabs( ave_d - cvSqrt( (float) (diffx * diffx + diffy * diffy) )); maxEcont = MAX( maxEcont, energy ); minEcont = MIN( minEcont, energy ); } } tmp = maxEcont - minEcont; tmp = (tmp == 0) ? 0 : (1 / tmp); for( k = 0; k < neighbors; k++ ) { Econt[k] = (Econt[k] - minEcont) * tmp; } /* Calculate Ecurv */ maxEcurv = 0; minEcurv = _CV_SNAKE_BIG; for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { int tx, ty; float energy; if( i == 0 ) { tx = pt[n - 1].x - 2 * (pt[i].x + k) + pt[i + 1].x; ty = pt[n - 1].y - 2 * (pt[i].y + j) + pt[i + 1].y; } else if( i == n - 1 ) { tx = pt[i - 1].x - 2 * (pt[i].x + k) + pt[0].x; ty = pt[i - 1].y - 2 * (pt[i].y + j) + pt[0].y; } else { tx = pt[i - 1].x - 2 * (pt[i].x + k) + pt[i + 1].x; ty = pt[i - 1].y - 2 * (pt[i].y + j) + pt[i + 1].y; } Ecurv[(j + centery) * win.width + k + centerx] = energy = (float) (tx * tx + ty * ty); maxEcurv = MAX( maxEcurv, energy ); minEcurv = MIN( minEcurv, energy ); } } tmp = maxEcurv - minEcurv; tmp = (tmp == 0) ? 0 : (1 / tmp); for( k = 0; k < neighbors; k++ ) { Ecurv[k] = (Ecurv[k] - minEcurv) * tmp; } /* Calculate Eimg */ for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { float energy; if( scheme == _CV_SNAKE_GRAD ) { /* look at map and check status */ int x = (pt[i].x + k)/WTILE_SIZE; int y = (pt[i].y + j)/WTILE_SIZE; if( map[y * map_width + x] == 0 ) { int l, m; /* evaluate block location */ int upshift = y ? 1 : 0; int leftshift = x ? 1 : 0; int bottomshift = MIN( 1, roi.height - (y + 1)*WTILE_SIZE ); int rightshift = MIN( 1, roi.width - (x + 1)*WTILE_SIZE ); CvRect g_roi = { x*WTILE_SIZE - leftshift, y*WTILE_SIZE - upshift, leftshift + WTILE_SIZE + rightshift, upshift + WTILE_SIZE + bottomshift }; CvMat _src1; cvGetSubArr( &_src, &_src1, g_roi ); pX.process( &_src1, &_dx ); pY.process( &_src1, &_dy ); for( l = 0; l < WTILE_SIZE + bottomshift; l++ ) { for( m = 0; m < WTILE_SIZE + rightshift; m++ ) { gradient[(y*WTILE_SIZE + l) * roi.width + x*WTILE_SIZE + m] = (float) (dx[(l + upshift) * TILE_SIZE + m + leftshift] * dx[(l + upshift) * TILE_SIZE + m + leftshift] + dy[(l + upshift) * TILE_SIZE + m + leftshift] * dy[(l + upshift) * TILE_SIZE + m + leftshift]); } } map[y * map_width + x] = 1; } Eimg[(j + centery) * win.width + k + centerx] = energy = gradient[(pt[i].y + j) * roi.width + pt[i].x + k]; } else { Eimg[(j + centery) * win.width + k + centerx] = energy = src[(pt[i].y + j) * srcStep + pt[i].x + k]; } maxEimg = MAX( maxEimg, energy ); minEimg = MIN( minEimg, energy ); } } tmp = (maxEimg - minEimg); tmp = (tmp == 0) ? 0 : (1 / tmp); for( k = 0; k < neighbors; k++ ) { Eimg[k] = (minEimg - Eimg[k]) * tmp; } /* locate coefficients */ if( coeffUsage == CV_VALUE) { _alpha = *alpha; _beta = *beta; _gamma = *gamma; } else { _alpha = alpha[i]; _beta = beta[i]; _gamma = gamma[i]; } /* Find Minimize point in the neighbors */ for( k = 0; k < neighbors; k++ ) { E[k] = _alpha * Econt[k] + _beta * Ecurv[k] + _gamma * Eimg[k]; } Emin = _CV_SNAKE_BIG; for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { if( E[(j + centery) * win.width + k + centerx] < Emin ) { Emin = E[(j + centery) * win.width + k + centerx]; offsetx = k; offsety = j; } } } if( offsetx || offsety ) { pt[i].x += offsetx; pt[i].y += offsety; moved++; } } converged = (moved == 0); if( (criteria.type & CV_TERMCRIT_ITER) && (iteration >= criteria.max_iter) ) converged = 1; if( (criteria.type & CV_TERMCRIT_EPS) && (moved <= criteria.epsilon) ) converged = 1; } cvFree( &Econt ); cvFree( &Ecurv ); cvFree( &Eimg ); cvFree( &E ); if( scheme == _CV_SNAKE_GRAD ) { cvFree( &gradient ); cvFree( &map ); } return CV_OK; } CV_IMPL void cvSnakeImage( const IplImage* src, CvPoint* points, int length, float *alpha, float *beta, float *gamma, int coeffUsage, CvSize win, CvTermCriteria criteria, int calcGradient ) { CV_FUNCNAME( "cvSnakeImage" ); __BEGIN__; uchar *data; CvSize size; int step; if( src->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, "input image has more than one channel" ); if( src->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); cvGetRawData( src, &data, &step, &size ); IPPI_CALL( icvSnake8uC1R( data, step, size, points, length, alpha, beta, gamma, coeffUsage, win, criteria, calcGradient ? _CV_SNAKE_GRAD : _CV_SNAKE_IMAGE )); __END__; } /* end of file */